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Meta-Search Engines

• Search engine that passes query to several other 
search engines and integrate results.
– Submit queries to host sites.
– Parse resulting HTML pages to extract search results.
– Integrate multiple rankings into a “consensus” ranking.
– Present integrated results to user.

• Examples:
– Metacrawler
– SavvySearch
– Dogpile

http://www.metacrawler.com/
http://www.savvysearch.com/
http://www.dogpile.com/
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HTML Structure & Feature Weighting

• Weight tokens under particular HTML tags 
more heavily:
– <TITLE> tokens (Google seems to like title matches)

– <H1>,<H2>… tokens
– <META> keyword tokens

• Parse page into conceptual sections (e.g. 
navigation links vs. page content) and weight 
tokens differently based on section.
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Bibliometrics: Citation Analysis

• Many standard documents include bibliographies 
(or references), explicit citations to other 
previously published documents.

• Using citations as links, standard corpora can be 
viewed as a graph.

• The structure of this graph, independent of 
content, can provide interesting information about 
the similarity of documents and the structure of 
information.

• CF corpus includes citation information.
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Impact Factor

• Developed by Garfield in 1972 to measure the 
importance (quality, influence) of scientific 
journals.

• Measure of how often papers in the journal are 
cited by other scientists.

• Computed and published annually by the Institute 
for Scientific Information (ISI).

• The impact factor of a journal J in year Y is the 
average number of citations (from indexed 
documents published in year Y) to a paper 
published in J in year Y−1 or Y−2.

• Does not account for the quality of the citing 
article.
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Bibliographic Coupling

• Measure of similarity of documents introduced by 
Kessler in 1963.

• The bibliographic coupling of two documents A 
and B is the number of documents cited by both A
and B.

• Size of the intersection of their bibliographies.
• Maybe want to normalize by size of bibliographies?

A B
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Co-Citation

• An alternate citation-based measure of similarity 
introduced by Small in 1973.

• Number of documents that cite both A and B.
• Maybe want to normalize by total number of 

documents citing either A or B ?

A B
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Citations vs. Links

• Web links are a bit different than citations:
– Many links are navigational.
– Many pages with high in-degree are portals not 

content providers.
– Not all links are endorsements.
– Company websites don’t point to their 

competitors.
– Citations to relevant literature is enforced by 

peer-review.
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Authorities

• Authorities are pages that are recognized as 
providing significant, trustworthy, and 
useful information on a topic.

• In-degree (number of pointers to a page) is 
one simple measure of authority.

• However in-degree treats all links as equal.
• Should links from pages that are themselves 

authoritative count more?
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Hubs

• Hubs are index pages that provide lots of 
useful links to relevant content pages (topic 
authorities).

• Hub pages for IR are included in the course 
home page:
– http://www.cs.utexas.edu/users/mooney/ir-course

http://www.cs.utexas.edu/users/mooney/ir-course
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HITS

• Hyperlink Induced Topic Search
• Algorithm developed by Kleinberg in 1998.
• Attempts to computationally determine 

hubs and authorities on a particular topic 
through analysis of a relevant subgraph of 
the web.

• Based on mutually recursive facts:
– Hubs point to lots of authorities.
– Authorities are pointed to by lots of hubs.
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Hubs and Authorities

• Together they tend to form a bipartite 
graph:

Hubs Authorities
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HITS Algorithm

• Computes hubs and authorities for a 
particular topic specified by a normal query.

• First determines a set of relevant pages for 
the query called the base set S.

• Analyze the link structure of the web 
subgraph defined by S to find authority and 
hub pages in this set.
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Constructing a Base Subgraph

• For a specific query Q, let the set of documents 
returned by a standard search engine (e.g. VSR) be 
called the root set R.

• Initialize S to R.
• Add to S all pages pointed to by any page in R.
• Add to S all pages that point to any page in R.

R

S
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Base Limitations

• To limit computational expense:
– Limit number of root pages to the top 200 pages 

retrieved for the query.
– Limit number of “back-pointer” pages to a random set 

of at most 50 pages returned by a “reverse link” query.

