
1

1

Text Categorization
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Categorization

• Given:
– A description of an instance, x∈X, where X is 

the instance language or instance space.
– A fixed set of categories:                          

C={c1, c2,…cn}
• Determine:

– The category of x: c(x)∈C, where c(x) is a 
categorization function whose domain is X and 
whose range is C.
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Learning for Categorization

• A training example is an instance x∈X, 
paired with its correct category c(x):         
<x, c(x)> for an unknown categorization 
function, c. 

• Given a set of training examples, D.
• Find a hypothesized categorization function, 

h(x), such that:
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Consistency
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Sample Category Learning Problem

• Instance language: <size, color, shape>
– size ∈ {small, medium, large}
– color ∈ {red, blue, green}
– shape ∈ {square, circle, triangle}

• C = {positive, negative}
• D: Example Size Color Shape Category

1 small red circle positive

2 large red circle positive

3 small red triangle negative

4 large blue circle negative

5

General Learning Issues

• Many hypotheses are usually consistent with the 
training data.

• Bias
– Any criteria other than consistency with the training 

data that is used to select a hypothesis.
• Classification accuracy (% of instances classified 

correctly).
– Measured on independent test data.

• Training time (efficiency of training algorithm).
• Testing time (efficiency of subsequent 

classification).
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Generalization

• Hypotheses must generalize to correctly 
classify instances not in the training data.

• Simply memorizing training examples is a 
consistent hypothesis that does not 
generalize.

• Occam’s razor:
– Finding a simple hypothesis helps ensure 

generalization.
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Text Categorization

• Assigning documents to a fixed set of categories.
• Applications:

– Web pages 
• Recommending
• Yahoo-like classification

– Newsgroup Messages 
• Recommending
• spam filtering

– News articles 
• Personalized newspaper

– Email messages 
• Routing
• Prioritizing 
• Folderizing
• spam filtering
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Learning for Text Categorization

• Manual development of text categorization 
functions is difficult.

• Learning Algorithms:
– Bayesian (naïve)
– Neural network
– Relevance Feedback (Rocchio)
– Rule based (Ripper)
– Nearest Neighbor (case based)
– Support Vector Machines (SVM)
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Using Relevance Feedback (Rocchio)

• Relevance feedback methods can be adapted for 
text categorization.

• Use standard TF/IDF weighted vectors to 
represent text documents (normalized by 
maximum term frequency).

• For each category, compute a prototype vector by 
summing the vectors of the training documents in 
the category.

• Assign test documents to the category with the 
closest prototype vector based on cosine 
similarity.
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Rocchio Text Categorization Algorithm
(Training)

Assume the set of categories is {c1, c2,…cn}
For i from 1 to n let pi = <0, 0,…,0>  (init. prototype vectors)
For each training example <x, c(x)> ∈ D

Let d be the frequency normalized TF/IDF term vector for doc x
Let i =  j: (cj = c(x))
(sum all the document vectors in ci to get pi)
Let pi = pi + d     
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Rocchio Text Categorization Algorithm
(Test)

Given test document x
Let d be the TF/IDF weighted term vector for x
Let m = –2      (init. maximum cosSim)
For i from 1 to n:

(compute similarity to prototype vector)
Let s = cosSim(d, pi)
if s > m

let m = s
let r = ci (update most similar class prototype)

Return class r
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Illustration of Rocchio Text Categorization
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Rocchio Properties 

• Does not guarantee a consistent hypothesis.
• Forms a simple generalization of the 

examples in each class (a prototype).
• Prototype vector does not need to be 

averaged or otherwise normalized for length 
since cosine similarity is insensitive to 
vector length.

• Classification is based on similarity to class 
prototypes.
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Rocchio Time Complexity

• Note: The time to add two sparse vectors is 
proportional to minimum number of non-zero 
entries in the two vectors.

• Training Time:  O(|D|(Ld + |Vd|)) = O(|D| Ld)   
where Ld is the average length of a document in D and Vd
is the average vocabulary size for a document in D.

• Test Time: O(Lt + |C||Vt|)                                 
where Lt  is the average length of a test document and |Vt | 
is the average vocabulary size for a test document.
– Assumes lengths of pi vectors are computed and stored during 

training, allowing cosSim(d, pi) to be computed  in time 
proportional to the number of non-zero entries in d (i.e. |Vt|)
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Nearest-Neighbor Learning Algorithm

• Learning is just storing the representations of the 
training examples in D.

• Testing instance x:
– Compute similarity between x and all examples in D.
– Assign x the category of the most similar example in D.

• Does not explicitly compute a generalization or 
category prototypes.

