Text Clustering
Clustering

• Partition unlabeled examples into disjoint subsets of *clusters*, such that:
 – Examples within a cluster are very similar
 – Examples in different clusters are very different

• Discover new categories in an *unsupervised* manner (no sample category labels provided).
Clustering Example
Hierarchical Clustering

- Build a tree-based hierarchical taxonomy \((\text{dendrogram})\) from a set of unlabeled examples.

- Recursive application of a standard clustering algorithm can produce a hierarchical clustering.
Agglomerative vs. Divisive Clustering

- **Agglomerative** (*bottom-up*) methods start with each example in its own cluster and iteratively combine them to form larger and larger clusters.

- **Divisive** (*partitional, top-down*) separate all examples immediately into clusters.
Direct Clustering Method

• *Direct clustering* methods require a specification of the number of clusters, k, desired.

• A *clustering evaluation function* assigns a real-value quality measure to a clustering.

• The number of clusters can be determined automatically by explicitly generating clusterings for multiple values of k and choosing the best result according to a clustering evaluation function.
Hierarchical Agglomerative Clustering (HAC)

• Assumes a similarity function for determining the similarity of two instances.
• Starts with all instances in a separate cluster and then repeatedly joins the two clusters that are most similar until there is only one cluster.
• The history of merging forms a binary tree or hierarchy.
HAC Algorithm

Start with all instances in their own cluster. Until there is only one cluster:

Among the current clusters, determine the two clusters, \(c_i \) and \(c_j \), that are most similar.

Replace \(c_i \) and \(c_j \) with a single cluster \(c_i \cup c_j \).
Cluster Similarity

• Assume a similarity function that determines the similarity of two instances: $sim(x,y)$.
 – Cosine similarity of document vectors.

• How to compute similarity of two clusters each possibly containing multiple instances?
 – Single Link: Similarity of two most similar members.
 – Complete Link: Similarity of two least similar members.
 – Group Average: Average similarity between members.
Single Link Agglomerative Clustering

- Use maximum similarity of pairs:
 \[\text{sim}(c_i, c_j) = \max_{x \in c_i, y \in c_j} \text{sim}(x, y) \]

- Can result in “straggly” (long and thin) clusters due to chaining effect.
 - Appropriate in some domains, such as clustering islands.
Single Link Example
Complete Link Agglomerative Clustering

• Use minimum similarity of pairs:

\[\text{sim}(c_i, c_j) = \min_{x \in c_i, y \in c_j} \text{sim}(x, y) \]

• Makes more “tight,” spherical clusters that are typically preferable.
Complete Link Example
Computational Complexity

- In the first iteration, all HAC methods need to compute similarity of all pairs of \(n \) individual instances which is \(O(n^2) \).
- In each of the subsequent \(n-2 \) merging iterations, it must compute the distance between the most recently created cluster and all other existing clusters.
- In order to maintain an overall \(O(n^2) \) performance, computing similarity to each other cluster must be done in constant time.
Computing Cluster Similarity

• After merging c_i and c_j, the similarity of the resulting cluster to any other cluster, c_k, can be computed by:

 - Single Link:

 \[\text{sim}((c_i \cup c_j), c_k) = \max(\text{sim}(c_i, c_k), \text{sim}(c_j, c_k)) \]

 - Complete Link:

 \[\text{sim}((c_i \cup c_j), c_k) = \min(\text{sim}(c_i, c_k), \text{sim}(c_j, c_k)) \]
Group Average Agglomerative Clustering

- Use average similarity across all pairs within the merged cluster to measure the similarity of two clusters.

\[sim(c_i, c_j) = \frac{1}{|c_i \cup c_j|(|c_i \cup c_j| - 1)} \sum_{\tilde{x} \in (c_i \cup c_j)} \sum_{\tilde{y} \in (c_i \cup c_j): \tilde{y} \neq \tilde{x}} sim(\tilde{x}, \tilde{y}) \]

- Compromise between single and complete link.
- Averaged across all ordered pairs in the merged cluster instead of unordered pairs between the two clusters.
Computing Group Average Similarity

• Assume cosine similarity and normalized vectors with unit length.

