Web Information Retrieval

Introduction

Information Retrieval (IR)
- The indexing and retrieval of textual documents.
- Searching for pages on the World Wide Web is one of the recent “killer applications”
- Concerned firstly with retrieving relevant documents to a query.
- Concerned secondly with retrieving from large sets of documents efficiently.
- Try to search "colt" at google.com and yahoo.com

Typical IR Task
- Given:
 - A corpus of textual natural-language documents.
 - A user query in the form of a textual string.
- Find:
 - A ranked set of documents that are relevant to the query.

IR System

Relevance
- Relevance is a subjective judgment and may include:
 - Being on the proper subject.
 - Being timely (recent information).
 - Being authoritative (from a trusted source).
 - Satisfying the goals of the user and his/her intended use of the information (information need).

Keyword Search
- Simplest notion of relevance is that the query string appears verbatim in the document.
- Slightly less strict notion is that the words in the query appear frequently in the document, in any order (bag of words).
- Other types of search (multimedia):
 - Image search
 - Audio search
Problems with Keywords

• May not retrieve relevant documents that include synonymous terms.
 – “restaurant” vs. “café”
 – “PRC” vs. “China”
• May retrieve irrelevant documents that include ambiguous terms.
 – “bat” (baseball vs. mammal)
 – “Apple” (company vs. fruit)
 – “bit” (unit of data vs. act of eating)
 – “ Colt” ?
 * horses, guns, Computational Learning Theory, telecom

Beyond Keywords

• We will cover the basics of keyword-based IR, but…
• We will focus on extensions and recent developments that go beyond keywords.
• We will cover the basics of building an efficient IR system, but…
• We will focus on basic capabilities and algorithms rather than system’s issues that allow scaling to industrial size databases.

Intelligent IR

• Taking into account the meaning of the words used.
• Taking into account the order of words in the query.
• Adapting to the user based on direct or indirect feedback.
• Taking into account the authority of the source.

IR System Architecture

IR System Components

• Text Operations forms index words (tokens).
 – Stopword removal
 – Stemming
• Indexing constructs an inverted index of word to document pointers.
• Searching retrieves documents that contain a given query token from the inverted index.
• Ranking scores all retrieved documents according to a relevance metric.

IR System Components (continued)

• User Interface manages interaction with the user:
 – Query input and document output.
 – Relevance feedback.
 – Visualization of results.
• Query Operations transform the query to improve retrieval:
 – Query expansion using a thesaurus.
 – Query transformation using relevance feedback.
Web Search

• Application of IR to HTML documents on the World Wide Web.
• Differences:
 – Must assemble document corpus by spidering the web.
 – Can exploit the structural layout information in HTML (XML).
 – Documents change uncontrollably.
 – Can exploit the link structure of the web.

Web Search System

Our Project

• User interface
• Search engine
• Retriever
• Document sets
• Crawler
• Indexer

Other IR-Related Tasks

• Automated document categorization
• Information filtering (spam filtering)
• Information routing
• Automated document clustering
• Recommending information or products
• Information extraction
• Information integration
• Question answering

History of IR

• 1960-70’s:
 – Initial exploration of text retrieval systems for “small” corpora of scientific abstracts, and law and business documents.
 – Development of the basic Boolean and vector-space models of retrieval.
 – Prof. Salton and his students at Cornell University are the leading researchers in the area.
IR History Continued

• 1980’s:
 – Large document database systems, many run by companies:
 • Lexis-Nexis – authoritative legal, news, public record, business information
 • Dialog – publishers’ information
 • MEDLINE – health supply catalogue

Recent IR History

• 2000’s:
 – Link analysis for Web Search
 • Google
 – Automated Information Extraction
 • Whizbang
 • Fetch
 • Burning Glass
 – Question Answering
 • TREC Q/A track

Recent IR History

• 2000’s continued:
 – Multimedia IR
 • Image
 • Video
 • Audio and music
 – Cross-Language IR
 • DARPA Tides
 – Document Summarization

Related Areas

• Database Management
• Library and Information Science
• Artificial Intelligence
• Natural Language Processing
• Machine Learning
Database Management

- Focused on *structured* data stored in relational tables rather than free-form text.
- Focused on efficient processing of well-defined queries in a formal language (SQL).
- Clearer semantics for both data and queries.
- Recent move towards *semi-structured* data (XML) brings it closer to IR.

Library and Information Science

- Focused on the human user aspects of information retrieval (human-computer interaction, user interface, visualization).
- Concerned with effective categorization of human knowledge.
- Concerned with citation analysis and bibliometrics (structure of information).
- Recent work on *digital libraries* brings it closer to CS & IR.

Artificial Intelligence

- Focused on the representation of knowledge, reasoning, and intelligent action.
- Formalisms for representing knowledge and queries:
 - First-order Predicate Logic
 - Bayesian Networks
- Recent work on web ontologies and intelligent information agents brings it closer to IR.

Natural Language Processing

- Focused on the syntactic, semantic, and pragmatic analysis of natural language text and discourse.
- Ability to analyze syntax (phrase structure) and semantics could allow retrieval based on *meaning* rather than keywords.

Natural Language Processing: IR Directions

- Methods for determining the sense of an ambiguous word based on context (*word sense disambiguation*).
- Methods for identifying specific pieces of information in a document (*information extraction*).
- Methods for answering specific NL questions from document corpora.

Machine Learning

- Focused on the development of computational systems that improve their performance with experience.
- Automated classification of examples based on learning concepts from labeled training examples (*supervised learning*).
- Automated methods for clustering unlabeled examples into meaningful groups (*unsupervised learning*).
Machine Learning: IR Directions

• Text Categorization
 – Automatic hierarchical classification (Yahoo).
 – Adaptive filtering/routing/recommending.
 – Automated spam filtering.
• Text Clustering
 – Clustering of IR query results.
 – Automatic formation of hierarchies (Yahoo).
• Learning for Information Extraction
• Text Mining