Text Clustering

Clustering

- Partition unlabeled examples into disjoint subsets of clusters, such that:
 - Examples within a cluster are very similar
 - Examples in different clusters are very different
- Discover new categories in an unsupervised manner (no sample category labels provided).

Clustering Example

Hierarchical Clustering

- Build a tree-based hierarchical taxonomy (dendrogram) from a set of unlabeled examples.
- Recursive application of a standard clustering algorithm can produce a hierarchical clustering.

Agglomerative vs. Divisive Clustering

- **Agglomerative** (bottom-up) methods start with each example in its own cluster and iteratively combine them to form larger and larger clusters.
- **Divisive** (partitional, top-down) separate all examples immediately into clusters.

Direct Clustering Method

- **Direct clustering** methods require a specification of the number of clusters, k, desired.
- A **clustering evaluation function** assigns a real-value quality measure to a clustering.
- The number of clusters can be determined automatically by explicitly generating clusterings for multiple values of k and choosing the best result according to a clustering evaluation function.
Hierarchical Agglomerative Clustering (HAC)

- Assumes a similarity function for determining the similarity of two instances.
- Starts with all instances in a separate cluster and then repeatedly joins the two clusters that are most similar until there is only one cluster.
- The history of merging forms a binary tree or hierarchy.

HAC Algorithm

Start with all instances in their own cluster.
Until there is only one cluster:
Among the current clusters, determine the two clusters, \(c_i \) and \(c_j \), that are most similar.
Replace \(c_i \) and \(c_j \) with a single cluster \(c_i \cup c_j \).

Cluster Similarity

- Assume a similarity function that determines the similarity of two instances: \(\text{sim}(x, y) \).
 - Cosine similarity of document vectors.
- How to compute similarity of two clusters each possibly containing multiple instances?
 - Single Link: Similarity of two most similar members.
 - Complete Link: Similarity of two least similar members.
 - Group Average: Average similarity between members.

Single Link Agglomerative Clustering

- Use maximum similarity of pairs:
 \[
 \text{sim}(c_i, c_j) = \max_{x \in c_i, y \in c_j} \text{sim}(x, y)
 \]
- Can result in “straggly” (long and thin) clusters due to chaining effect.
 - Appropriate in some domains, such as clustering islands.

Single Link Example

Complete Link Agglomerative Clustering

- Use minimum similarity of pairs:
 \[
 \text{sim}(c_i, c_j) = \min_{x \in c_i, y \in c_j} \text{sim}(x, y)
 \]
- Makes more “tight,” spherical clusters that are typically preferable.
Complete Link Example

Computational Complexity

- In the first iteration, all HAC methods need to compute similarity of all pairs of \(n \) individual instances which is \(O(n^2) \).
- In each of the subsequent \(n-2 \) merging iterations, it must compute the distance between the most recently created cluster and all other existing clusters.
- In order to maintain an overall \(O(n^2) \) performance, computing similarity to each other cluster must be done in constant time.

Computing Cluster Similarity

- After merging \(c_i \) and \(c_j \), the similarity of the resulting cluster to any other cluster, \(c_k \), can be computed by:
 - Single Link: \(\text{sim}((c_i \cup c_j), c_k) = \max(\text{sim}(c_i, c_k), \text{sim}(c_j, c_k)) \)
 - Complete Link: \(\text{sim}((c_i \cup c_j), c_k) = \min(\text{sim}(c_i, c_k), \text{sim}(c_j, c_k)) \)

Group Average Agglomerative Clustering

- Use average similarity across all pairs within the merged cluster to measure the similarity of two clusters.
 \[
 \text{sim}(c_i, c_j) = \frac{1}{|c_i \cup c_j|} \sum_{\forall \{i,j\} \in c_i \cup c_j} \sum \text{sim}(\vec{x}, \vec{y})
 \]
- Compromise between single and complete link.
- Averaged across all ordered pairs in the merged cluster instead of unordered pairs between the two clusters.

Computing Group Average Similarity

- Assume cosine similarity and normalized vectors with unit length.
- Always maintain sum of vectors in each cluster.
 \[
 \bar{x}(c) = \sum_{\forall \bar{x}}
 \]
- Compute similarity of clusters in constant time:
 \[
 \text{sim}(c_i, c_j) = \frac{(\bar{x}(c_i) \cdot \bar{x}(c_j)) \cdot (\bar{x}(c_i) \cdot \bar{x}(c_j)) - (|c_i| + |c_j|)}{|c_i| + |c_j|}
 \]

Non-Hierarchical Clustering

- Typically must provide the number of desired clusters, \(k \).
- Randomly choose \(k \) instances as seeds, one per cluster.
- Form initial clusters based on these seeds.
- Iterate, repeatedly reallocating instances to different clusters to improve the overall clustering.
- Stop when clustering converges or after a fixed number of iterations.
K-Means

• Assumes instances are real-valued vectors.
• Clusters based on centroids, center of gravity, or mean of points in a cluster, \(c \):
 \[
 \bar{x}(c) = \frac{1}{|c|} \sum_{x \in c} x
 \]
• Reassignment of instances to clusters is based on distance to the current cluster centroids.

