
1

1

Web Search

Interfaces

2

Web Search Interface

• Web search engines of course need a web-based
interface.

• Search page must accept a query string and submit
it within an HTML <form>.

• Program on the server must process requests and
generate HTML text for the top ranked documents
with pointers to the original and/or cached web
pages.

• Server program must also allow for requests for
more relevant documents for a previous query.

3

Submit Forms

• HTML supports various types of program input in
forms, including:
– Text boxes
– Menus
– Check boxes
– Radio buttons

• When user submits a form, string values for
various parameters are sent to the server program
for processing.

• Server program uses these values to compute an
appropriate HTML response page.

4

Simple Search Submit Form
<form method= "POST" action="/form">
<input type="text" name="FirstInput" size = "20">

Type input into the box

<input type="text" name="SecondInput" size = "20">

Type input into the box

<input type="submit" name="Submit" value = "Submit">

</form>

5

How To Handle Form Submissions?

• There are many ways of handling form
submissions.

• Servlet (written in Java and other
languages) that provides action on the
server side, the opposite of Applet

• Apache Tomcat is an example of Java
implementation jakarta.apache.org/tomcat/

• CGI: Common Gateway Interface
• We will write our own server that supports

search 6

Basic Web Server Structure

• Server program creates a socket for
connection.

• Server program waits for clients request for
connection. Clients here typically are Web
browser such as Netscape.

• Once the server receives a request, it
examines the type of request and perform
the service as requested.

• The server then sends the results back to the
client, typically in an HTML format.

2

7

Code Example of a Simple Web Server

• See transparency for the code example
• Also at http://www.eg.bucknell.edu/~csci335/2006-

fall/code/javaServer/EasyWebServer.java

8

Socket API in Java

• A socket is a communication point. Java has two
types of socket, a ServerSocket that waits for
clients to connect at a given port
ServerSocket server = new ServerSocket(PORT);

• When a client (a browser) connects to a server, the
server creates a socket to work with that client
(Socket sock = server.accept();)

• When the work is finished, the server closes the
socket

• A server may work with many clients any any
moment

9

Server-Client Communication

• When a browser connects to a server it
sends a collection of information to the
server. Here is an example

GET / HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/4.78 [en] (X11; U; SunOS 5.8 sun4u)
Host: polaris:9999
Accept: image/gif, image/x-xbitmap, image/jpeg,

image/pjpeg, image/png, */*
Accept-Encoding: gzip
Accept-Language: en
Accept-Charset: iso-8859-1,*,utf-8

10

Server-Client Communication -- cont

• The first line is most important. It indicates
the client requests a “GET” operation at the
given path “/”

• When the server receives this request, it
first checks to see if the request is a valid
one. If it is, the server performs the service
and returns the results to the client.

• If the request is a regular Web page, as the
above example, the requested page is sent.

11

Server-Client Communication -- cont

• Code example (the method processHTTPCmd)
is on the transparency and at
http://www.eg.bucknell.edu/~csci335/2006-
fall/code/javaServer/EasyWebServer.java

• If the client is sending a form (typically a
search request), the server has to process the
form and extract the information from the
the form.

• When the client sends a form, it is
requesting to POST the form to the server

12

Server-Client Communication -- cont

• The header sent to the server looks as
follows.

POST /form HTTP/1.0
Referer: http://polaris:9999/search
Connection: Keep-Alive
User-Agent: Mozilla/4.78 [en] (X11; U; SunOS 5.8 sun4u)
Host: polaris:9999
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,

image/png, */*
Accept-Encoding: gzip
Accept-Language: en
Accept-Charset: iso-8859-1,*,utf-8
Content-type: application/x-www-form-urlencoded
Content-length: 44

3

13

Server-Client Communication -- cont

• Key differences from previous “GET”
example:
– The command is now “POST”
– It has a “Content-type” and a “Content-length”

component
• The server responds according to the header
• The request has a “POST” so the server

knows an action is needed
• The request has a “Content-type” of form

14

Server-Client Communication -- cont

• The request has a “Content-length” so the
server knows how long is the form. In our
example, the length is 44

• The server will read the form following the
header from the client.

• The forms are sent in from the client in
pairs of name=value separated by &. In our
example, it looks as follows, 44 chars long.
FirstInput=123&SecondInput=abc&Submit=Sub
mit

15

Server-Client Communication -- cont

• How was this string formed? Check the
HTML code for the form.

<input type="text" name="FirstInput">
Type input into the box

<input type="text" name="SecondInput">

Type input into the box

<input type="submit" name="Submit" value
= "Submit">

16

Server-Client Communication -- cont

• The server then parses out the form and act
accordingly.

• In our sample program, we simply echo
back the values filled in the form. In actual
search engine, the parsed words will be
used to retrieve the relevant documents.

• To parse the form input, we used the Java
method StringTokenizer

17

Snapshots of the Sample Web Server

18

Snapshots of the Sample Web Server

4

19

Simple Search Interface Refinements

• Currently reprocesses query for “More
results” requests.
– Could store current ranked list with the user

session.
• Could integrate relevance feedback

interaction.
• Could provide “Get similar pages” request

for each retrieved document (as in Google).
– Just use given document text as a query.

20

Other Search Interface Refinements

• Highlight search terms in the displayed document.
– Provided in cached file on Google.

• Allow for “advanced” search:
– Phrasal search (“..”)
– Mandatory terms (+)
– Negated term (-)
– Language preference
– Reverse link
– Date preference

• Machine translation of pages.

21

Clustering Results

• Group search results into coherent “clusters”:
– “microwave dish”

• One group of on food recipes or cookware.
• Another group on satellite TV reception.

– “Austin bats”
• One group on the local flying mammals.
• One group on the local hockey team.

• Vivisimo groups results into “folders” based on a
pre-established categorization of pages (like
Yahoo or DMOZ categories).

• Alternative is to dynamically cluster search results
into groups of similar documents.

22

User Behavior

• Users tend to enter short queries.
– Study in 1998 gave average length of 2.35 words.
– A 2003 study result is similar

• Users tend not to use advance search options.
• Users need to be instructed on using more

sophisticated queries.

