Quantum Information Literature



 
Popular Press

General Quantum Information

Introductions to Quantum Computation

Books


General Quantum Computation


 
Physical Realizations


 
Quantum Computation Experiment

 
Quantum Foundations 



Return to research page.   Return to homepage.


 Popular Press

The following articles are taken from the mainstream media and popular scientific press. The list reflects the growing interest and press which the field has received. Most of these are short news items. However, the article by Chuang and Gershenfeld, "Quantum computing with molecules," provides a good introduction to quantum computation and use of NMR for demonstrating small quantum computers.
Some links require registration.
  1. "A quantum leap in secret communications," New Scientist, 137, 21 (30 January 1993).
  2. "A Quantum revolution for computing," New Scientist, 143, 21 (24 September 1994).
  3. "Quantum leap for code-cracking computers," New Scientist, 148, 16 (23 December 1995).
  4. "Good connections, quantum style," New Scientist, 149, 18 (24 February 1996).
  5. "It's good to talk in quantum trits," New Scientist, 151, 16 (6 July 1996).
  6. "Subatomic logic," Scientific American, (September 1996).
  7. "Quantum computers perk up with a cup of tea," New Scientist, 153, 16 (1 February 1997).
  8. "Perfection for quantum computing," New Scientist, 153, 9 (1 March 1997).
  9. "Computing in a coffee cup?" San Jose Mercury News, (4 March 1997).
  10. "Quantum cheats will always win," New Scientist, 154, 18 (17 May 1997).
  11. "Quantum leap," New Scientist, 158, 10 (18 April 1998).
  12. "Breakthrough made on new era of computing," San Jose Mercury News, 28 April 1998.
  13. N. Gershenfeld and I. Chuang, "Quantum computing with molecules," Scientific American, June 1998, p 66-71.
  14. "Quantum leap," New Scientist, 159, 23 (19 September 1998).
  15. P. Rogers, "Quantum information," Physics World, 11, (March 1998).
  16. "It's very strange, but it's not quantum," New Scientist, 163, 20 (17 July 1999).
  17. "Qubit chip," Scientific American, (August 1999).
  18. S. Bose, "Swapping partners," New Scientist, 163, 56 (18 September 1999).
  19. "A Glimpse of Atomic-Scale Computing," Los Angeles Times, (3 February 2000).
  20. "Gauging the Limits of Quantum Computing," New York Times (7 March 2000).
  21. "Quantum Leap in Computing," Wired News, 23 March 2000. html  
  22. "In the Quantum World, Keys to New Codes," New York Times, 2 May 2000.
  23. "Smallest circuits show quantum effects," BBC News, 9 May 2000. html
  24. "Entangled web," New Scientist, 20 May 2000. html

General Quantum Information

There are a number of distinct areas within the general field of quantum information such as quantum computation, quantum cryptography, quantum teleportation and quantum error correction. Although the links between these subfields are not entirely clear they all depend on the use of key features of quantum mechanics and have similar flavors. The articles in this section cover the field quite generally and at most assume a limited knowledge of quantum mechanics. Unfortunately most of the Physics Today articles are not available on line.

The series of articles in the March 1998 Physics World provides a good broad introduction to many of the aspects of quantum information.

Bennett's introductory article, "Quantum information and computation," provides a good overview of the field, in the style of Physics Today articles. It includes brief descriptions of the key concepts used in quantum data compression, teleportation and superdense coding, quantum computation, error correction and experimental possibilities. Discussions are typically conceptual although some mathematics associated with quantum mechanics appears.


  1. C. H. Bennett, "Quantum information and computation," Physics Today, October 1995, 24-30 (1995).
  2. D. Gottesman and H-K. Lo, "From Quantum Cheating to Quantum Security," Physics Today, Nov. 2000, 22 (2000).
  3. J. Preskill, "Battling decoherence: the fault-tolerant quantum computer," Physics Today, June 1999, 24-30 (1999).
  4. A. M. Steane and W. van Dam, "Physicists triumph at guess my number," Physics Today, Feb 2000, 35 - 39 (2000).
  5. A. Zeilinger, "Fundamentals of quantum information," Physics World, 11, March 1998.

