Web Search

Advances &
Link Analysis

Meta-Search Engines

- Search engine that passes query to several other
 search engines and integrate results.
 - Submit queries to host sites.
 - Parse resulting HTML pages to extract search results.
 - Integrate multiple rankings into a “consensus” ranking.
 - Present integrated results to user.
- Examples:
 - Metacrawler
 - SavvySearch
 - Dogpile

HTML Structure & Feature Weighting

- Weight tokens under particular HTML tags more heavily:
 - <TITLE> tokens (Google seems to like title matches)
 - <H1>, <H2>... tokens
 - <META> keyword tokens
- Parse page into conceptual sections (e.g.
 navigation links vs. page content) and weight
 tokens differently based on section.

Bibliometrics: Citation Analysis

- Many standard documents include bibliographies
 (or references), explicit citations to other
 previously published documents.
- Using citations as links, standard corpora can be
 viewed as a graph.
- The structure of this graph, independent of
 content, can provide interesting information about
 the similarity of documents and the structure of
 information.
- CF corpus includes citation information.

Impact Factor

- Developed by Garfield in 1972 to measure the
 importance (quality, influence) of scientific
 journals.
- Measure of how often papers in the journal are
 cited by other scientists.
- Computed and published annually by the Institute
 for Scientific Information (ISI).
- The impact factor of a journal \(J \) in year \(Y \) is the
 average number of citations (from indexed
 documents published in year \(Y \)) to a paper
 published in \(J \) in year \(Y-1 \) or \(Y-2 \).
- Does not account for the quality of the citing
 article.

Bibliographic Coupling

- Measure of similarity of documents introduced by
 Kessler in 1963.
- The bibliographic coupling of two documents \(A \)
 and \(B \) is the number of documents cited by both \(A \)
 and \(B \).
- Size of the intersection of their bibliographies.
- Maybe want to normalize by size of bibliographies?
Co-Citation

• An alternate citation-based measure of similarity introduced by Small in 1973.
• Number of documents that cite both A and B.
• Maybe want to normalize by total number of documents citing either A or B?

Citations vs. Links

• Web links are a bit different than citations:
 – Many links are navigational.
 – Many pages with high in-degree are portals not content providers.
 – Not all links are endorsements.
 – Company websites don’t point to their competitors.
 – Citations to relevant literature is enforced by peer-review.

Authorities

• *Authorities* are pages that are recognized as providing significant, trustworthy, and useful information on a topic.
• *In-degree* (number of pointers to a page) is one simple measure of authority.
• However in-degree treats all links as equal.
• Should links from pages that are themselves authoritative count more?

Hubs

• *Hubs* are index pages that provide lots of useful links to relevant content pages (topic authorities).
• Hub pages for IR are included in the course home page:

HITS

• Hyperlink Induced Topic Search
• Algorithm developed by Kleinberg in 1998.
• Attempts to computationally determine hubs and authorities on a particular topic through analysis of a relevant subgraph of the web.
• Based on mutually recursive facts:
 – Hubs point to lots of authorities.
 – Authorities are pointed to by lots of hubs.

Hubs and Authorities

• Together they tend to form a bipartite graph:
HITS Algorithm

- Computes hubs and authorities for a particular topic specified by a normal query.
- First determines a set of relevant pages for the query called the base set S.
- Analyze the link structure of the web subgraph defined by S to find authority and hub pages in this set.

Constructing a Base Subgraph

- For a specific query Q, let the set of documents returned by a standard search engine (e.g., VSR) be called the root set R.
- Initialize S to R.
- Add to S all pages pointed to by any page in R.
- Add to S all pages that point to any page in R.

Base Limitations

- To limit computational expense:
 - Limit number of root pages to the top 200 pages retrieved for the query.
 - Limit number of “back-pointer” pages to a random set of at most 50 pages returned by a “reverse link” query.
- To eliminate purely navigational links:
 - Eliminate links between two pages on the same host.
- To eliminate “non-authority-conveying” links:
 - Allow only m ($m \approx 4-8$) pages from a given host as pointers to any individual page.

Authorities and In-Degree

- Even within the base set S for a given query, the nodes with highest in-degree are not necessarily authorities (may just be generally popular pages like Yahoo or Amazon).
- True authority pages are pointed to by a number of hubs (i.e., pages that point to lots of authorities).