• Always maintain sum of vectors in each cluster.

\[
\tilde{s}(c_j) = \sum_{\tilde{x} \in c_j} \tilde{x}
\]

• Compute similarity of clusters in constant time:

\[
sim(c_i, c_j) = \frac{(\tilde{s}(c_i) + \tilde{s}(c_j)) \cdot (\tilde{s}(c_i) + \tilde{s}(c_j)) - (|c_i| + |c_i|)}{(|c_i| + |c_i|)(|c_i| + |c_i| - 1)}
\]
Non-Hierarchical Clustering

• Typically must provide the number of desired clusters, \(k \).
• Randomly choose \(k \) instances as seeds, one per cluster.
• Form initial clusters based on these seeds.
• Iterate, repeatedly reallocating instances to different clusters to improve the overall clustering.
• Stop when clustering converges or after a fixed number of iterations.
K-Means

- Assumes instances are real-valued vectors.
- Clusters based on *centroids*, *center of gravity*, or mean of points in a cluster, c:
 \[
 \bar{\mu}(c) = \frac{1}{|c|} \sum_{\tilde{x} \in c} \tilde{x}
 \]
- Reassignment of instances to clusters is based on distance to the current cluster centroids.
Distance Metrics

- Euclidian distance (L_2 norm):
 \[L_2(\vec{x}, \vec{y}) = \sum_{i=1}^{m} (x_i - y_i)^2 \]

- L_1 norm:
 \[L_1(\vec{x}, \vec{y}) = \sum_{i=1}^{m} |x_i - y_i| \]

- Cosine Similarity (transform to a distance by subtracting from 1):
 \[1 - \frac{\vec{x} \cdot \vec{y}}{|\vec{x}| \cdot |\vec{y}|} \]
K-Means Algorithm

Let d be the distance measure between instances. Select k random instances \{s_1, s_2, \ldots, s_k\} as seeds. Until clustering converges or other stopping criterion:

For each instance x_i:

Assign x_i to the cluster c_j such that $d(x_i, s_j)$ is minimal.

(Update the seeds to the centroid of each cluster)

For each cluster c_j

$s_j = \mu(c_j)$
K Means Example
(K=2)

Pick seeds
Reassign clusters
Compute centroids
Reassign clusters
Compute centroids
Reassign clusters
Converged!
Time Complexity

- Assume computing distance between two instances is $O(m)$ where m is the dimensionality of the vectors.
- Reassigning clusters: $O(kn)$ distance computations, or $O(knm)$.
- Computing centroids: Each instance vector gets added once to some centroid: $O(nm)$.
- Assume these two steps are each done once for I iterations: $O(Iknm)$.
- Linear in all relevant factors, assuming a fixed number of iterations, more efficient than $O(n^2)$ HAC.
Seed Choice

• Results can vary based on random seed selection.
• Some seeds can result in poor convergence rate, or convergence to sub-optimal clusterings.
• Select good seeds using a heuristic or the results of another method.
Buckshot Algorithm

• Combines HAC and K-Means clustering.
• First randomly take a sample of instances of size \sqrt{n}
• Run group-average HAC on this sample, which takes only $O(n)$ time.
• Use the results of HAC as initial seeds for K-means.
• Overall algorithm is $O(n)$ and avoids problems of bad seed selection.
Text Clustering

- HAC and K-Means have been applied to text in a straightforward way.
- Typically use *normalized*, TF/IDF-weighted vectors and cosine similarity.
- Optimize computations for sparse vectors.
- Applications:
 - During retrieval, add other documents in the same cluster as the initial retrieved documents to improve recall.
 - Clustering of results of retrieval to present more organized results to the user (à la Northernlight folders).
 - Automated production of hierarchical taxonomies of documents for browsing purposes (à la Yahoo & DMOZ).
Soft Clustering

