
1

Basic Text Processing and
Indexing

2

Document Processing Steps

• Lexical analysis (tokenizing)
• Stopwords removal
• Stemming
• Selection of indexing terms among the word

collection
• Construction of indexing system

3

Simple Tokenizing

• Separate text into a sequence of discrete tokens
(words).

• Sometimes punctuation (e-mail), numbers (1999),
and case (China vs. china) can be a meaningful part
of a token.

• However, frequently they are not.
• Simplest approach is to ignore all numbers and

punctuation and use only case-insensitive unbroken
strings of alphabetic characters as tokens.

4

Tokenizing HTML

• Should text in HTML commands not
typically seen by the user be included as
tokens?
– Words appearing in URLs.
– Words appearing in “meta text” of images.
– Words in meta-tag

• Simplest approach is to exclude all HTML
tag information (between “<“ and “>”) from
tokenization. But it may lose important
information.

5

Stopwords Removal

• It is typical to exclude high-frequency
words (e.g. function words: “a”, “the”, “in”,
“to”; pronouns: “I”, “he”, “she”, “it”).

• Stopwords are language dependent. One
may find different set of stopwords from
different sources.

• For efficiency, store strings for stopwords in
a hashtable to recognize them in constant
time.

6

Stemming

• Reduce tokens to “root” form of words to
recognize morphological variation.
– “computer”, “computational”, “computation”

all reduced to same token “compute”
• Correct morphological analysis is language

specific and can be complex.
• Stemming “blindly” strips off known

affixes (prefixes and suffixes) in an iterative
fashion.

7

Four Types of Strategies

• Affix removal :
– Based on intuitive, heuristic approach. Four different algorithms. Porter’s

algorithm is the most popular one

• Table look-up :
– Look up the stem of a word from a table. Tables would be too big and

difficult to construct.

• Successor variety :
– Based on determining morpheme boundaries, complicated

• N-grams:
– Based on term clustering, rather than stemming

8

Porter’s Algorithm

• Simple procedure for removing known
affixes in English without using a dictionary.

• Can produce unusual stems that are not
English words:
– “computer”, “computational”, “computation” all

reduced to same token “comput”
• May conflate (reduce to the same token)

words that are actually distinct.
• Not recognize all morphological derivations.
• Appendix A of our text has a description of

the algorithm.

9

Porter’s Algorithm -- Basic Idea

• Uses a list suffix list to strip suffixes.
• The idea is to apply a set of rules to the

suffixes of the words in the text..
• For example: four rules to remove plural

form, select the rule with longest suffix
– sses → ss;
– ies → I;
– ss → ss;
– s → NULL;

• It makes the word stresses into stress

10

Sparse Vectors

• Vocabulary and therefore dimensionality of
vectors can be very large, ~104 .

• However, most documents and queries do
not contain most words, so vectors are
sparse (i.e. most entries are 0).

• Need efficient methods for storing and
computing with sparse vectors.

11

Sparse Vectors as Lists

• Store vectors as linked lists of non-zero-
weight tokens paired with a weight.
– Space proportional to number of unique tokens

(n) in document.
– Requires linear search of the list to find (or

change) the weight of a specific token.
– Requires quadratic time in worst case to

compute vector for a document:

)(
2

)1(2

1
nOnni

n

i
=

+
=∑

=

12

Sparse Vectors as Trees

• Index tokens in a document in a balanced
binary tree or trie with weights stored with
tokens at the leaves.

memory

≥<

≥< ≥<

film variable

variable
2

memory
1

film
1

bit
2

Balanced Binary Tree

13

Sparse Vectors as Trees (cont.)

• Space overhead for tree structure: ~2n nodes.
• O(log n) time to find or update weight of a

specific token.
• O(n log n) time to construct vector.
• Need software package to support such data

structures.

14

Sparse Vectors as HashTables

• Store tokens in hashtable, with token string
as key and weight as value.
– Storage overhead for hashtable ~1.5n.
– Table must fit in main memory.
– Constant time to find or update weight of a

specific token (ignoring collisions).
– O(n) time to construct vector (ignoring

collisions).

15

Implementation Based on Inverted Files

• In practice, document vectors are not stored
directly; an inverted organization provides
much better efficiency.

• The keyword-to-document index can be
implemented as a hash table, a sorted array,
or a tree-based data structure (trie, B-tree).

• Critical issue is logarithmic or constant-time
access to token information.