Iterative Algorithm

- Use an iterative algorithm to slowly converge on a mutually reinforcing set of hubs and authorities.
- Maintain for each page $p \in S$:
 - Authority score: a_p (vector a)
 - Hub score: h_p (vector h)
- Initialize all $a_p = h_p = 1$
- Maintain normalized scores:
 \[\sum_{p \in S} a_p = 1 \quad \sum_{p \in S} h_p = 1 \]

HITS Update Rules

- Authorities are pointed to by lots of good hubs:
 \[a_p = \sum_{q \rightarrow p} h_q \]
- Hubs point to lots of good authorities:
 \[h_p = \sum_{p \rightarrow q} a_q \]
Illustrated Update Rules

\[h_4 = a_5 + a_6 + a_7 \]

HITS Iterative Algorithm

Initialize for all \(p \in S \): \(a_p = h_p = 1 \)

For \(i = 1 \) to \(k \):

For all \(p \in S \):

\(a_p = \sum_{q \in \mathcal{P}_p} a_q \) (update auth. scores)

For all \(p \in S \):

\(h_p = \sum_{q \in \mathcal{P}_h} h_q \) (update hub scores)

For all \(p \in S \):

\[a_p = \frac{a_p}{\sum_{q \in \mathcal{P}_p} a_q} \] (normalize \(a \))

For all \(p \in S \):

\[h_p = \frac{h_p}{\sum_{q \in \mathcal{P}_h} h_q} \] (normalize \(h \))

Convergence

• Algorithm converges to a fix-point if iterated indefinitely.

• Define \(A \) to be the adjacency matrix for the subgraph defined by \(S \).

 \[A_{ij} = 1 \] for \(i \in S, j \in S \) iff \(i \rightarrow j \)

• Authority vector, \(a \), converges to the principal eigenvector of \(A^T A \)

• Hub vector, \(h \), converges to the principal eigenvector of \(A A^T \)

• In practice, 20 iterations produces fairly stable results.

Results

• Authorities for query: “Java”
 – java.sun.com
 – comp.lang.java FAQ

• Authorities for query “search engine”
 – Yahoo.com
 – Excite.com
 – Lycos.com
 – Altavista.com

• Authorities for query “Gates”
 – Microsoft.com
 – roadahead.com

Result Comments

• In most cases, the final authorities were not in the initial root set generated using Altavista.

• Authorities were brought in from linked and reverse-linked pages and then HITS computed their high authority score.

Finding Similar Pages Using Link Structure

• Given a page, \(P \), let \(R \) (the root set) be \(t \) (e.g. 200) pages that point to \(P \).

• Grow a base set \(S \) from \(R \).

• Run HITS on \(S \).

• Return the best authorities in \(S \) as the best similar-pages for \(P \).

• Finds authorities in the “link neighborhood” of \(P \).
Similar Page Results

- Given “honda.com”
 - toyota.com
 - ford.com
 - bmwusa.com
 - saturncars.com
 - nissanmotors.com
 - audi.com
 - volvocars.com

HITS for Clustering

- An ambiguous query can result in the principal eigenvector only covering one of the possible meanings.
- Non-principal eigenvectors may contain hubs & authorities for other meanings.
- Example: “jaguar”:
 - Atari video game (principal eigenvector)
 - NFL Football team (2nd non-princ. eigenvector)
 - Automobile (3rd non-princ. eigenvector)

PageRank

- Does not attempt to capture the distinction between hubs and authorities.
- Ranks pages just by authority.
- Applied to the entire web rather than a local neighborhood of pages surrounding the results of a query.

Initial PageRank Idea

- Just measuring in-degree (citation count) doesn’t account for the authority of the source of a link.
- Initial page rank equation for page p:
 \[R(p) = c \sum_{q \rightarrow p} \frac{R(q)}{N_q} \]
 - N_q is the total number of out-links from page q.
 - A page, q, “gives” an equal fraction of its authority to all the pages it points to (e.g. p).
 - c is a normalizing constant set so that the rank of all pages always sums to 1.

Initial PageRank Idea (cont.)

- Can view it as a process of PageRank “flowing” from pages to the pages they cite.

