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Web Search Interface

• Web search engines of course need a web-based 
interface.

• Search page must accept a query string and submit 
it within an HTML <form>.

• Program on the server must process requests and 
generate HTML text for the top ranked documents 
with pointers to the original and/or cached web 
pages.

• Server program must also allow for requests for 
more relevant documents for a previous query.
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Submit Forms

• HTML supports various types of program input in 
forms, including:
– Text boxes
– Menus
– Check boxes
– Radio buttons

• When user submits a form, string values for 
various parameters are sent to the server program 
for processing.

• Server program uses these values to compute an 
appropriate HTML response page.
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Simple Search Submit Form
<form method= "POST" action="/form">
<input type="text" name="FirstInput" size = "20">
<font color="red">
Type input into the box</font><br>
<br>
<input type="text" name="SecondInput" size = "20">
<font color="green">
Type input into the box</font><br>
<br>
<font color = "yellow"> 
<input type="submit" name="Submit" value = "Submit">
</font><br>
<br>
</form>
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How To Handle Form Submissions?

• There are many ways of handling form 
submissions.

• Servlet (written in Java and other 
languages) that provides action on the 
server side, the opposite of Applet

• Apache Tomcat is an example of Java 
implementation jakarta.apache.org/tomcat/

• CGI: Common Gateway Interface
• We will write our own server that supports 

search

http://jakarta.apache.org/tomcat/
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Basic Web Server Structure

• Server program creates a socket for 
connection.

• Server program waits for clients request for 
connection. Clients here typically are Web 
browser such as Netscape.

• Once the server receives a request, it 
examines the type of request and perform 
the service as requested.

• The server then sends the results back to the 
client, typically in an HTML format.
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Code Example of a Simple Web Server

• See transparency for the code example
• Also at http://www.eg.bucknell.edu/~csci335/2006-

fall/code/javaServer/EasyWebServer.java

http://www.eg.bucknell.edu/~csci335/2006-fall/code/javaServer/EasyWebServer.java
http://www.eg.bucknell.edu/~csci335/2006-fall/code/javaServer/EasyWebServer.java
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Socket API in Java

• A socket is a communication point. Java has two 
types of socket, a ServerSocket that waits for 
clients to connect at a given port           
ServerSocket server = new ServerSocket(PORT);

• When a client (a browser) connects to a server, the 
server creates a socket to work with that client 
(Socket sock = server.accept();)

• When the work is finished, the server closes the 
socket

• A server may work with many clients any any 
moment
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Server-Client Communication

• When a browser connects to a server it 
sends a collection of information to the 
server. Here is an example

GET / HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/4.78 [en] (X11; U; SunOS 5.8 sun4u)
Host: polaris:9999
Accept: image/gif, image/x-xbitmap, image/jpeg, 

image/pjpeg, image/png, */*
Accept-Encoding: gzip
Accept-Language: en
Accept-Charset: iso-8859-1,*,utf-8
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Server-Client Communication -- cont

• The first line is most important. It indicates 
the client requests a “GET” operation at the 
given path “/”

• When the server receives this request, it 
first checks to see if the request is a valid 
one. If it is, the server performs the service 
and returns the results to the client.

• If the request is a regular Web page, as the 
above example, the requested page is sent.
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Server-Client Communication -- cont

• Code example (the method processHTTPCmd) 
is on the transparency and at 
http://www.eg.bucknell.edu/~csci335/2006-
fall/code/javaServer/EasyWebServer.java

• If the client is sending a form (typically a 
search request), the server has to process the 
form and extract the information from the 
the form.

• When the client sends a form, it is 
requesting to POST the form to the server

http://www.eg.bucknell.edu/~csci335/2006-fall/code/javaServer/EasyWebServer.java
http://www.eg.bucknell.edu/~csci335/2006-fall/code/javaServer/EasyWebServer.java
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Server-Client Communication -- cont

• The header sent to the server looks as 
follows.

POST /form HTTP/1.0
Referer: http://polaris:9999/search
Connection: Keep-Alive
User-Agent: Mozilla/4.78 [en] (X11; U; SunOS 5.8 sun4u)
Host: polaris:9999
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, 

image/png, */*
Accept-Encoding: gzip
Accept-Language: en
Accept-Charset: iso-8859-1,*,utf-8
Content-type: application/x-www-form-urlencoded
Content-length: 44
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Server-Client Communication -- cont

• Key differences from previous “GET”
example:
– The command is now “POST”
– It has a “Content-type” and a “Content-length”

component
• The server responds according to the header
• The request has a “POST” so the server 

knows an action is needed
• The request has a “Content-type” of form
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Server-Client Communication -- cont

• The request has a “Content-length” so the 
server knows how long is the form. In our 
example, the length is 44

• The server will read the form following the 
header from the client. 

• The forms are sent in from the client in 
pairs of name=value separated by &. In our 
example, it looks as follows, 44 chars long. 
FirstInput=123&SecondInput=abc&Submit=Sub
mit
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Server-Client Communication -- cont

• How was this string formed? Check the 
HTML code for the form.

<input type="text" name="FirstInput">
Type input into the box</font><br>
<input type="text" name="SecondInput">
Type input into the box</font><br>
<input type="submit" name="Submit" value 
= "Submit">



16

Server-Client Communication -- cont

• The server then parses out the form and act 
accordingly.

• In our sample program, we simply echo 
back the values filled in the form. In actual 
search engine, the parsed words will be 
used to retrieve the relevant documents.

• To parse the form input, we used the Java 
method StringTokenizer
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Snapshots of the Sample Web Server
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Snapshots of the Sample Web Server



19

Simple Search Interface Refinements

• Currently reprocesses query for “More 
results” requests.
– Could store current ranked list with the user 

session.
• Could integrate relevance feedback 

interaction.
• Could provide “Get similar pages” request 

for each retrieved document (as in Google).
– Just use given document text as a query.

http://www.google.com/
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Other Search Interface Refinements

• Highlight search terms in the displayed document.
– Provided in cached file on Google. 

• Allow for “advanced” search:
– Phrasal search (“..”)
– Mandatory terms (+)
– Negated term (-)
– Language preference
– Reverse link 
– Date preference

• Machine translation of pages.

http://www.google.com/
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Clustering Results

• Group search results into coherent “clusters”:
– “microwave dish”

• One group of on food recipes or cookware.
• Another group on satellite TV reception.

– “Austin bats”
• One group on the local flying mammals.
• One group on the local hockey team.

• Vivisimo groups results into “folders” based on a 
pre-established categorization of pages (like 
Yahoo or DMOZ categories).

• Alternative is to dynamically cluster search results 
into groups of similar documents.

http://www.vivisimo.com/
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User Behavior

• Users tend to enter short queries.
– Study in 1998 gave average length of 2.35 words.
– A 2003 study result is similar

• Users tend not to use advance search options.
• Users need to be instructed on using more 

sophisticated queries.
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