Introductions to Quantum Computation

The following articles are introductory or survey articles on quantum computation. Typically the audience is assumed to have some familiarity with linear algebra as well as some of the ideas of non-relativistic quantum mechanics.

The excellent survey by Steane, "Quantum computing," written during the first boom in interest in the field, is one of the most comprehensive to appear in journal format. The article covers the key concepts of classical and quantum information and computation. It also discusses some proposals for experimental quantum information processing although in some of these areas there has been substantial progress since the date of publication.

Barenco's article "Quantum physics and computers," is considerably shorter and concentrates mostly on quantum information and computation. It provides a quicker introduction to the main ideas than Steane's article at the expense of including many of the details of classical information theory. The factorization algorithm is described in moderate detail although it does not include the search algorithm, which appeared later. There is also little discussion of experimental proposals. Unfortunately it is unavailable online.

Vedral and Plenio's article, "Basics of quantum computation," also dispenses with extensive discussions of classical information theory. It does cover a wide range of topics in quantum computation including gates, Deutsch's algorithm, the factorization algorithm, error correction and ion trap quantum computers.
  1. A. Barenco, "Quantum physics and computers," Contemporary Physics, 37, 375-89 (1996).
  2. G. Brassard, I. L. Chuang, S. Lloyd, and C. Monroe, "Quantum Computing," Proc. Natl. Acad. Sci. USA 95, 11032-3 (1998).
  3. A. Ekert, P. Hayden, H. Inamori, "Basic concepts in quantum computation," LANL preprint quant-ph/0011013 (2000).
  4. R. Landauer, "Is quantum mechanics useful?," Phil. Trans. R. Soc. Lond. A, 353, 367-76 (1995).
  5. N. David Mermin, "From Cbits to Qbits: Teaching computer scientists quantum mechanics," Am. J. Phys. 71, 23-30 (2003)
  6. J. Preskill, "Quantum computing: pro and con," Proc. R. Soc. Lond. A, 454, 469-86 (1998).
  7. E. Rieffel and W. Polak, "An introduction to quantum computing for non-physicists," ACM Computing Surveys 32, 300-35 (2000).
  8. A. Steane, "Quantum computing," Rep. Prog. Phys. 61, 117-173 (1998).
  9. V. Vedral and M. B. Plenio, "Basics of quantum computation," Prog. Quant. Electron 22, 1-39 (1998).

