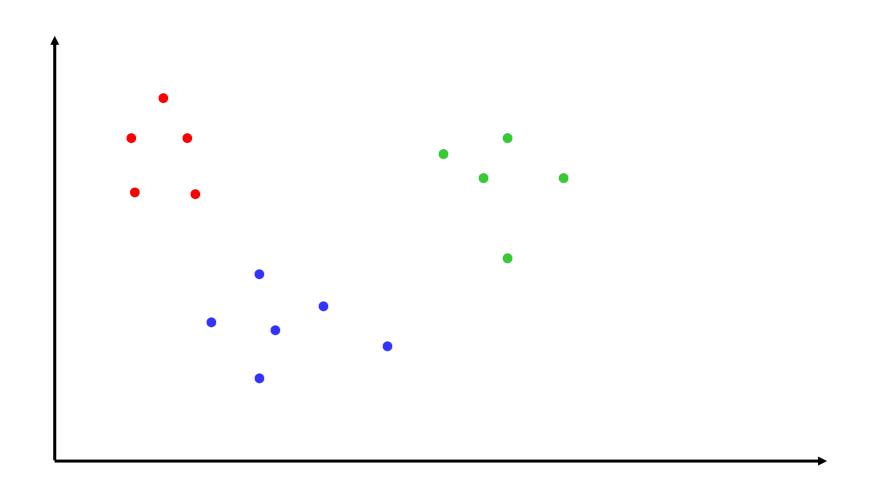
Text Clustering

Clustering

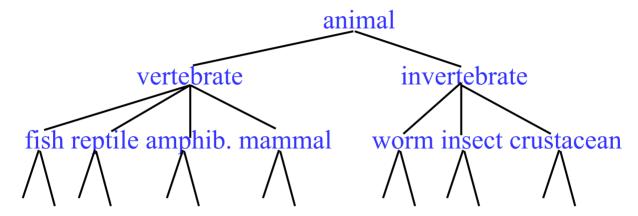
- Partition unlabeled examples into disjoint subsets of *clusters*, such that:
 - Examples within a cluster are very similar
 - Examples in different clusters are very different
- Discover new categories in an *unsupervised* manner (no sample category labels provided).

Clustering Example



Hierarchical Clustering

• Build a tree-based hierarchical taxonomy (*dendrogram*) from a set of unlabeled examples.



• Recursive application of a standard clustering algorithm can produce a hierarchical clustering.

Agglomerative vs. Divisive Clustering

- Agglomerative (bottom-up) methods start with each example in its own cluster and iteratively combine them to form larger and larger clusters.
- *Divisive* (*partitional*, *top-down*) separate all examples immediately into clusters.

Direct Clustering Method

- *Direct clustering* methods require a specification of the number of clusters, *k*, desired.
- A *clustering evaluation function* assigns a real-value quality measure to a clustering.
- The number of clusters can be determined automatically by explicitly generating clusterings for multiple values of *k* and choosing the best result according to a clustering evaluation function.

Hierarchical Agglomerative Clustering (HAC)

- Assumes a *similarity function* for determining the similarity of two instances.
- Starts with all instances in a separate cluster and then repeatedly joins the two clusters that are most similar until there is only one cluster.
- The history of merging forms a binary tree or hierarchy.

HAC Algorithm

Start with all instances in their own cluster.

Until there is only one cluster:

Among the current clusters, determine the two clusters, c_i and c_j , that are most similar.

Replace c_i and c_j with a single cluster $c_i \cup c_j$

Cluster Similarity

- Assume a similarity function that determines the similarity of two instances: sim(x,y).
 - Cosine similarity of document vectors.
- How to compute similarity of two clusters each possibly containing multiple instances?
 - Single Link: Similarity of two most similar members.
 - Complete Link: Similarity of two least similar members.
 - Group Average: Average similarity between members.