• To eliminate purely navigational links:
– Eliminate links between two pages on the same host.

• To eliminate “non-authority-conveying” links:
– Allow only m (m ≅ 4−8) pages from a given host as 

pointers to any individual page.
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Authorities and In-Degree

• Even within the base set S for a given 
query, the nodes with highest in-degree are 
not necessarily authorities (may just be 
generally popular pages like Yahoo or 
Amazon).

• True authority pages are pointed to by a 
number of hubs (i.e. pages that point to lots 
of authorities).



17

Iterative Algorithm

• Use an iterative algorithm to slowly converge on a 
mutually reinforcing set of hubs and authorities.

• Maintain for each page p ∈ S:
– Authority score: ap (vector a)
– Hub score:         hp       (vector h)

• Initialize all ap = hp = 1
• Maintain normalized scores:

( ) 12 =∑
∈Sp

ph( ) 12 =∑
∈Sp

pa
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HITS Update Rules

• Authorities are pointed to by lots of good hubs:

• Hubs point to lots of good authorities:

∑
→

=
pqq

qp ha
:

∑
→

=
qpq

qp ah
:
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Illustrated Update Rules

2

3

a4 = h1 + h2 + h3

1

5

7

6

4

4h4 = a5 + a6 + a7
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HITS Iterative Algorithm

Initialize for all p ∈ S: ap = hp = 1 
For i = 1 to k:

For all p ∈ S:       (update auth. scores)

For all p ∈ S: (update hub scores)
For all p ∈ S: ap= ap/c c:

For all p ∈ S: hp= hp/c   c:

∑
→

=
pqq

qp ha
:

∑
→

=
qpq

qp ah
: ( ) 1/ 2 =∑

∈Sp
p ca

( ) 1/ 2 =∑
∈Sp

p ch

(normalize a)

(normalize h)
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Convergence

• Algorithm converges to a fix-point if iterated 
indefinitely.

• Define A to be the adjacency matrix for the 
subgraph defined by S.
– Aij = 1 for i ∈ S, j ∈ S iff i→j

• Authority vector, a, converges to the principal 
eigenvector of ATA

• Hub vector, h, converges to the principal 
eigenvector of AAT

• In practice, 20 iterations produces fairly stable 
results.
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Results

• Authorities for query:  “Java”
– java.sun.com
– comp.lang.java FAQ

• Authorities for query “search engine”
– Yahoo.com
– Excite.com
– Lycos.com
– Altavista.com

• Authorities for query “Gates”
– Microsoft.com
– roadahead.com
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Result Comments

• In most cases, the final authorities were not 
in the initial root set generated using 
Altavista.

• Authorities were brought in from linked and 
reverse-linked pages and then HITS 
computed their high authority score.
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Finding Similar Pages Using Link Structure

• Given a page, P, let R (the root set) be t 
(e.g. 200) pages that point to P.

• Grow a base set S from R.
• Run HITS on S.
• Return the best authorities in S as the best 

similar-pages for P.
• Finds authorities in the “link neighbor-

hood” of P.
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Similar Page Results

• Given “honda.com”
– toyota.com
– ford.com
– bmwusa.com
– saturncars.com
– nissanmotors.com
– audi.com
– volvocars.com
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HITS for Clustering

• An ambiguous query can result in the 
principal eigenvector only covering one of 
the possible meanings.

• Non-principal eigenvectors may contain 
hubs & authorities for other meanings.

• Example: “jaguar”:
– Atari video game (principal eigenvector)
– NFL Football team (2nd non-princ. eigenvector)
– Automobile (3rd non-princ. eigenvector)  
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PageRank

• Alternative link-analysis method used by 
Google (Brin & Page, 1998).

• Does not attempt to capture the distinction 
between hubs and authorities.

• Ranks pages just by authority.
• Applied to the entire web rather than a local 

neighborhood of pages surrounding the 
results of a query.
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Initial PageRank Idea

• Just measuring in-degree (citation count) doesn’t 
account for the authority of the source of a link.

• Initial page rank equation for page p:

– Nq is the total number of out-links from page q.
– A page, q, “gives” an equal fraction of its authority to 

all the pages it points to (e.g. p).
– c is a normalizing constant set so that the rank of all 

pages always sums to 1.