General Quantum Computation

General

  1. C. Adami and N.J. Cerf, "What Information Theory Can Tell Us About Quantum Reality," Lect. Notes Comp. Sc. 1509, 258-268(1999).
  2. L. M. Adleman, J. DeMarrais, Ming-Deh A. Huang, "Quantum Computability," SIAM J. Comput., 26, 1524-40 (1997).
  3. C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, "Strengths and weaknesses of quantum computing," SIAM J. Comput., 26, 1510-23 (1997).
  4. E. Bernstein and U. Vazirani, "Quantum Complexity Theory," SIAM J. Comput., 26, 1411-73 (1997).
  5. S. Bose, L. Rallan, and V. Vedral "Communication Capacity of Quantum Computation" Phys. Rev. Lett 85, 5448-51 (2000).
  6. S. Bose, P. L. Knight, M. Murao, M. B. Plenio, V. Vedral, "Implementations of quantum logic: fundamental and experimental limits," Phil. Trans. R. Soc. Lond. A 356, 1823-39 (1998).
  7. S. B. Bravyia and A. Yu. Kitaev, "Fermionic Quantum Computation," Ann. Phys. 298, 210-226 (2002).
  8. J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, "Distributed quantum computation over noisy channels," Phys. Rev. A 59, 4249-54 (1999).
  9. H. De Raedt, A. H. Hams, K. Michielsen, S. Miyashita, and K, Saito, "Quantum Computation and Quantum Spin Dynamics," Acta Phys. Pol. B 32, 3203-32 (2001).
  10. H. De Raedt, A. H. Hams, K. Michielsen, and K. De Raedt, "Quantum Computer Emulator," Comput. Phys. Commun. 132, 1-20 (2000).
  11. D. Deutsch, A. Ekert, and R. Lupacchini, "Machines, logic and quantum physics," Bull. Symb. Logic 6, 265-83 (2000).
  12. D. Deutsch and P. Hayden, "Information flow in entangled quantum systems," Proc. R. Soc. Lond. A 456, 1759-74 (2000).
  13. D. Deutsch, "Quantum theory, the Church-Turing principle and the universal quantum computer," Proc. R. Soc. Lond. A., 454, 97-117 (1998).
  14. D. P. DiVincenzo, "Quantum gates and circuits," Proc. R. Soc. Lond. A., 454, 261-76 (1998).
  15. D. P. DiVincenzo and D. Loss, "Quantum computers and quantum coherence," J. Magnetism and Magnetic Materials 200, 202-218 (1999).
  16. D. P. DiVincenzo and D. Loss, "Quantum information is physical," Superlattices and Microstructures 23, 419-23 (1998).
  17. A. Ekert and R. Jozsa, "Quantum computation and Shor's factoring algorithm," Rev. Mod. Phys. 68, 733-53 (1996).
  18. D. Ellinas and J. Pachos, "Universal quantum computation by holonomic and nonlocal gates with imperfections," Phys. Rev. A 64, 022310 (2001).
  19. L. Fortnow, "One complexity theorist's view of quantum computing," Theoretical Comput. Sci. 292, 597-610 (2003).
  20. N. Gisin and S. Popescu, "Spin Flips and Quantum Information for Antiparallel Spins," Phys. Rev. Lett. 83, 432-5 (1999).
  21. D. Gottesman and I. L. Chuang, "Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations," Nature 402, 390-3 (25 Nov 1999).
  22. R. Jozsa and N. Linden, "On the role of entanglement in quantum computational speed-up," arXiv:quant-ph/0201143 (2002).
