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Basic Text Processing and 
Indexing
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Document Processing Steps

• Lexical analysis (tokenizing)
• Stopwords removal
• Stemming
• Selection of indexing terms among the word 

collection
• Construction of indexing system
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Simple Tokenizing

• Separate text into a sequence of discrete tokens 
(words).

• Sometimes punctuation (e-mail), numbers (1999), 
and case (China vs. china) can be a meaningful part 
of a token.

• However, frequently they are not.
• Simplest approach is to ignore all numbers and 

punctuation and use only case-insensitive unbroken 
strings of alphabetic characters as tokens.
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Tokenizing HTML

• Should text in HTML commands not 
typically seen by the user be included as 
tokens?
– Words appearing in URLs.
– Words appearing in “meta text” of images.
– Words in meta-tag

• Simplest approach is to exclude all HTML 
tag information (between “<“ and “>”) from 
tokenization. But it may lose important 
information.
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Stopwords Removal

• It is typical to exclude high-frequency 
words (e.g. function words: “a”, “the”, “in”, 
“to”; pronouns: “I”, “he”, “she”, “it”).

• Stopwords are language dependent. One 
may find different set of stopwords from 
different sources.

• For efficiency, store strings for stopwords in 
a hashtable to recognize them in constant 
time. 
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Stemming

• Reduce tokens to “root” form of words to 
recognize morphological variation.
– “computer”, “computational”, “computation”

all reduced to same token “compute”
• Correct morphological analysis is language 

specific and can be complex.
• Stemming “blindly” strips off known 

affixes (prefixes and suffixes) in an iterative 
fashion.
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Four Types of Strategies

• Affix removal :
– Based on intuitive, heuristic approach. Four different algorithms. Porter’s 

algorithm is the most popular one

• Table look-up :
– Look up the stem of a word from a table. Tables would be too big and 

difficult to construct.

• Successor variety :
– Based on determining morpheme boundaries, complicated

• N-grams:
– Based on term clustering, rather than stemming
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Porter’s Algorithm

• Simple procedure for removing known 
affixes in English without using a dictionary.

• Can produce unusual stems that are not 
English words:
– “computer”, “computational”, “computation” all 

reduced to same token “comput”
• May conflate (reduce to the same token) 

words that are actually distinct.
• Not recognize all morphological derivations.
• Appendix A of our text has a description of 

the algorithm.
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Porter’s Algorithm -- Basic Idea

• Uses a list suffix list to strip suffixes.
• The idea is to apply a set of rules to the 

suffixes of the words in the text..
• For example: four rules to remove plural 

form, select the rule with longest suffix
– sses → ss;
– ies → I;
– ss → ss;
– s → NULL;

• It makes the word stresses into stress
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Sparse Vectors

• Vocabulary and therefore dimensionality of 
vectors can be very large, ~104 .

• However, most documents and queries do 
not contain most words, so vectors are 
sparse (i.e. most entries are 0).

• Need efficient methods for storing and 
computing with sparse vectors.
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Sparse Vectors as Lists

• Store vectors as linked lists of non-zero-
weight tokens paired with a weight.
– Space proportional to number of unique tokens 

(n) in document.
– Requires linear search of the list to find (or 

change) the weight of a specific token.
– Requires quadratic time in worst case to 

compute vector for a document:
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Sparse Vectors as Trees

• Index tokens in a document in a balanced 
binary tree or trie with weights stored with 
tokens at the leaves.
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Sparse Vectors as Trees (cont.)

• Space overhead for tree structure: ~2n nodes.
• O(log n) time to find or update weight of a 

specific token.
• O(n log n) time to construct vector.
• Need software package to support such data 

structures.
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Sparse Vectors as HashTables

• Store tokens in hashtable, with token string 
as key and weight as value.
– Storage overhead for hashtable ~1.5n.
– Table must fit in main memory.
– Constant time to find or update weight of a 

specific token (ignoring collisions).
– O(n) time to construct vector (ignoring 

collisions).
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Implementation Based on Inverted Files

• In practice, document vectors are not stored 
directly; an inverted organization provides 
much better efficiency. 

• The keyword-to-document index can be 
implemented as a hash table, a sorted array, 
or a tree-based data structure (trie, B-tree).