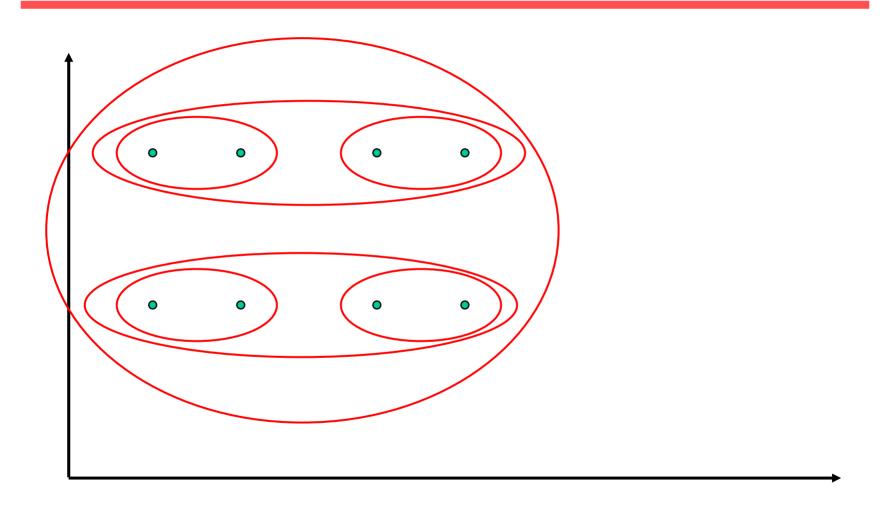
Single Link Agglomerative Clustering

Use maximum similarity of pairs:

$$sim(c_i,c_j) = \max_{x \in c_i, y \in c_j} sim(x,y)$$

- Can result in "straggly" (long and thin) clusters due to *chaining effect*.
 - Appropriate in some domains, such as clustering islands.

Single Link Example



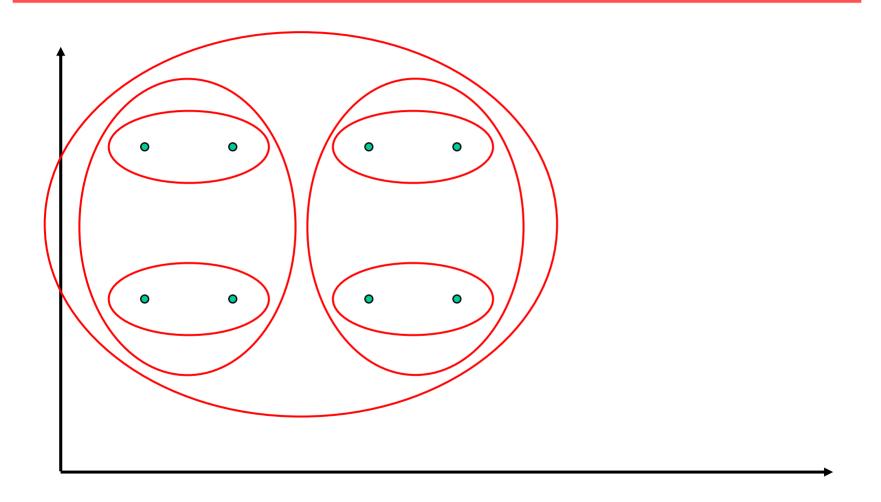
Complete Link Agglomerative Clustering

• Use minimum similarity of pairs:

$$sim(c_i,c_j) = \min_{x \in c_i, y \in c_j} sim(x,y)$$

• Makes more "tight," spherical clusters that are typically preferable.

Complete Link Example



Computational Complexity

- In the first iteration, all HAC methods need to compute similarity of all pairs of n individual instances which is $O(n^2)$.
- In each of the subsequent *n*–2 merging iterations, it must compute the distance between the most recently created cluster and all other existing clusters.
- In order to maintain an overall $O(n^2)$ performance, computing similarity to each other cluster must be done in constant time.

Computing Cluster Similarity

- After merging c_i and c_j , the similarity of the resulting cluster to any other cluster, c_k , can be computed by:
 - Single Link:

$$sim((c_i \cup c_j), c_k) = \max(sim(c_i, c_k), sim(c_j, c_k))$$

– Complete Link:

$$sim((c_i \cup c_j), c_k) = \min(sim(c_i, c_k), sim(c_j, c_k))$$

Group Average Agglomerative Clustering

• Use average similarity across all pairs within the merged cluster to measure the similarity of two clusters.

$$sim(c_{i}, c_{j}) = \frac{1}{|c_{i} \cup c_{j}| (|c_{i} \cup c_{j}| - 1)} \sum_{\vec{x} \in (c_{i} \cup c_{j})} \sum_{\vec{y} \in (c_{i} \cup c_{j}): \vec{y} \neq \vec{x}} sim(\vec{x}, \vec{y})$$

- Compromise between single and complete link.
- Averaged across all ordered pairs in the merged cluster instead of unordered pairs *between* the two clusters.