  23. P. Knight, "Quantum Information Processing Without Entanglement," Science 287, 441 (2000). A summary of the work of Ahn et.al., "Information Storage and Retrieval Through Quantum Phase."
  24. E. Knill and R. Laflamme, "Quantum computing and quadratically signed weight enumerators," Info. Proc. Lett. 79, 173-9 (2001).
  25. E. Knill and R. Laflamme, "Power of one bit of quantum information," Phys. Rev. Lett., 81, 5672-5 (1998).
  26. D. A. Lidar, I. L. Chuang, and K. B. Whaley,"Decoherence-Free Subspaces for Quantum Computation," Phys. Rev. Lett. 81, 2594-97 (1998).
  27. N. Linden and S. Popescu, "Good Dynamics versus Bad Kinematics: Is Entanglement Needed for Quantum Computation?," Phys. Rev. Lett. 87, 047901 (2001).
  28. S. Lloyd and S. L. Braustein, "Quantum Computation over Continuous Variables," Phys. Rev. Lett. 82, 1784-7 (1999).
  29. A. Mizel, M. W. Mitchell, and M. L. Cohen, "Scaling considerations in ground-state quantum computation," Phys. Rev. A. 65, 022315 (2002).
  30. A. Mizel, M. W. Mitchell and M. L. Cohen, "Energy barrier to decoherence," Phys. Rev. A 63, 040302(R) (2001).
  31. M. Mosca, R. Jozsa, A. Steane, and A. Ekert, "Quantum-enhanced information processing," Phil. Trans. R. Soc. Lond. A 358, 271-9 (2000).
  32. M. Mussinger, A. Delgado and G. Alber, "Error avoiding quantum codes and dynamical stabilization of Grover's algorithm" New J. Phys. 2, 19 (2000).
  33. M. Nakanishi, K. Hamaguchi, and T. Kashiwabara, "Ordered Quantum Branching Programs Are More Powerful than Ordered Probabilistic Branching Programs under a Bounded-Width Restriction," Lect. Notes in Comp. Sci. 1858, 467-476 (2000).
  34. M. A. Nielsen and I. L. Chuang, " Programmable Quantum Gate Arrays," Phys. Rev. Lett, 79, 321-4 (1997).
  35. M. B. Plenio and V. Vedral, "Teleportation, entanglement and thermodynamics in the quantum world," Contemp. Phys. 39, 431-6 (1998).
  36. D. Poulin "Classicality of quantum information processing," Phys. Rev. A 65, 042319 (2002).
  37. R. Raussendorf and H. J. Briegel, "A One-Way Quantum Computer" Phys. Rev. Lett. 85, 5188-5191 (2001).
  38. M. B. Ruskai, "Pauli Exchange Errors in Quantum Computation," Phys. Rev. Lett. 85, 194-7 (2000).
  39. D. R. Simon, "On the Power of quantum computation," SIAM J. Comput., 26, 1474-1483 (1997).
  40. R. J. C. Spreeuw, "Classical wave-optics analogy of quantum information processing," Phys. Rev. A 63, 062302 (2001).
  41. A. M. Steane, "A quantum computer only needs one universe," LANL preprint quant-ph/0003084 (2000).
  42. S. Stenholm, "Observations and quantum information," J. Mod. Optics 47, 311-24 (2000).
  43. S. Wallentowitz, I.A. Walmsley, J.H. Eberly, "How big is a quantum computer?," LANL preprint quant-ph/0009069 (2000).
  44. H.M. Wiseman and B.L. Hollis, "Space-bounded computation: quantum is better than classical," LANL Preprint quant-ph/0009054 (2000).
  45. T. Yamakami, "Analysis of Quantum Functions" Lect. Notes in Comp. Sci. 1738, 407 (2000).