∑
→

=
pqq qN

qRcpR
:

)()(
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Initial PageRank Idea (cont.)

• Can view it as a process of PageRank
“flowing” from pages to the pages they cite.
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Initial Algorithm

• Iterate rank-flowing process until convergence:
Let S be the total set of pages.
Initialize ∀p∈S: R(p) = 1/|S| 
Until ranks do not change (much)  (convergence)

For each p∈S:

For each p∈S: R(p) = cR´(p)   (normalize)

∑
→

=′
pqq qN

qRpR
:

)()(

∑
∈

′=
Sp

pRc )(/1
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Sample Stable Fixpoint
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Linear Algebra Version

• Treat R as a vector over web pages.
• Let A be a 2-d matrix over pages where 

– Avu= 1/Nu if u →v else Avu= 0
• Then R=cAR
• R converges to the principal eigenvector of A.
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Problem with Initial Idea

• A group of pages that only point to 
themselves but are pointed to by other pages 
act as a “rank sink” and absorb all the rank 
in the system.

Rank flows into
cycle and can’t get out
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Rank Source

• Introduce a “rank source” E that continually 
replenishes the rank of each page, p,  by a 
fixed amount E(p).

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+= ∑

→

)()()(
:

pE
N

qRcpR
pqq q
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PageRank Algorithm

Let S be the total set of pages.
Let ∀p∈S: E(p) = α/|S|  (for some 0<α<1, e.g. 0.15)
Initialize ∀p∈S: R(p) = 1/|S| 
Until ranks do not change (much) (convergence)

For each p∈S:

For each p∈S: R(p) = cR´(p)  (normalize)

)()()(
:

pE
N

qRpR
pqq q

+=′ ∑
→

∑
∈
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Linear Algebra Version

• R = c(AR + E)
• Since ||R||1 =1 :  R = c(A + E×1)R

– Where 1 is the vector consisting of all 1’s.
• So R is an eigenvector of (A + Ex1)
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Random Surfer Model

• PageRank can be seen as modeling a “random 
surfer” that starts on a random page and then at 
each point:
– With probability E(p) randomly jumps to page p.
– Otherwise, randomly follows a link on the current page.

• R(p) models the probability that this random surfer 
will be on page p at any given time.

• “E jumps” are needed to prevent the random surfer 
from getting “trapped” in web sinks with no 
outgoing links.
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Speed of Convergence

• Early experiments on Google used 322 
million links.

• PageRank algorithm converged (within 
small tolerance) in about 52 iterations.

• Number of iterations required for 
convergence is empirically O(log n) (where 
n is the number of links).

• Therefore calculation is quite efficient.
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Simple Title Search with PageRank

• Use simple Boolean search to search web-
page titles and rank the retrieved pages by 
their PageRank.

• Sample search for “university”:
– Altavista returned a random set of pages with 

“university” in the title (seemed to prefer short 
URLs).

– Primitive Google returned the home pages of 
top universities.
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Google Ranking

• Complete Google ranking includes (based on 
university publications prior to 
commercialization).
– Vector-space similarity component.
– Keyword proximity component.
– HTML-tag weight component (e.g. title preference).
– PageRank component.

• Details of current commercial ranking functions 
are trade secrets.



41

Personalized PageRank

• PageRank can be biased (personalized) by 
changing E to a non-uniform distribution.

• Restrict “random jumps” to a set of 
specified relevant pages.

• For example, let E(p) = 0 except for one’s 
own home page, for which E(p) = α

• This results in a bias towards pages that are 
closer in the web graph to your own 
homepage. 
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Google PageRank-Biased Spidering

• Use PageRank to direct (focus) a spider on 
“important” pages.

• Compute page-rank using the current set of 
crawled pages.

• Order the spider’s search queue based on 
current estimated PageRank.
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Link Analysis Conclusions

• Link analysis uses information about the 
structure of the web graph to aid search.

• It is one of the major innovations in web 
search.

• It is the primary reason for Google’s 
success.
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