
1

Web Search

Interfaces

2

Web Search Interface

• Web search engines of course need a web-based
interface.

• Search page must accept a query string and submit
it within an HTML <form>.

• Program on the server must process requests and
generate HTML text for the top ranked documents
with pointers to the original and/or cached web
pages.

• Server program must also allow for requests for
more relevant documents for a previous query.

3

Submit Forms

• HTML supports various types of program input in
forms, including:
– Text boxes
– Menus
– Check boxes
– Radio buttons

• When user submits a form, string values for
various parameters are sent to the server program
for processing.

• Server program uses these values to compute an
appropriate HTML response page.

4

Simple Search Submit Form
<form method= "POST" action="/form">
<input type="text" name="FirstInput" size = "20">

Type input into the box

<input type="text" name="SecondInput" size = "20">

Type input into the box

<input type="submit" name="Submit" value = "Submit">

</form>

5

How To Handle Form Submissions?

• There are many ways of handling form
submissions.

• Servlet (written in Java and other
languages) that provides action on the
server side, the opposite of Applet

• Apache Tomcat is an example of Java
implementation jakarta.apache.org/tomcat/

• CGI: Common Gateway Interface
• We will write our own server that supports

search

http://jakarta.apache.org/tomcat/

6

Basic Web Server Structure

• Server program creates a socket for
connection.

• Server program waits for clients request for
connection. Clients here typically are Web
browser such as Netscape.

• Once the server receives a request, it
examines the type of request and perform
the service as requested.

• The server then sends the results back to the
client, typically in an HTML format.

7

Code Example of a Simple Web Server

• See transparency for the code example
• Also at http://www.eg.bucknell.edu/~csci335/2006-

fall/code/javaServer/EasyWebServer.java

http://www.eg.bucknell.edu/~csci335/2006-fall/code/javaServer/EasyWebServer.java
http://www.eg.bucknell.edu/~csci335/2006-fall/code/javaServer/EasyWebServer.java

8

Socket API in Java

• A socket is a communication point. Java has two
types of socket, a ServerSocket that waits for
clients to connect at a given port
ServerSocket server = new ServerSocket(PORT);

• When a client (a browser) connects to a server, the
server creates a socket to work with that client
(Socket sock = server.accept();)

• When the work is finished, the server closes the
socket

• A server may work with many clients any any
moment

9

Server-Client Communication

• When a browser connects to a server it
sends a collection of information to the
server. Here is an example

GET / HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/4.78 [en] (X11; U; SunOS 5.8 sun4u)
Host: polaris:9999
Accept: image/gif, image/x-xbitmap, image/jpeg,

image/pjpeg, image/png, */*
Accept-Encoding: gzip
Accept-Language: en
Accept-Charset: iso-8859-1,*,utf-8

10

Server-Client Communication -- cont

• The first line is most important. It indicates
the client requests a “GET” operation at the
given path “/”

• When the server receives this request, it
first checks to see if the request is a valid
one. If it is, the server performs the service
and returns the results to the client.

• If the request is a regular Web page, as the
above example, the requested page is sent.

11

Server-Client Communication -- cont

• Code example (the method processHTTPCmd)
is on the transparency and at
http://www.eg.bucknell.edu/~csci335/2006-
fall/code/javaServer/EasyWebServer.java

• If the client is sending a form (typically a
search request), the server has to process the
form and extract the information from the
the form.

• When the client sends a form, it is
requesting to POST the form to the server

http://www.eg.bucknell.edu/~csci335/2006-fall/code/javaServer/EasyWebServer.java
http://www.eg.bucknell.edu/~csci335/2006-fall/code/javaServer/EasyWebServer.java

12

Server-Client Communication -- cont

• The header sent to the server looks as
follows.

POST /form HTTP/1.0
Referer: http://polaris:9999/search
Connection: Keep-Alive
User-Agent: Mozilla/4.78 [en] (X11; U; SunOS 5.8 sun4u)
Host: polaris:9999
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,

image/png, */*
Accept-Encoding: gzip
Accept-Language: en
Accept-Charset: iso-8859-1,*,utf-8
Content-type: application/x-www-form-urlencoded
Content-length: 44

13

Server-Client Communication -- cont

• Key differences from previous “GET”
example:
– The command is now “POST”
– It has a “Content-type” and a “Content-length”

component
• The server responds according to the header
• The request has a “POST” so the server

knows an action is needed
• The request has a “Content-type” of form

14

Server-Client Communication -- cont

• The request has a “Content-length” so the
server knows how long is the form. In our
example, the length is 44

• The server will read the form following the
header from the client.

• The forms are sent in from the client in
pairs of name=value separated by &. In our
example, it looks as follows, 44 chars long.
FirstInput=123&SecondInput=abc&Submit=Sub
mit

15

Server-Client Communication -- cont

• How was this string formed? Check the
HTML code for the form.

<input type="text" name="FirstInput">
Type input into the box

<input type="text" name="SecondInput">
Type input into the box

<input type="submit" name="Submit" value
= "Submit">

16

Server-Client Communication -- cont

• The server then parses out the form and act
accordingly.

• In our sample program, we simply echo
back the values filled in the form. In actual
search engine, the parsed words will be
used to retrieve the relevant documents.

• To parse the form input, we used the Java
method StringTokenizer

17

Snapshots of the Sample Web Server

18

Snapshots of the Sample Web Server

19

Simple Search Interface Refinements

• Currently reprocesses query for “More
results” requests.
– Could store current ranked list with the user

session.
• Could integrate relevance feedback

interaction.
• Could provide “Get similar pages” request

for each retrieved document (as in Google).
– Just use given document text as a query.

http://www.google.com/

20

Other Search Interface Refinements

• Highlight search terms in the displayed document.
– Provided in cached file on Google.

• Allow for “advanced” search:
– Phrasal search (“..”)
– Mandatory terms (+)
– Negated term (-)
– Language preference
– Reverse link
– Date preference

• Machine translation of pages.

http://www.google.com/

21

Clustering Results

• Group search results into coherent “clusters”:
– “microwave dish”

• One group of on food recipes or cookware.
• Another group on satellite TV reception.

– “Austin bats”
• One group on the local flying mammals.
• One group on the local hockey team.

• Vivisimo groups results into “folders” based on a
pre-established categorization of pages (like
Yahoo or DMOZ categories).

• Alternative is to dynamically cluster search results
into groups of similar documents.

http://www.vivisimo.com/

22

User Behavior

• Users tend to enter short queries.
– Study in 1998 gave average length of 2.35 words.
– A 2003 study result is similar

• Users tend not to use advance search options.
• Users need to be instructed on using more

sophisticated queries.

	Web Search
	Web Search Interface
	Submit Forms
	Simple Search Submit Form
	How To Handle Form Submissions?
	Basic Web Server Structure
	Code Example of a Simple Web Server
	Socket API in Java
	Server-Client Communication
	Server-Client Communication -- cont
	Server-Client Communication -- cont
	Server-Client Communication -- cont
	Server-Client Communication -- cont
	Server-Client Communication -- cont
	Server-Client Communication -- cont
	Server-Client Communication -- cont
	Snapshots of the Sample Web Server
	Snapshots of the Sample Web Server
	Simple Search Interface Refinements
	Other Search Interface Refinements
	Clustering Results
	User Behavior