Algorithms and Applications

  1. R. Beals, "Quantum computation of Fourier transforms over symmetric groups," Proc. 29th ACM symposium on Theory of computing, 48-53 (1997).
  2. A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A. Spielman, "Exponential algorithmic speedup by a quantum walk," Proceedings of the thirty-fifth ACM symposium on Theory of computing, 59-68 (2003).
  3. R. Cleve, A. Ekert, L. Henderson, C. Macchiavello, and M. Mosca, "On quantum algorithms," arXiv preprint quant-ph/9903061 (1999).
  4. R. Cleve, A. Ekert, C. Macchiavello, M. Mosca, "Quantum algorithms revisited," Proc. R. Soc. Lond. A 454, 339-54 (1998).
  5. A. Ekert and R. Jozsa, "Quantum algorithms: entanglement-enhanced information processing," Phil. Trans. R. Soc. Lond. A 356, 1769-82 (1998).
  6. E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda, "A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem" Science 292, 472-6 (20 April 2001).
  7. E. Farhi and S. Gutmann, "Analog analogue of a digital quantum computation," Phys. Rev. A 57, 2403-6 (1998).
  8. K. Friedl, G. Ivanyos, F. Magniez, M. Santha, and P. Sen, "Hidden translation and orbit coset in quantum computing," Proceedings of the thirty-fifth ACM symposium on Theory of computing, 1-9 (2003).
  9. L. Hales and S. Hallgren, "Quantum Fourier sampling simplified," Proc. 31st ACM symposium on Theory of computing, 330-8 (1999).
  10. S. Hallgren, A. Russell and A. Ta-Shma, "Normal subgroup reconstruction and quantum computation using group representations," Proc. 32nd ACM symposium on Theory of computing, 627-35 (2000).
  11. T. Hogg, C. Monchon, W. Polak, and E. Rieffel, "Tools for quantum algorithms" Int. J. Mod. Phys. C 10, 1347-61 (1999).
  12. P. Hoyer, "Conjugated operators in quantum algorithms," Phys. Rev. A 59, 3280-89 (1999).
  13. D. Janzing and Th. Beth, "Complexity measure for continuous-time quantum algorithms," Phys. Rev. A 64 022301 (2001).
  14. R. Jozsa, "Quantum effects in algorithms," Lecture Notes in Computer Science 1509, 103-12 (1999).
  15. R. Jozsa, "Quantum algorithms and the Fourier transform," Proc. R. Soc. Lond. A 454, 323-37 (1998).
  16. Y. Ozhigov, "Quantum Computer Can Not Speed Up Iterated Applications of a Black Box," Lect. Notes Comp. Sc. 1509, 152-9 (1999).
  17. W. van Dam, "Quantum algorithms for weighing matrices and quadratic residues," Algorithmica 34, 413-428 (2002).
  18. H.M. Wiseman and B.L. Hollis, "Space-bounded computation: quantum is better than classical," LANL Preprint quant-ph/0009054 (2000).
Deutsch-Jozsa Algorithm
  1. H. Azuma, S. Bose, V. Vedral, "Entangling capacity of global phases and implications for Deutsch-Jozsa algorithm," Phys. Rev. A 64, 062308 (2001).
  2. A. Brazier and M. B. Plenio, "Broken promises and quantum algorithms," arXiv preprint: quant-ph/0304017(2003).
  3. D. P. Chi, J. Kim, and S. Lee, "Initialization-free generalized Deutsch-Jozsa algorithm," J. Phys. A 34, 5251-8 (2001).
  4. R. Cleve, A. Ekert, C. Macchiavello, M. Mosca, "Quantum algorithms revisited," Proc. R. Soc. Lond. A 454, 339-54 (1998).
  5. D. Collins, K. W. Kim, and W. C. Holton, "Deutsch-Jozsa algorithm as a test of quantum computation," Phys. Rev. A 58, 1633-6 (1998).
  6. S. Das, R. Kobes, and G. Kunstatter, "Adiabatic quantum computation and Deutsch's algorithm," Phys. Rev. A 65, 062310 (2002).
  7. D. Deutsch and R. Jozsa, "Rapid solution of problems of quantum computation," Proc. R. Soc. Lond. A 439, 553-8 (1992).
  8. J. M. Myers, A. F. Fahmy, S. J. Glaser, R. Marx, "Rapid solution of problems by nuclear-magnetic-resonance quantum computation," Phys. Rev. A 63, 032302 (2002).
