MARS: Applying Multiplicative Adaptive User Preference Retrieval to Web Search
Zhixiang Chen & Xiannong Meng
U.Texas-PanAm & Bucknell Univ.
Outline of Presentation

• Introduction -- the vector model over R+
• Multiplicative adaptive query expansion algorithm
• MARS -- meta-search engine
• Initial empirical results
• Conclusions
Introduction

• Vector model
 – A document is represented by the vector \(\mathbf{d} = (d_1, \ldots, d_n) \) where \(d_i \)'s are the relevance value of i-th index
 – A user query is represented by \(\mathbf{q} = (q_1, \ldots, q_n) \) where \(q_i \)'s are query terms
 – Document \(\mathbf{d}' \) is preferred over document \(\mathbf{d} \) iff \(\mathbf{q} \cdot \mathbf{d} < \mathbf{q} \cdot \mathbf{d}' \)
Introduction -- continued

• Relevance feedback to improve search accuracy
 – In general, take user’s feedback, update the query vector to get closer to the target
 \[q(k+1) = q(k) + a_1 \cdot d_1 + \ldots + a_s \cdot d_s \]
 – Example: relevance feedback based on similarity
 – Problem with linear adaptive query updating: converges too slowly
Multiplicative Adaptive Query Expansion Algorithm

• Linear adaptive yields some improvement, but it converges to an initially unknown target too slowly

• Multiplicative adaptive query expansion promotes or demotes the query terms by a constant factor in i-th round of feedback
 – promotes: \(q(i, k+1) = (1+f(d)) \cdot q(i, k) \)
 – demotes: \(q(i, k+1) = q(i, k)/(1+f(d)) \)
MA Algorithm -- continue

while (the user judged a document \(d \))
{
 for each query term in \(q(k) \)
 if (\(d \) is judged relevant) // promote the term
 \(q(i, k+1) = (1+f(di)) \cdot q(i,k) \)
 else if (\(d \) is judged irrelevant) // demote the term
 \(q(i, k+1) = q(i,k) / (1+f(di)) \)
 else // no opinion expressed, keep the term
 \(q(i, k+1) = q(i, k) \)
}
MA Algorithm -- continue

- The f(di) can be any positive function
- In our experiments we used
 \[f(x) = 2.71828 \cdot \text{weight}(x) \]
- where \(x \) is a term appeared in \(d_i \)
- We have detailed analysis of the performance of the MA algorithm in detail in another paper
- Overall, MA performed better than linear additive query updating such as Rocchio’s similarity based relevance feedback in terms of time complexity and search accuracy
- In this paper we present some experiment results
The Meta-search Engine MARS

• We implemented the algorithm MARS in our experimental search engine
• The meta-search engine has a number of components, each of which is implemented as a module
• It is very flexible to add or remove a component
The Meta-search Engine MARS
-- continue
The Meta-search Engine MARS
-- continue

• User types a query into the browser
• The QueryParser sends the query to the Dispatcher
• The Dispatcher determines whether this is an original query, or a refined one
• If it is the original, send the query to one of the search engines according to user choice
• If it is a refined one, apply the MA algorithm
The Meta-search Engine MARS

-- continue

- The results either from MA or directly from other search engines are ranked according to the scores based on similarity
- The user can mark a document relevant or irrelevant by clicking the corresponding radio button at the MARS interface
- The algorithm MA refines document ranking by either promoting or demoting the query term
Initial Empirical Results

• We conducted two types of experiments to examine the performance of MARS
• The first is the response time of MARS
 – The initial time retrieving results from external search engines
 – The refine time needed for MARS to produce results
 – Tested on a SPARC Ultra-10 with 128 M memory
Initial Empirical Results --continue

• Initial retrieval time:
 – mean: 3.86 seconds
 – standard deviation: 1.15 seconds
 – 95% confidence interval 0.635
 – maximum: 5.29 seconds

• Refine time:
 – mean: 0.986 seconds
 – standard deviation: 0.427 seconds
 – 95% confidence interval: 0.236
 – maximum: 1.44 seconds
Initial Empirical Results --continue

• The second is the search accuracy improvement
 – define
 • A: total set of documents returned
 • R: the set of relevant documents returned
 • Rm: set of relevant documents among top-m-ranked
 • m: an integer between 1 and |A|
 • recall rate = |Rm| / |R|
 • precision = |Rm| / m
Initial Empirical Results --continue

– randomly selected 70+ words or phrases
– send each one to AltaVista, retrieving the first 200 results of each query
– manually examine results to mark documents as relevant or irrelevant
– compute the precision and recall
– use the same set of documents for MARS
Initial Empirical Results --continue

<table>
<thead>
<tr>
<th></th>
<th>Recall (200, 10)</th>
<th>Recall (200, 20)</th>
<th>Precision (200, 10)</th>
<th>Precision (200, 20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AltaVista</td>
<td>0.11</td>
<td>0.19</td>
<td>0.43</td>
<td>0.42</td>
</tr>
<tr>
<td>MARS</td>
<td>0.20</td>
<td>0.25</td>
<td>0.65</td>
<td>0.47</td>
</tr>
</tbody>
</table>
Initial Empirical Results --continue

• Results show that the extra processing time of MARS is not significant, relative to the whole search response time
• Results show that the search accuracy is improved by in both recall and precision
• General search terms improve more, specific terms improve less
Conclusions

- Linear adaptive query update is too slow to converge
- Multiplicative adaptive is faster to converge
- User inputs are limited to a few iterations of feedback
- The extra processing time required is not too significant
- Search accuracy in terms of precision and recall is improved