16

Inverted Index: Assumption

• Query will happen frequently
– Find all documents that contain term t

• Delete will be rare
– Delete document 52

• Update will be rare
– Correct the spelling of term t in document 52

• Add will not happen too often
– Add new document

17

Inverted Index: Basic Structure

• Term list: a list of all terms
• Document node: a structure that contains

information such as term frequency,
document ID, and others

• Posting list: for each term, a list containing
document node for each document in which
the term appears

18

Inverted Index

system

computer

database

science D2, 4

D5, 2

D1, 3

D7, 4

Index terms df

3

2

4

1

Dj, tfj

Term List Postings lists

• • •

19

Creating an Inverted Index

Create an empty index term list I;
For each document, D, in the document set V

For each (non-zero) token, T, in D:
If T is not already in I

Insert T into I;
Find the location for T in I;
If (T, D) is in the posting list for T

increase its term frequency for T;
Else

Create (T, D);
Add it to the posting list for T;

20

Computing IDF

Let N be the total number of documents;
For each token, T, in I:

Determine the total number of documents, M,
in which T occurs (the length of T’s posting
list);

Set the IDF for T to log(N/M);

Note this requires a second pass through all the
tokens after all documents have been indexed.

21

Document Vector Length

• Remember that the length of a document
vector is the square-root of sum of the
squares of the weights of its tokens.

• Remember the weight of a token is:
TF * IDF

• Therefore, must wait until IDF’s are known
(and therefore until all documents are
indexed) before document lengths can be
determined.

22

Computing Document Vector Lengths

Assume the length of all document vectors (stored in
the DocumentReference) are initialized to 0.0;

For each token T in I:
Let, idf, be the IDF weight of T;
For each TokenOccurence of T in document D

Let, C, be the count of T in D;
Increment the length of D by (idf*C)2;

For each document D in the document set:
Set the length of D to be the square-root of the

current stored length;

23

Time Complexity of Indexing

• Complexity of creating vector and indexing
a document of n tokens is O(n).

• So indexing m such documents is O(m n).
• Computing token IDFs for a vocabularly V

is O(|V|).
• Computing vector lengths is also O(m n).
• Since |V| ≤ m n, complete process is O(m n),

which is also the complexity of just reading
in the corpus.

24

Retrieval with an Inverted Index

• Tokens that are not in both the query and the
document do not effect cosine similarity.
– Product of token weights is zero and does not

contribute to the dot product.
• Usually the query is fairly short, and

therefore its vector is extremely sparse.
• Use inverted index to find the limited set of

documents that contain at least one of the
query words.

25

Inverted Query Retrieval Efficiency

• Assume that, on average, a query word
appears in B documents:

• Then retrieval time is O(|Q| B), which is
typically, much better than naïve retrieval
that examines all N documents, O(|V| N),
because |Q| << |V| and B << N.

Q = q1 q2 … qn

D11…D1B D21…D2B Dn1…DnB

26

Processing the Query

• Incrementally compute cosine similarity of
each indexed document as query words are
processed one by one.

• To accumulate a total score for each retrieved
document, store retrieved documents in a
hashtable, where DocumentReference is the
key and the partial accumulated score is the
value.

27

Inverted-Index Retrieval Algorithm

Create a vector, Q, for the query.
Create empty HashMap, R, to store retrieved documents with scores.
For each token, T, in Q:

Let idf be the IDF of T, and K be the count of T in Q;
Set the weight of T in Q: W = K * idf;
Let L be the list of TokenOccurences of T from I (term list);
For each TokenOccurence, O, in L:

Let D be the document of O, and C be the count of O (tf of T in D);
If D is not already in R (D was not previously retrieved)

Then add D to R and initialize score to 0.0;
Increment D’s score by W * idf * C; (product of T-weight in Q and D)

28

Retrieval Algorithm (cont)

Compute the length, L, of the vector Q (square-root of the sum of
the squares of its weights).

For each retrieved document D in R:
Let S be the current accumulated score of D;

(S is the dot-product of D and Q)

Let Y be the length of D as stored in its DocumentReference;
Normalize D’s final score to S/(L * Y);

Sort retrieved documents in R by final score and return results in
an array.

29

User Interface

Until user terminates with an empty query:
Prompt user to type a query, Q.
Compute the ranked array of retrievals R for Q;
Print the name of top N documents in R;
Until user terminates with an empty command:

Prompt user for a command for this query result:
1) Show next N retrievals;
2) Show the Mth retrieved document;

	Basic Text Processing and �Indexing�
	Document Processing Steps
	Simple Tokenizing
	Tokenizing HTML
	Stopwords Removal
	Stemming
	Four Types of Strategies
	Porter’s Algorithm
	Porter’s Algorithm -- Basic Idea
	Sparse Vectors
	Sparse Vectors as Lists
	Sparse Vectors as Trees
	Sparse Vectors as Trees (cont.)
	Sparse Vectors as HashTables
	Implementation Based on Inverted Files
	Inverted Index: Assumption
	Inverted Index: Basic Structure
	Inverted Index
	Creating an Inverted Index
	Computing IDF
	Document Vector Length
	Computing Document Vector Lengths
	Time Complexity of Indexing
	Retrieval with an Inverted Index
	Inverted Query Retrieval Efficiency
	Processing the Query
	Inverted-Index Retrieval Algorithm
	Retrieval Algorithm (cont)
	User Interface