  9. H. Ozawa, "Phase-creation algorithm to solve an extended Deutsch problem by a quantum computer," Phys. Rev. A 63, 052312 (2001).
Bernstein-Vazirani Algorithm
  1. E. Bernstein and U. Vazirani, "Quantum complexity theory," Proc 25th ACM Symposium on the Theory of Computing, 11-20 (1993).
Simon's Algorithm
  1. D. R. Simon, " On the Power of Quantum Computation," SIAM J. Comput. 26 1474-1483 (1997).
Shor's Factorization and Associated Order-Finding Algorithms
  1. D. Beckman, A. N. Chari, S. Devahaktuni, and J. Preskill, "Efficient networks for quantum factoring," Phys. Rev. A 54, 1034-63 (1996).
  2. A. Ekert and R. Jozsa, "Quantum computation and Shor's factoring algorithm," Rev. Mod. Phys. 68, 733-53 (1996).
  3. M. Ettinger, and P. Høyer, "On Quantum Algorithms for Noncommutative Hidden Subgroups," Lect. Notes Comp. Sci. 1563, 478 (1999).
  4. A. G. Fowler and L. C. L. Hollenberg, "Scalability of Shor's algorithm with a limited set of rotation gates," Phys. Rev. A 70, 032329 (2004).
  5. P. Giorda, A. Iorio, S. Sen, and S. Sen, "Semiclassical Shor algorithm," Phys. Rev. A 70, 032303 (2004).
  6. R. B. Griffiths and C-S Niu, "Semiclassical Fourier transform for quantum computation," Phys. Rev. Lett. 76, 3228-31 (1996).
  7. R. Jozsa, "Quantum factoring, discrete logarithms, and the hidden subgroup problem," IEEE: Computing in Science & Engineering 3 (2), 34 -43 (2001).
  8. S. J. Lomonaco, "Shor's Quantum Factoring Algorithm," LANL preprint quant-ph/0010034 (2000).
  9. S. Parker and M. B. Plenio, "Efficient Factorization with a Single Pure Qubit and logN Mixed Qubits" Phys. Rev. Lett. 85, 3049-3052 (2000).
  10. P. Shor, "Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer," SIAM Rev. 41, 303-32 (1999).
  11. P. Shor, "Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer," SIAM J. Comput. 26, 1484-1509 (1997).
  12. J. Watrous, "Quantum algorithms for solvable groups" LANL preprint quant-ph/0011023 (2000).
Grover's Search Algorithms and Variants
  1. A. Ambainis, "Quantum lower bounds by quantum arguments," Proc. 32nd Annual ACM Symposium on Theory of Computing (STOC), 636-43 (2000).
  2. A. Ambainis, "A better lower bound for quantum algorithms searching an ordered list," 40th Annual Symposium on Foundations of Computer Science, 352-357 (1999).
  3. E. Biham and D. Kenigsberg, "Grover's quantum search algorithm for an arbitrary initial mixed state," Phys. Rev. A 66, 062301 (2002).
  4. E. Biham, O. Biham, D. Biron, M. Grassl, D. A. Lidar, and D. Shapira, "Analysis of generalized Grover quantum search algorithms using recursion equations," Phys. Rev. A 63, 012310 (2001).
  5. E. Biham, O. Biham, D. Biron, M. Grassl, and D. A. Lidar, "Grover's quantum search algorithm for an arbitrary initial amplitude distribution," Phys. Rev. A 60, p 2742-45 (1999).
  6. M. Boyer, G. Brassard, P. Høyer, A. Tapp, "Tight Bounds on Quantum Searching," Fortsch. Phys. 46, 493-505 (1998).
  7. G. Brassard, P. Høyer, and A. Tapp, "Quantum Counting," Lect. Notes Comp. Sci. 1443, 820-31 (1998).
  8. M. Butler and P. Hartel, "Reasoning about Grover's quantum search algorithm using probabilistic wp," ACM Transactions on Programming Languages and Systems 21 417-29 (1999).
  9. N. J. Cerf, L. K. Grover, and C. P. Williams, " Nested quantum search and structured problems," Phys. Rev. A 61, 032303 (2000).
  10. N. J. Cerf, L. K. Grover, and C. P. Williams, "Nested Quantum Search and NP-Hard Problems," Appl. Algebr. Eng. Comm. 10, 311-18 (2000).
  11. G. Chen and Z. Diao, "Quantum Multi-object Search Algorithm with the Availability of Partial Information" Z Naturforsh. A, 56a, 879-888 (2001).
