
1

1

Text Properties and Mark-up Languages

2

Statistical Properties of Text

• How is the frequency of different words
distributed?

• How fast does vocabulary size grow with
the size of a corpus?

• Such factors affect the performance of
information retrieval and can be used to
select appropriate term weights and other
aspects of an IR system.

3

Word Frequency

• A few words are very common.
– 2 most frequent words (e.g. “the”, “of”) can

account for about 10% of word occurrences.
• Most words are very rare.

– Half the words in a corpus appear only once,
called hapax legomena (Greek for “read only
once”)

• Called a “heavy tailed” distribution, since
most of the probability mass is in the “tail”

4

Sample Word Frequency Data
(from B. Croft, UMass)

5

Zipf’s Law

• Rank (r): The numerical position of a word
in a list sorted by decreasing frequency (f).

• Zipf (1949) “discovered” that:

• If probability of word of rank r is pr and N
is the total number of word occurrences:

r
f 1
∝)constant (for kkrf =⋅

1.0 const. indp. corpusfor ≈== A
r
A

N
fpr

6

What does it mean?

• Example: if the probability of a word X is
ranked 10th by its frequency in a collection of
10,000 words is 0.01, then because of the
relation

1.0for ≈== A
r
A

N
fpr

One can conclude that the f = N*pr = 10000 * 0.01 = 100
Or rank r = A/pr = 0.1/0.01 = 10

2

7

Zipf and Term Weighting

• Luhn (1958) suggested that both extremely
common and extremely uncommon words were
not very useful for indexing.

8

Predicting Occurrence Frequencies

• By Zipf, a word appearing f(r) times has rank
rn=AN/f(r)

• Several words may occur n times, assume rank rn
applies to the last of these.

• Therefore, rn words occur f(r) or more times and rn+1
words occur f(r+1) or more times.

• So, the number of words appearing exactly n times is:

)1(11 +
=

+
−=−= + nn

AN
n
AN

n
ANrrI nnn

9

Predicting Word Frequencies (cont)

• The frequency of a number one ranked
word: D = AN/1

• Ratio of word with frequency n vs. most
frequent word is:

• Fraction of words appearing only once is
therefore ½ of the most frequent words.

)1(
1
+

=
nnD

In

10

Occurrence Frequency Data
(from B. Croft, UMass)

11

Does Real Data Fit Zipf’s Law?

• A law of the form y = kxc is called a power
law.

• Zipf’s law is a power law with c = –1
• On a log-log plot, power laws give a

straight line with slope c.

• Zipf is quite accurate except for very high
and low rank.

)log(log)log()log(xckkxy c +==

12

Fit to Zipf for Brown Corpus

k = 100,000

3

13

Mandelbrot (1954) Correction

• The following more general form gives a bit
better fit:

ρρ ,, constantsFor)(BPrPf B−+=

14

Mandelbrot Fit

P = 105.4, B = 1.15, ρ = 100

15

Explanations for Zipf’s Law

• Zipf’s explanation was his “principle of least
effort.” Balance between speaker’s desire for a
small vocabulary and listener’s desire for a large
one.

• Debate (1955-61) between Mandelbrot and H.
Simon over explanation.

• Li (1992) shows that just random typing of letters
including a space will generate “words” with a
Zipfian distribution.
– http://www.nslij-genetics.org/wli/zipf/index.html/

16

Zipf’s Law Impact on IR

• Good News: Stopwords will account for a
large fraction of text so eliminating them
greatly reduces inverted-index storage costs.

• Bad News: For most words, gathering
sufficient data for meaningful statistical
analysis (e.g. for correlation analysis for
query expansion) is difficult since they are
extremely rare.

17

Vocabulary Growth

• How does the size of the overall vocabulary
(number of unique words) grow with the
size of the corpus?

• This determines how the size of the inverted
index will scale with the size of the corpus.

• Vocabulary not really upper-bounded due to
proper names, typos, etc.

18

Heaps’ Law

• If V is the size of the vocabulary and the n is
the length of the corpus in words:

• Typical constants:
– K ≈ 10−100
– β ≈ 0.4−0.6 (approx. square-root)

10 , constants with <<= ββ KKnV

4

19

Heaps’ Law Data

20

Explanation for Heaps’ Law

• Can be derived from Zipf’s law by
assuming documents are generated by
randomly sampling words from a Zipfian
distribution.

21

Metadata

• Information about a document that may not be a
part of the document itself (data about data).

• Descriptive metadata is external to the meaning of
the document:
– Author
– Title
– Source (book, magazine, newspaper, journal)
– Date
– ISBN
– Publisher
– Length

22

Metadata (cont)

• Semantic metadata concerns the content:
– Abstract
– Keywords
– Subject Codes

• Library of Congress
• Dewey Decimal
• UMLS (Unified Medical Language System)

• Subject terms may come from specific
ontologies (hierarchical taxonomies of
standardized semantic terms).

23

Web Metadata

• META tag in HTML
– <META NAME=“keywords”

CONTENT=“pets, cats, dogs”>

• META “HTTP-EQUIV” attribute allows
server or browser to access information:
– <META HTTP-EQUIV=“content-type”

CONTENT=“text/tml; charset=EUC-2”>
– <META HTTP-EQUIV=“expires”

CONTENT=“Tue, 01 Jan 02”>
– <META HTTP-EQUIV=“creation-date”

CONTENT=“23-Sep-01”>

24

Content Rating Metadata

• PICS (Platform for Internet Content
Selection)

• Rating system to allow censoring based on
sexual, violent, language etc. content.
– <META HTTP-EQUIV=“PICS-label”

CONTENT=“PG13: SEX, VIOLENCE”>

5

25

RDF

• Resource Description Framework.
• XML compatible metadata format.
• New standard for web metadata.