• Also called:
– Case-based
– Memory-based
– Lazy learning
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K Nearest-Neighbor

• Using only the closest example to determine 
categorization is subject to errors due to:
– A single atypical example. 
– Noise (i.e. error) in the category label of a 

single training example.
• More robust alternative is to find the k

most-similar examples and return the 
majority category of these k examples.

• Value of k is typically odd to avoid ties, 3 
and 5 are most common.
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Similarity Metrics

• Nearest neighbor method depends on a 
similarity (or distance) metric.

• Simplest for continuous m-dimensional 
instance space is Euclidian distance.

• Simplest for m-dimensional binary instance 
space is Hamming distance (number of 
feature values that differ).

• For text, cosine similarity of TF-IDF 
weighted vectors is typically most effective.
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3 Nearest Neighbor Illustration
(Euclidian Distance)
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K Nearest Neighbor for Text

Training:
For each each training example <x, c(x)> ∈ D

Compute the corresponding TF-IDF vector, dx, for document x

Test instance y:
Compute TF-IDF vector d for document y
For each <x, c(x)> ∈ D

Let sx = cosSim(d, dx)
Sort examples, x, in D by decreasing value of sx
Let N be the first k examples in D.     (get most similar neighbors)
Return the majority class of examples in N
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Illustration of 3 Nearest Neighbor for Text
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Rocchio Anomoly

• Prototype models have problems with 
polymorphic (disjunctive) categories.
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3 Nearest Neighbor Comparison

• Nearest Neighbor tends to handle 
polymorphic categories better. 

23

Nearest Neighbor Time Complexity

• Training Time: O(|D| Ld) to compose        
TF-IDF vectors.

• Testing Time: O(Lt + |D||Vt|) to compare to 
all training vectors.
– Assumes lengths of dx vectors are computed and stored 

during training, allowing cosSim(d, dx) to be computed  
in time proportional to the number of non-zero entries 
in d (i.e. |Vt|)

• Testing time can be high for large training 
sets.
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Nearest Neighbor with Inverted Index

• Determining k nearest neighbors is the same as 
determining the k best retrievals using the test 
document as a query to a database of training 
documents.

• Testing Time: O(B|Vt|)                                     
where B is the average number of training documents in 
which a test-document word appears.

• Therefore, overall classification is O(Lt + B|Vt|) 
– Typically B << |D|
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Bayesian Methods

• Learning and classification methods based 
on probability theory.

• Bayes theorem plays a critical role in 
probabilistic learning and classification.

• Uses prior probability of each category 
given no information about an item.

• Categorization produces a posterior
probability distribution over the possible 
categories given a description of an item.
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Axioms of Probability Theory

• All probabilities between 0 and 1

• True proposition has probability 1, false has 
probability 0. 

P(true) = 1        P(false) = 0.
• The probability of  disjunction is:
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Conditional Probability 

• P(A | B) is the probability of A given B
• Assumes that B is all and only information 

known.
• Defined by:
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Independence

• A and B are independent iff:

• Therefore, if A and B are independent:
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These two constraints are logically equivalent
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Bayes Theorem

Simple proof from definition of conditional probability:
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Bayesian Categorization

• Let set of categories be {c1, c2,…cn}
• Let E be description of an instance.
• Determine category of E by determining for each ci

• P(E) can be determined since categories are 
complete and disjoint.
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Bayesian Categorization (cont.)

• Need to know:
– Priors: P(ci) 
– Conditionals: P(E | ci)

• P(ci) are easily estimated from data. 
– If ni of the examples in D are in ci,then P(ci) =  ni / |D|

• Assume instance is a conjunction of binary features:

• Too many possible instances (exponential in m) to 
estimate all P(E | ci)

meeeE ∧∧∧= L21

32

Naïve Bayesian Categorization

• If we assume features of an instance are 
independent given the category (ci) 
(conditionally independent).

• Therefore, we then only need to know     
P(ej | ci) for each feature and category.
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Naïve Bayes Example

• C = {allergy, cold, well}
• e1 = sneeze; e2 = cough; e3 = fever
• E = {sneeze, cough, ¬fever}

Prob Well Cold Allergy
P(ci) 0.9 0.05 0.05
P(sneeze|ci) 0.1 0.9 0.9
P(cough|ci) 0.1 0.8 0.7
P(fever|ci) 0.01 0.7 0.4
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Naïve Bayes Example (cont.)

P(well | E) = (0.9)(0.1)(0.1)(0.99)/P(E)=0.0089/P(E)
P(cold | E) = (0.05)(0.9)(0.8)(0.3)/P(E)=0.01/P(E)
P(allergy | E) = (0.05)(0.9)(0.7)(0.6)/P(E)=0.019/P(E)

Most probable category: allergy
P(E) = 0.089 + 0.01 + 0.019 = 0.0379
P(well | E) = 0.23
P(cold | E) = 0.26
P(allergy | E) = 0.50

Probability Well Cold Allergy

P(ci) 0.9 0.05 0.05

P(sneeze | ci) 0.1 0.9 0.9

P(cough | ci) 0.1 0.8 0.7

P(fever | ci) 0.01 0.7 0.4

E={sneeze, cough, ¬fever}
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Estimating Probabilities

• Normally, probabilities are estimated based on 
observed frequencies in the training data.