  12. A. M. Childs, E. Deotto, E. Farhi, J. Goldstone, S. Gutmann, and A. J. Landahl "Quantum search by measurement" Phys. Rev. A 66, 032314 (2002).
  13. M. Czachor, "Remarks on search algorithms and nonlinearity," Acta Phys. Slovonica 48, 157 (1998).
  14. E. Farhi, J. Goldstone, S. Gutmann, and M. Sisper, "Limit on the Speed of Quantum Computation in Determining Parity," Phys. Rev. Lett. 81, 5442-4 (1998).
  15. E. Farhi and S. Gutmann, "Analog analogue of a digital quantum computation," Phys. Rev. A 57, 2403-6 (1998).
  16. A. Galindo and M. A. Martin-Delgado, "A Family of Grover's Quantum Searching Algorithms," Phys. Rev. A 62, 062303 (2000).
  17. R. M. Gingrich, C. P. Williams, N. J. Cerf, "Generalized quantum search with parallelism," Phys. Rev. A 61, 052313 (2000).
  18. L. K. Grover and A. N. Sengupta, "Classical analog of quantum search" Phys. Rev. A 65, 032319 (2002).
  19. L. K. Grover, "Trade-offs in the quantum search algorithm," Phys. Rev. A 66, 052314 (2002).
  20. L. K. Grover, "From Schrödinger's equation to the quantum search algorithm," Am. J. Phys. 69, 769-77 (2001).
  21. L. K. Grover, "Rapid sampling though quantum computing ," Proc. 32nd ACM Symposium on the Theory of Computing, 618-26 (2000).
  22. L. K. Grover, "Synthesis of Quantum Superpositions by Quantum Computation," Phys. Rev. Lett. 85, 1334-1337 (2000).
  23. L. K. Grover, "Quantum Computers Can Search Rapidly by Using Almost Any Transformation," Phys. Rev. Lett. 80, p 4329 (1998).
  24. L. K. Grover, "Quantum Computers Can Search Arbitrarily Large Databases by a Single Query," Phys. Rev. Lett. 79, p 4709 (1997).
  25. L. K. Grover, "Quantum Mechanics Helps in Searching for a Needle in a Haystack," Phys. Rev. Lett. 79, p 325 (1997).
  26. L. K. Grover, "A fast quantum mechanical algorithm for database search," Proc. 28th ACM symposium on Theory of computing, 212-9 (1996).
  27. T. Hogg, "Quantum search heuristics," Phys. Rev. A 61, 052311 (2000).
  28. T. Hogg, "Highly Structured Searches with Quantum Computers," Phys. Rev. Lett. 80, 2473-6 (1998).
  29. T. Hogg, "A framework for structured quantum search" Physica D 120, 102-116 (1998).
  30. P. Høyer, "Arbitrary phases in quantum amplitude amplification" Phys. Rev. A 62, 052304 (2000).
  31. L-Y. Hsu, Y-Y. Chen, "Faster Database search for Quantum Computing," LANL preprint quant-ph/0102068 (2001).
  32. P. Knight, "Quantum Information Processing Without Entanglement," Science 287, 441 (2000). A summary of the work of Ahn et.al., "Information Storage and Retrieval Through Quantum Phase."
  33. M. Koashi and N. Imoto, "Maximum Amount of Information Obtainable from a Single Quantum Query of a Database," Phys. Rev. Lett. 81, 5233-6 (1998).
  34. S. Lloyd, "Quantum search without entanglement," Phys. Rev. A. 61, 010301 (2000).
  35. G. L. Long, "Grover algorithm with zero theoretical failure rate," Phys. Rev. A 64 022307 (2001).
  36. G. L. Long, Y. S. Li, W. L. Zhang, and C. C. Tu, "Dominant gate imperfection in Grover's quantum search algorithm," Phys. Rev. A 61, 042305 (2000).
  37. G. L. Long, Y. S. Li, W. L. Zhang and L. Niu, "Phase matching in quantum searching," Phys. Lett. A 262 27-34 (1999).
  38. D. A. Meyer, "Sophisticated quantum search without entanglement," Phys. Rev. Lett. 85, 2014-17 (2000).
  39. A. Miyake and M. Wadati, "Geometric strategy for the optimal quantum search," Phys. Rev. A 64, 042317 (2001)
  40. M. Mussinger, A. Delgado and G. Alber, "Error avoiding quantum codes and dynamical stabilization of Grover's algorithm" New J. Phys. 2, 19 (2000).
  41. B. Pablo-Norman and M. Ruiz-Altaba, "Noise in Grover's quantum search algorithm," Phys. Rev. A 61, 012301 (2000).