Distance Metrics

• Euclidian distance (L_2 norm):
 \[
 L_2(x, y) = \sum_{i=1}^{m} (x_i - y_i)^2
 \]
• L_1 norm:
 \[
 L_1(x, y) = \sum_{i=1}^{m} |x_i - y_i|
 \]
• Cosine Similarity (transform to a distance by subtracting from 1):
 \[
 1 - \frac{x \cdot y}{\|x\| \cdot \|y\|}
 \]

K-Means Algorithm

Let \(d \) be the distance measure between instances. Select \(k \) random instances \(\{s_1, s_2, \ldots, s_k\} \) as seeds. Until clustering converges or other stopping criterion:

For each instance \(x_i \):
 Assign \(x_i \) to the cluster \(c_j \) such that \(d(x_i, s_j) \) is minimal.
 (Update the seeds to the centroid of each cluster)

For each cluster \(c_j \):
 \(s_j = \bar{x}(c_j) \)

K Means Example (K=2)

Time Complexity

• Assume computing distance between two instances is \(O(m) \) where \(m \) is the dimensionality of the vectors.
• Reassigning clusters: \(O(km) \) distance computations, or \(O(knm) \).
• Computing centroids: Each instance vector gets added once to some centroid: \(O(nm) \).
• Assume these two steps are each done once for \(I \) iterations: \(O(knm) \).
• Linear in all relevant factors, assuming a fixed number of iterations, more efficient than \(O(n^2) \) HAC.

Seed Choice

• Results can vary based on random seed selection.
• Some seeds can result in poor convergence rate, or convergence to sub-optimal clusterings.
• Select good seeds using a heuristic or the results of another method.
Buckshot Algorithm

- Combines HAC and K-Means clustering.
- First randomly take a sample of instances of size \sqrt{n}.
- Run group-average HAC on this sample, which takes only $O(n)$ time.
- Use the results of HAC as initial seeds for K-means.
- Overall algorithm is $O(n)$ and avoids problems of bad seed selection.

Text Clustering

- HAC and K-Means have been applied to text in a straightforward way.
- Typically use normalized, TF/IDF-weighted vectors and cosine similarity.
- Optimize computations for sparse vectors.
- Applications:
 - During retrieval, add other documents in the same cluster as the initial retrieved documents to improve recall.
 - Clustering of results of retrieval to present more organized results to the user (à la Northernlight folders).
 - Automated production of hierarchical taxonomies of documents for browsing purposes (à la Yahoo & DMOZ).

Soft Clustering

- Clustering typically assumes that each instance is given a “hard” assignment to exactly one cluster.
- Does not allow uncertainty in class membership or for an instance to belong to more than one cluster.
- **Soft clustering** gives probabilities that an instance belongs to each of a set of clusters.
- Each instance is assigned a probability distribution across a set of discovered categories (probabilities of all categories must sum to 1).

Expectation Maximization (EM)

- Probabilistic method for soft clustering.
- Direct method that assumes k clusters: $\{c_1, c_2, \ldots, c_k\}$
- Soft version of k-means.
- Assumes a probabilistic model of categories that allows computing $P(c_i | E)$ for each category, c_i, for a given example, E.
- For text, typically assume a naïve-Bayes category model.
 - Parameters $0 = \{P(c_i), P(w_j | c_i): i \in \{1, \ldots, k\}, j \in \{1, \ldots, |V|\}\}$

EM Algorithm

- Iterative method for learning probabilistic categorization model from unsupervised data.
- Initially assume random assignment of examples to categories.
- Learn an initial probabilistic model by estimating model parameters θ from this randomly labeled data.
- Iterate following two steps until convergence:
 - **Expectation (E-step):** Compute $P(c_i | E)$ for each example given the current model, and probabilistically re-label the examples based on these posterior probability estimates.
 - **Maximization (M-step):** Re-estimate the model parameters, θ, from the probabilistically re-labeled data.

Learning from Probabilistically Labeled Data

- Instead of training data labeled with “hard” category labels, training data is labeled with “soft” probabilistic category labels.
- When estimating model parameters θ from training data, weight counts by the corresponding probability of the given category label.
- For example, if $P(c_1 | E) = 0.8$ and $P(c_2 | E) = 0.2$, each word w_j in E contributes only 0.8 towards the counts n_1 and n_{1j}, and 0.2 towards the counts n_2 and n_{2j}.
Naïve Bayes EM

Randomly assign examples probabilistic category labels. Use standard naïve-Bayes training to learn a probabilistic model with parameters \(\theta \) from the labeled data. Until convergence or until maximum number of iterations reached:

E-Step: Use the naïve Bayes model \(\theta \) to compute \(P(c_i | E) \) for each category and example, and re-label each example using these probability values as soft category labels.

M-Step: Use standard naïve-Bayes training to re-estimate the parameters \(\theta \) using these new probabilistic category labels.

Semi-Supervised Learning

• For supervised categorization, generating labeled training data is expensive.
• Idea: Use unlabeled data to aid supervised categorization.
• Use EM in a semi-supervised mode by training EM on both labeled and unlabeled data.
 – Train initial probabilistic model on user-labeled subset of data instead of randomly labeled unsupervised data.
 – Labels of user-labeled examples are “frozen” and never relabeled during EM iterations.
 – Labels of unsupervised data are constantly probabilistically relabeled by EM.

Semi-Supervised Example

• Assume “quantum” is present in several labeled physics documents, but “Heisenberg” occurs in none of the labeled data.
• From labeled data, learn that “quantum” is indicative of a physics document.
• When labeling unsupervised data, label several documents with “quantum” and “Heisenberg” correctly with the “physics” category.
• When retraining, learn that “Heisenberg” is also indicative of a physics document.
• Final learned model is able to correctly assign documents containing only “Heisenberg” to physics.

Semi-Supervision Results

• Experiments on assigning messages from 20 Usenet newsgroups their proper newsgroup label.
• With very few labeled examples (2 examples per class), semi-supervised EM improved accuracy from 27% (supervised data only) to 43% (supervised + unsupervised data).
• With more labeled examples, semi-supervision can actually decrease accuracy, but refinements to standard EM can prevent this.
• For semi-supervised EM to work, the “natural clustering of data” must be consistent with the desired categories.