• Critical issue is logarithmic or constant-time 
access to token information.
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Inverted Index: Assumption

• Query will happen frequently
– Find all documents that contain term t

• Delete will be rare
– Delete document 52

• Update will be rare
– Correct the spelling of term t in document 52

• Add will not happen too often
– Add new document



17

Inverted Index: Basic Structure

• Term list: a list of all terms
• Document node: a structure that contains 

information such as term frequency, 
document ID, and others

• Posting list: for each term, a list containing 
document node for each document in which 
the term appears
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Inverted Index
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Creating an Inverted Index

Create an empty index term list I;
For each document, D, in the document set V

For each (non-zero) token, T, in D:
If T is not already in I

Insert T into I; 
Find the location for T in I;
If (T, D) is in the posting list for T

increase its term frequency for T;
Else

Create (T, D);
Add it to the posting list for T;
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Computing IDF

Let N be the total number of documents;
For each token, T, in I:

Determine the total number of documents, M, 
in which T occurs (the length of T’s posting    
list);

Set the IDF for T to log(N/M);

Note this requires a second pass through all the 
tokens after all documents have been indexed.
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Document Vector Length

• Remember that the length of a document 
vector is the square-root of sum of the 
squares of the weights of its tokens.

• Remember the weight of a token is:
TF * IDF

• Therefore, must wait until IDF’s are known 
(and therefore until all documents are 
indexed) before document lengths can be 
determined.
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Computing Document Vector Lengths

Assume the length of all document vectors (stored in 
the DocumentReference) are initialized to 0.0;

For each token T in I:
Let, idf, be the IDF weight of T;
For each TokenOccurence of T in document D

Let, C, be the count of T in D;
Increment the length of D by  (idf*C)2;

For each document D in the document set:
Set the length of D to be the square-root of the      

current stored length;
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Time Complexity of Indexing

• Complexity of creating vector and indexing 
a document of n tokens is O(n).

• So indexing m such documents is O(m n).
• Computing token IDFs for a vocabularly V 

is O(|V|).
• Computing vector lengths is also O(m n).
• Since |V| ≤ m n, complete process is O(m n), 

which is also the complexity of just reading 
in the corpus.
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Retrieval with an Inverted Index

• Tokens that are not in both the query and the 
document do not effect cosine similarity.
– Product of token weights is zero and does not 

contribute to the dot product.
• Usually the query is fairly short, and 

therefore its vector is extremely sparse.
• Use inverted index to find the limited set of 

documents that contain at least one of the 
query words.
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Inverted Query Retrieval Efficiency

• Assume that, on average, a query word 
appears in B documents:

• Then retrieval time is O(|Q| B), which is 
typically, much better than naïve retrieval 
that examines all N documents, O(|V| N), 
because |Q| << |V| and B << N.

Q   =   q1 q2           … qn

D11…D1B D21…D2B Dn1…DnB
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Processing the Query

• Incrementally compute cosine similarity of 
each indexed document as query words are 
processed one by one.

• To accumulate a total score for each retrieved 
document, store retrieved documents in a 
hashtable, where DocumentReference is the 
key and the partial accumulated score is the 
value.
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Inverted-Index Retrieval Algorithm

Create a vector, Q, for the query.
Create empty HashMap, R, to store retrieved documents with scores.
For each token, T, in Q:

Let idf be the IDF of T, and K be the count of T in Q;
Set the weight of T in Q:   W = K * idf;
Let L be the list of TokenOccurences of T from I (term list);
For each TokenOccurence, O, in L:

Let D be the document of O, and C be the count of O (tf of T in D);
If D is not already in R (D was not previously retrieved) 

Then add D to R and initialize score to 0.0;
Increment D’s score by W * idf * C; (product of T-weight in Q and D)
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Retrieval Algorithm (cont)

Compute the length, L, of the vector Q (square-root of the sum of 
the squares of its weights).

For each retrieved document D in R:
Let S be the current accumulated score of D;

(S is the dot-product of D and Q)

Let Y be the length of D as stored in its DocumentReference;
Normalize D’s final score to S/(L * Y);

Sort retrieved documents in R by final score and return results in 
an array.
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User Interface

Until user terminates with an empty query:
Prompt user to type a query, Q.
Compute the ranked array of retrievals R for Q;
Print the name of top N documents in R;
Until user terminates with an empty command:

Prompt user for a command for this query result:
1) Show next N retrievals;
2) Show the Mth retrieved document;
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