- Clustering typically assumes that each instance is given a “hard” assignment to exactly one cluster.
- Does not allow uncertainty in class membership or for an instance to belong to more than one cluster.
- *Soft clustering* gives probabilities that an instance belongs to each of a set of clusters.
- Each instance is assigned a probability distribution across a set of discovered categories (probabilities of all categories must sum to 1).
Expectation Maximumization (EM)

• Probabilistic method for soft clustering.
• Direct method that assumes \(k \) clusters: \(\{c_1, c_2, \ldots, c_k\} \)
• Soft version of \(k \)-means.
• Assumes a probabilistic model of categories that allows computing \(P(c_i \mid E) \) for each category, \(c_i \), for a given example, \(E \).
• For text, typically assume a naïve-Bayes category model.
 – Parameters \(\theta = \{P(c_i), P(w_j \mid c_i): i \in \{1, \ldots, k\}, j \in \{1, \ldots, |V|\}\} \)
EM Algorithm

• Iterative method for learning probabilistic categorization model from unsupervised data.
• Initially assume random assignment of examples to categories.
• Learn an initial probabilistic model by estimating model parameters θ from this randomly labeled data.
• Iterate following two steps until convergence:
 – Expectation (E-step): Compute $P(c_i \mid E)$ for each example given the current model, and probabilistically re-label the examples based on these posterior probability estimates.
 – Maximization (M-step): Re-estimate the model parameters, θ, from the probabilistically re-labeled data.
Learning from Probabilistically Labeled Data

• Instead of training data labeled with “hard” category labels, training data is labeled with “soft” probabilistic category labels.

• When estimating model parameters θ from training data, weight counts by the corresponding probability of the given category label.

• For example, if $P(c_1 \mid E) = 0.8$ and $P(c_2 \mid E) = 0.2$, each word w_j in E contributes only 0.8 towards the counts n_1 and n_{1j}, and 0.2 towards the counts n_2 and n_{2j}.
Naïve Bayes EM

Randomly assign examples probabilistic category labels. Use standard naïve-Bayes training to learn a probabilistic model with parameters θ from the labeled data. Until convergence or until maximum number of iterations reached:

E-Step: Use the naïve Bayes model θ to compute $P(c_i \mid E)$ for each category and example, and re-label each example using these probability values as soft category labels.

M-Step: Use standard naïve-Bayes training to re-estimate the parameters θ using these new probabilistic category labels.
Semi-Supervised Learning

- For supervised categorization, generating labeled training data is expensive.
- **Idea:** Use unlabeled data to aid supervised categorization.
- Use EM in a *semi-supervised* mode by training EM on both labeled and unlabeled data.
 - Train initial probabilistic model on user-labeled subset of data instead of randomly labeled unsupervised data.
 - Labels of user-labeled examples are “frozen” and never relabeled during EM iterations.
 - Labels of unsupervised data are constantly probabilistically relabeled by EM.
Semi-Supervised Example

- Assume “quantum” is present in several labeled physics documents, but “Heisenberg” occurs in none of the labeled data.
- From labeled data, learn that “quantum” is indicative of a physics document.
- When labeling unsupervised data, label several documents with “quantum” and “Heisenberg” correctly with the “physics” category.
- When retraining, learn that “Heisenberg” is also indicative of a physics document.
- Final learned model is able to correctly assign documents containing only “Heisenberg” to physics.
Semi-Supervision Results

- Experiments on assigning messages from 20 Usenet newsgroups their proper newsgroup label.
- With very few labeled examples (2 examples per class), semi-supervised EM improved accuracy from 27% (supervised data only) to 43% (supervised + unsupervised data).
- With more labeled examples, semi-supervision can actually decrease accuracy, but refinements to standard EM can prevent this.
- For semi-supervised EM to work, the “natural clustering of data” must be consistent with the desired categories.