Computing Group Average Similarity

- Assume cosine similarity and normalized vectors with unit length.
- Always maintain sum of vectors in each cluster.

$$\vec{s}(c_j) = \sum_{\vec{x} \in c_j} \vec{x}$$

• Compute similarity of clusters in constant time:

$$sim(c_i, c_j) = \frac{(\vec{s}(c_i) + \vec{s}(c_j)) \bullet (\vec{s}(c_i) + \vec{s}(c_j)) - (|c_i| + |c_i|)}{(|c_i| + |c_i|)(|c_i| + |c_i|)(|c_i| + |c_i|)}$$

Non-Hierarchical Clustering

- Typically must provide the number of desired clusters, *k*.
- Randomly choose *k* instances as *seeds*, one per cluster.
- Form initial clusters based on these seeds.
- Iterate, repeatedly reallocating instances to different clusters to improve the overall clustering.
- Stop when clustering converges or after a fixed number of iterations.

K-Means

- Assumes instances are real-valued vectors.
- Clusters based on *centroids*, *center of gravity*, or mean of points in a cluster, *c*:

$$\vec{\mu}(\mathbf{c}) = \frac{1}{|c|} \sum_{\vec{x} \in c} \vec{x}$$

 Reassignment of instances to clusters is based on distance to the current cluster centroids.

Distance Metrics

• Euclidian distance (L₂ norm):

$$L_2(\vec{x}, \vec{y}) = \sum_{i=1}^{m} (x_i - y_i)^2$$

• L_1 norm:

$$L_1(\vec{x}, \vec{y}) = \sum_{i=1}^{m} |x_i - y_i|$$

• Cosine Similarity (transform to a distance by subtracting from 1):

$$1 - \frac{\vec{x} \cdot \vec{y}}{|\vec{x}| \cdot |\vec{y}|}$$

K-Means Algorithm

Let d be the distance measure between instances.

Select k random instances $\{s_1, s_2, \dots s_k\}$ as seeds.

Until clustering converges or other stopping criterion:

For each instance x_i :

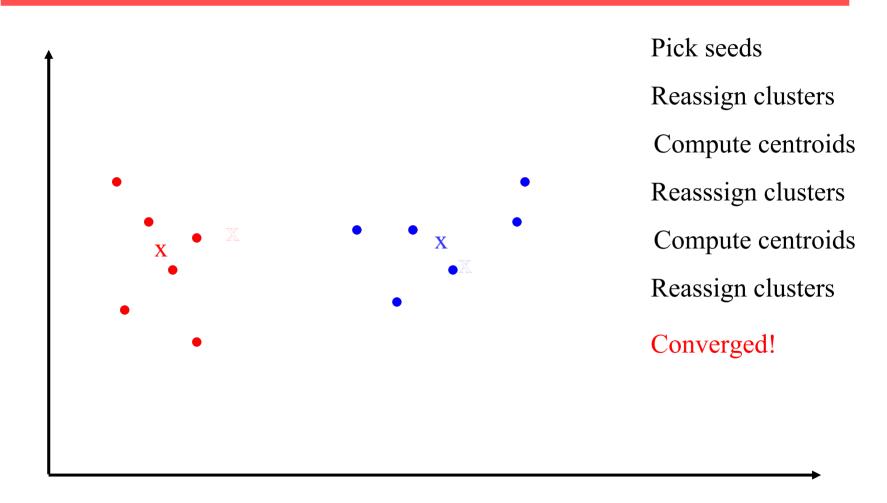
Assign x_i to the cluster c_i such that $d(x_i, s_i)$ is minimal.

(Update the seeds to the centroid of each cluster)

For each cluster c_j

$$s_i = \mu(c_i)$$

K Means Example (K=2)



Time Complexity

- Assume computing distance between two instances is O(m) where m is the dimensionality of the vectors.
- Reassigning clusters: O(kn) distance computations, or O(knm).
- Computing centroids: Each instance vector gets added once to some centroid: O(nm).
- Assume these two steps are each done once for *I* iterations: O(*Iknm*).
- Linear in all relevant factors, assuming a fixed number of iterations, more efficient than O(n²) HAC.

Seed Choice

- Results can vary based on random seed selection.
- Some seeds can result in poor convergence rate, or convergence to sub-optimal clusterings.
- Select good seeds using a heuristic or the results of another method.