Initial Algorithm

- Iterate rank-flowing process until convergence:
 Let S be the total set of pages.
 Initialize $\forall p \in S: R(p) = 1/|S|$ \(\quad\) (convergence)
 Until ranks do not change (much)
 For each $p \in S$:
 \[R'(p) = \sum_{q \rightarrow p} \frac{R(q)}{N_q} \]
 \[c = 1/\sum_{p \in S} R'(p) \]
 \[\text{For each } p \in S: R(p) = cR'(p) \quad \) (normalize)
Sample Stable Fixpoint

![Graph showing a sample stable fixpoint]

Linear Algebra Version

- Treat \(\mathbf{R} \) as a vector over web pages.
- Let \(\mathbf{A} \) be a 2-d matrix over pages where
 - \(A_{uv} = 1/N_v \) if \(u \to v \) else \(A_{uv} = 0 \)
- Then \(\mathbf{R} = \mathbf{cA}\mathbf{R} \)
- \(\mathbf{R} \) converges to the principal eigenvector of \(\mathbf{A} \).

Problem with Initial Idea

- A group of pages that only point to themselves but are pointed to by other pages act as a “rank sink” and absorb all the rank in the system.

Rank Source

- Introduce a “rank source” \(E \) that continually replenishes the rank of each page, \(p \), by a fixed amount \(E(p) \).

\[
R(p) = c \left(\sum_{q:p\to q} \frac{R(q)}{N_q} + E(p) \right)
\]

PageRank Algorithm

Let \(S \) be the total set of pages.

Let \(\forall p \in S: R(p) = \alpha/|S| \) (for some 0<\(\alpha \)<1, e.g. 0.15)

Initialize \(\forall p \in S: R(p) = 1/|S| \)

Until ranks do not change (much) (convergence)

For each \(p \in S \):

\[
R'(p) = \sum_{q:p\to q} \frac{R(q)}{N_q} + E(p)
\]

\[
c = 1/\sum_{p\in S} R'(p)
\]

For each \(p \in S \):

\[
R(p) = cR'(p)
\] (normalize)

Linear Algebra Version

- \(\mathbf{R} = c(\mathbf{AR} + \mathbf{E}) \)
- Since \(||\mathbf{R}||_1 = 1 \) : \(\mathbf{R} = c(\mathbf{A} + \mathbf{E}\mathbf{1})\mathbf{R} \)
 - Where \(\mathbf{1} \) is the vector consisting of all 1’s.
- So \(\mathbf{R} \) is an eigenvector of \((\mathbf{A} + \mathbf{E}\mathbf{1}) \)
Random Surfer Model

- PageRank can be seen as modeling a “random surfer” that starts on a random page and then at each point:
 - With probability $E(p)$ randomly jumps to page p.
 - Otherwise, randomly follows a link on the current page.
- $R(p)$ models the probability that this random surfer will be on page p at any given time.
- “E jumps” are needed to prevent the random surfer from getting “trapped” in web sinks with no outgoing links.

Speed of Convergence

- Early experiments on Google used 322 million links.
- PageRank algorithm converged (within small tolerance) in about 52 iterations.
- Number of iterations required for convergence is empirically $O(\log n)$ (where n is the number of links).
- Therefore calculation is quite efficient.

Simple Title Search with PageRank

- Use simple Boolean search to search webpage titles and rank the retrieved pages by their PageRank.
- Sample search for “university”:
 - Altavista returned a random set of pages with “university” in the title (seemed to prefer short URLs).
 - Primitive Google returned the home pages of top universities.

Google Ranking

- Complete Google ranking includes (based on university publications prior to commercialization).
 - Vector-space similarity component.
 - Keyword proximity component.
 - HTML-tag weight component (e.g. title preference).
 - PageRank component.
- Details of current commercial ranking functions are trade secrets.

Personalized PageRank

- PageRank can be biased (personalized) by changing E to a non-uniform distribution.
- Restrict “random jumps” to a set of specified relevant pages.
- For example, let $E(p) = 0$ except for one’s own home page, for which $E(p) = \alpha$
- This results in a bias towards pages that are closer in the web graph to your own homepage.

Google PageRank-Biased Spidering

- Use PageRank to direct (focus) a spider on “important” pages.
- Compute page-rank using the current set of crawled pages.
- Order the spider’s search queue based on current estimated PageRank.
Link Analysis Conclusions

- Link analysis uses information about the structure of the web graph to aid search.
- It is one of the major innovations in web search.
- It is the primary reason for Google’s success.