• If D contains ni examples in category ci, and nij of 
these ni examples contains feature ej, then:

• However, estimating such probabilities from small 
training sets is error-prone.

• If due only to chance, a rare feature, ek, is always 
false in the training data, ∀ci :P(ek | ci) = 0.

• If ek then occurs in a test example, E, the result is 
that ∀ci: P(E | ci) = 0 and ∀ci: P(ci | E) = 0
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Smoothing

• To account for estimation from small samples, 
probability estimates are adjusted or smoothed.

• Laplace smoothing using an m-estimate assumes that 
each feature is given a prior probability, p, that is 
assumed to have been previously observed in a 
“virtual” sample of size m.

• For binary features, p is simply assumed to be 0.5.
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Naïve Bayes for Text

• Modeled as generating a bag of words for a 
document in a given category by repeatedly 
sampling with replacement from a 
vocabulary V = {w1, w2,…wm} based on the 
probabilities P(wj | ci).

• Smooth probability estimates with Laplace         
m-estimates assuming a uniform distribution 
over all words (p = 1/|V|) and m = |V|
– Equivalent to a virtual sample of seeing each word in 

each category exactly once.
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Text Naïve Bayes Algorithm
(Train)

Let V be the vocabulary of all words in the documents in D
For each category ci ∈ C

Let Di be the subset of documents in D in category ci
P(ci) = |Di| / |D|
Let Ti be the concatenation of all the documents in Di
Let ni be the total number of word occurrences in Ti
For each word wj∈ V

Let nij be the number of occurrences of wj in Ti
Let P(wi | ci) = (nij + 1) / (ni + |V|)  
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Text Naïve Bayes Algorithm
(Test)

Given a test document X
Let n be the number of word occurrences in X
Return the category:

where ai is the word occurring the ith position in X
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Naïve Bayes Time Complexity

• Training Time:  O(|D|Ld + |C||V|))           
where Ld is the average length of a document in D.
– Assumes V and all Di , ni, and nij pre-computed in 

O(|D|Ld) time during one pass through all of the data.
– Generally just O(|D|Ld) since usually |C||V| < |D|Ld

• Test Time: O(|C| Lt)                                
where Lt  is the average length of a test document.

• Very efficient overall, linearly proportional to the 
time needed to just read in all the data.

• Similar to Rocchio time complexity.
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Underflow Prevention

• Multiplying lots of probabilities, which are 
between 0 and 1 by definition, can result in 
floating-point underflow.

• Since log(xy) = log(x) + log(y), it is better to 
perform all computations by summing logs 
of probabilities rather than multiplying 
probabilities.

• Class with highest final un-normalized log 
probability score is still the most probable.
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Naïve Bayes Posterior Probabilities

• Classification results of naïve Bayes (the 
class with maximum posterior probability) 
are usually fairly accurate.

• However, due to the inadequacy of the 
conditional independence assumption, the 
actual posterior-probability numerical 
estimates are not.
– Output probabilities are generally very close to 

0 or 1.
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Evaluating Categorization

• Evaluation must be done on test data that are 
independent of the training data (usually a disjoint 
set of instances).

• Classification accuracy: c/n where n is the total 
number of test instances and c is the number of 
test instances correctly classified by the system.

• Results can vary based on sampling error due to 
different training and test sets.

• Average results over multiple training and test sets 
(splits of the overall data) for the best results.
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N-Fold Cross-Validation

• Ideally, test and training sets are independent on 
each trial.
– But this would require too much labeled data.

• Partition data into N equal-sized disjoint segments.
• Run N trials, each time using a different segment of 

the data for testing, and training on the remaining 
N−1 segments.

• This way, at least test-sets are independent.
• Report average classification accuracy over the N

trials.
• Typically, N = 10.
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Learning Curves

• In practice, labeled data is usually rare and 
expensive.

• Would like to know how performance 
varies with the number of training instances.

• Learning curves plot classification accuracy 
on independent test data (Y axis) versus 
number of training examples (X axis).
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N-Fold Learning Curves

• Want learning curves averaged over 
multiple trials.

• Use N-fold cross validation to generate N 
full training and test sets.

• For each trial, train on increasing fractions 
of the training set, measuring accuracy on 
the test data for each point on the desired 
learning curve.

47

Sample Learning Curve
(Yahoo Science Data)
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