Buckshot Algorithm

- Combines HAC and K-Means clustering.
- First randomly take a sample of instances of size \sqrt{n}
- Run group-average HAC on this sample, which takes only O(n) time.
- Use the results of HAC as initial seeds for K-means.
- Overall algorithm is O(n) and avoids problems of bad seed selection.

Text Clustering

- HAC and K-Means have been applied to text in a straightforward way.
- Typically use *normalized*, TF/IDF-weighted vectors and cosine similarity.
- Optimize computations for sparse vectors.
- Applications:
 - During retrieval, add other documents in the same cluster as the initial retrieved documents to improve recall.
 - Clustering of results of retrieval to present more organized results to the user (à la Northernlight folders).
 - Automated production of hierarchical taxonomies of documents for browsing purposes (à la Yahoo & DMOZ).

Soft Clustering

- Clustering typically assumes that each instance is given a "hard" assignment to exactly one cluster.
- Does not allow uncertainty in class membership or for an instance to belong to more than one cluster.
- *Soft clustering* gives probabilities that an instance belongs to each of a set of clusters.
- Each instance is assigned a probability distribution across a set of discovered categories (probabilities of all categories must sum to 1).

Expectation Maximumization (EM)

- Probabilistic method for soft clustering.
- Direct method that assumes k clusters: $\{c_1, c_2, \dots c_k\}$
- Soft version of *k*-means.
- Assumes a probabilistic model of categories that allows computing $P(c_i | E)$ for each category, c_i , for a given example, E.
- For text, typically assume a naïve-Bayes category model.
 - Parameters $\theta = \{P(c_i), P(w_j \mid c_i): i \in \{1,...k\}, j \in \{1,...,|V|\}\}$

EM Algorithm

- Iterative method for learning probabilistic categorization model from unsupervised data.
- Initially assume random assignment of examples to categories.
- Learn an initial probabilistic model by estimating model parameters θ from this randomly labeled data.
- Iterate following two steps until convergence:
 - Expectation (E-step): Compute $P(c_i | E)$ for each example given the current model, and probabilistically re-label the examples based on these posterior probability estimates.
 - Maximization (M-step): Re-estimate the model parameters, θ , from the probabilistically re-labeled data.

Learning from Probabilistically Labeled Data

- Instead of training data labeled with "hard" category labels, training data is labeled with "soft" probabilistic category labels.
- When estimating model parameters θ from training data, weight counts by the corresponding probability of the given category label.
- For example, if $P(c_1 | E) = 0.8$ and $P(c_2 | E) = 0.2$, each word w_j in E contributes only 0.8 towards the counts n_1 and n_{1j} , and 0.2 towards the counts n_2 and n_{2j} .

Naïve Bayes EM

Randomly assign examples probabilistic category labels.

Use standard naïve-Bayes training to learn a probabilistic model with parameters θ from the labeled data.

Until convergence or until maximum number of iterations reached:

E-Step: Use the naïve Bayes model θ to compute $P(c_i | E)$ for each category and example, and re-label each example using these probability values as soft category labels.

M-Step: Use standard naïve-Bayes training to re-estimate the parameters θ using these new probabilistic category labels.

Semi-Supervised Learning

- For supervised categorization, generating labeled training data is expensive.
- Idea: Use unlabeled data to aid supervised categorization.
- Use EM in a *semi-supervised* mode by training EM on both labeled and unlabeled data.
 - Train initial probabilistic model on user-labeled subset of data instead of randomly labeled unsupervised data.
 - Labels of user-labeled examples are "frozen" and never relabeled during EM iterations.
 - Labels of unsupervised data are constantly probabilistically relabeled by EM.

Semi-Supervised Example

- Assume "quantum" is present in several labeled physics documents, but "Heisenberg" occurs in *none* of the *labeled* data.
- From labeled data, learn that "quantum" is indicative of a physics document.
- When labeling unsupervised data, label several documents with "quantum" and "Heisenberg" correctly with the "physics" category.
- When retraining, learn that "Heisenberg" is also indicative of a physics document.
- Final learned model is able to correctly assign documents containing *only* "Heisenberg" to physics.

Semi-Supervision Results

- Experiments on assigning messages from 20 Usenet newsgroups their proper newsgroup label.
- With very few labeled examples (2 examples per class), semi-supervised EM improved accuracy from 27% (supervised data only) to 43% (supervised + unsupervised data).
- With more labeled examples, semi-supervision can actually decrease accuracy, but refinements to standard EM can prevent this.
- For semi-supervised EM to work, the "natural clustering of data" must be consistent with the desired categories.