– Content description
– Collection description
– Privacy information
– Intellectual property rights (e.g. copyright)
– Content ratings
– Digital signatures for authority

26

Markup Languages

• Language used to annotate documents with
“tags” that indicate layout or semantic
information.

• Most document languages (Word, RTF,
Latex, HTML) primarily define layout.

• History of Generalized Markup Languages:

GML(1969) SGML (1985)

HTML (1993)

XML (1998)
Standard

HyperText

eXtensible

27

Basic SGML Document Syntax

• Blocks of text surrounded by start and end
tags.
– <tagname attribute=value attribute=value …>
– </tagname>

• Tagged blocks can be nested.
• In HTML end tag is not always necessary,

but in XML it is.

28

HTML

• Developed for hypertext on the web.
–

• May include code such as Javascript in
Dynamic HTML (DHTML).

• Separates layout somewhat by using style
sheets (Cascade Style Sheets, CSS).

• However, primarily defines layout and
formatting.

29

XML

• Like SGML, a metalanguage for defining
specific document languages.

• Simplification of original SGML for the web
promoted by WWW Consortium (W3C).

• Fully separates semantic information and
layout.

• Provides structured data (such as a relational
DB) in a document format.

• Replacement for an explicit database schema.

30

XML (cont)

• Allows programs to easily interpret
information in a document, as opposed to
HTML intended as layout language for
formatting docs for human consumption.

• New tags are defined as needed.
• Structures can be nested arbitrarily deep.
• Separate (optional) Document Type

Definition (DTD) defines tags and
document grammar.

6

31

XML Example

<person>
<name> <firstname>John</firstname>

<middlename/>
<lastname>Doe</lastname>

</name>
<age> 38 </age>
<email> jdoe@austin.rr.com</email>

</person>

<tag/> is shorthand for empty tag <tag></tag>
Tag names are case-sensitive (unlike HTML)
A tagged piece of text is called an element.

32

XML Example with Attributes

<product type=“food”>
<name language=“Spanish”>arroz con pollo</name>
<price currency=“peso”>2.30</price>

</product>

Attribute values must be strings enclosed in quotes.
For a given tag, an attribute name can only appear once.

33

XML Miscellaneous

• XML Document must start with a special tag.
– <?XML VERSION=“1.0”>

• Tag “id” and “idref” attributes allows specifying graph-
structured data as well as tree-structured data.

<state id=“s2”>
<abbrev> TX</abbrev>
<name>Texas</abbrev>

</state>
<city id=“c2”>

<aircode> AUS </aircode>
<name> Austin </name>
<state idref=“s2”/>

</city>

34

Document Type Definition (DTD)

• Grammar or schema for defining the tags
and structure of a particular document type.

• Allows defining structure of a document
element using a regular expression.

• Expression defining an element can be
recursive, allowing the expressive power of
a context-free grammar.

35

DTD Example

<!DOCTYPE db [
<!ELEMENT db (person*)>
<!ELEMENT person (name,age,(parent | guardian)?>
<!ELEMENT name (#PCDATA)>
<!ELEMENT age (#PCDATA)>
<!ELEMENT parent (person)>
<!ELEMENT guardian (person)>

]>
*: 0 or more repetitions
?: 0 or 1 (optional)
| : alternation (or)

PCDATA: Parsed Character Data (may contain tags)
36

Sample Valid Document for DTD
<db>
<person>

<name> <firstname>John</firstname> <lastname>Doe</lastname>
</name>
<age> 26 </age>
<parent>

<person>
<name><firstname>Robert</firstname> <lastname>Doe</firstname>
</name>
<age> 55</age>

</person>
</parent>

</person>
</db>

7

37

DTD (cont)

• Tag attributes are also defined:
<!ATTLIS name language CDATA #REQUIRED>
<!ATTLIS price currency CDATA #IMPLIED>

CDATA: Character data (string)
IMPLIED: Optional

• Can define DTD in a separate file:
<!DOCTYPE db SYSTEM “/u/doe/xml/db.dtd”>

38

XSL (Extensible Style-sheet Language)

• Defines layout for XML documents.
• Defines how to translate XML into HTML.
• Define style sheet in document:

– <?xml-stylesheet href=“mystyle.css” type=“text/css”>

39

XML Standardized DTD’s

• MathML: For mathematical formulae.
• SMIL (Synchronized Multimedia Integration

Language): Scheduling language for web-based
multi-media presentations.

• RDF (Resource Description Framework)
• TEI (Text Encoding Initiative): For literary works.
• NITF: For news articles.
• CML: For chemicals.
• AIML: For astronomical instruments.

40

Parsing XML

• Process XML file into an internal data
format for further processing.

• SAX (Simple API for XML): Reads the
flow of XML text, detecting events (e.g. tag
start and end) that are sent back to the
application for processing.

• DOM (Document Object Model): Parses
XML text into a tree-structured object-
oriented data structure.

41

DOM

• XML document represented as a tree of
Node objects (e.g. Java objects).

• Node class has subclasses:
– Element
– Attribute
– CharacterData

• Node has methods:
– getParentNode()
– getChildNodes()

42

Sample DOM Tree

55

person

name age parent

person
lastnamefirstname

name

firstname

age

lastname

John Doe

26

DoeRobert

Element

Character-Data

8

43

More Node Methods

• Element node
– getTagName()
– getAttributes()
– getAttribute(String name)

• CharacterData node
– getData()

• Also methods for adding and deleting nodes
and text in the DOM tree, setting attributes,
etc.

44

Apache Xerces XML Parser

• Parser for creating DOM trees for XML
documents.

• Java version available at:
– http://xerces.apache.org/xerces-j/

• Full Javadoc available at:
– http://xerces.apache.org/xerces-j/api.html