  42. A. Patel, "Quantum database search can do without sorting," Phys. Rev. A 64, 034303 (2001).
  43. A. Pati, "Fast quantum search algorithm and Bounds on it," LANL preprint quant-ph/9807678 (1998).
  44. J. Roland and N. J. Cerf, "Quantum search by local adiabatic evolution," Phys Rev. A 65, 042308 (2002).
  45. D. A. Ross, "A Modification of Grover's Algorithm as a Fast Database Search," LANL preprint quant-ph/9807078 (1998).
  46. B. M. Terhal, J. A. Smolin, "Single quantum querying of a database," Phys. Rev. A 58, p 1822 (1999).
  47. C. P. Williams, "Quantum search algorithms in science and engineering," IEEE: Computing in Science & Engineering 3 (2), 44-51 (2001).
  48. C. Zalka, "Using Grover's quantum algorithm for searching actual databases" Phys. Rev. A , 052305 (2000).
  49. C. Zalka, "Grover's quantum searching algorithm is optimal," Phys. Rev. A. 60, p 2746-51 (1999).
  50. C. Zalka, "A Grover-based quantum search of optimal order for an unknown number of marked elements," LANL preprint quant-ph/9902049 (1999).
  51. J. Zhang and Z. Lu, "Similarity between Grover's quantum search algorithm and classical two-body collisions," Am. J. Phys. 71, 83-86 (2003).
Black Box Query Models
  1. E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, "Bound on the number of functions that can be distinguished with k quantum queries," Phys. Rev. A 60, 4331-3 (1999).
  2. Y. Ozhigov, "Quantum Computer Can Not Speed Up Iterated Applications of a Black Box," Lect. Notes Comp. Sc. 1509, 152-9 (1999).
Quantum Simulations
  1. D. S. Abrams and S. Lloyd, "Simulation of Many-Body Fermi Systems on a Universal Quantum Computer," Phys. Rev. Lett. 79, 2586-9 (1997).
  2. D. Bacon, A. M. Childs, I. L. Chuang, J. Kempe, D. W. Leung, and X. Zhou, "Universal simulation of Markovian quantum dynamics," Phys. Rev. A 64, 062302 (2001).
  3. G. Benenti, G. Casati, S. Montangero, and D. L. Shepelyansky, "Efficient Quantum Computing of Complex Dynamics," Phys. Rev. Lett. 87, 227901 (2001).
  4. B. M. Boghosian and W. Taylor IV, "Simulating quantum mechanics on a quantum computer ," Physica D 120, 30-42 (1998).
  5. T. Brun and R. Schack, "Realizing the quantum baker's map on a NMR quantum computer," Phys. Rev. A 59, 2649-58 (1999).
  6. R. Derka, V. Buzek, and A. K. Ekert, "Universal Algorithm for Optimal Estimation of Quantum States from Finite Ensembles via Realizable Generalized Measurement," Phys. Rev. Lett. 80, 1571-5 (1998).
  7. J. L. Dodd, M. A. Nielsen, M. J. Bremner, and R. T. Thew, "Universal quantum computation and simulation using any entangling Hamiltonian and local unitaries," Phys. Rev. A , 040301 (2002).
  8. B.Georgeot and D.L.Shepelyansky, "Exponential Gain in Quantum Computing of Quantum Chaos and Localization," Phys. Rev. Lett. 86, 2890-3 (2001).
  9. D. A. Lidar and H. Wang, "Calculating the thermal rate constant with exponential speedup on a quantum computer," Phys. Rev. E 59, 2429-38 (1999).
  10. D. A. Lidar and O. Biham, "Simulating Ising spin glasses on a quantum computer," Phys. Rev. E 56, 3661-81 (1997).
  11. S. Lloyd, "Universal Quantum Simulators," Science 273, 1073-8 23 Aug 1996.
  12. D. A. Meyer, "Physical quantum algorithms," Comput. Phys. Commun. 146, 295-301 (2002).
  13. D. A. Meyer, "From gauge transformations to topology computation in quantum lattice gas automata," J. Phys. A 34, 6981-6 (2001).
  14. R. Schack, "Using a quantum computer to investigate quantum chaos," Phys. Rev. A 57, 1634-5 (1998).
  15. P. H. Song and D. L. Shepelyansky, "Quantum Computing of Quantum Chaos and Imperfection Effects" Phys. Rev. Lett. , 2162-5 (2001).
  16. A. T. Sornborger and E. D. Stewart, "Higher-order methods for simulations on quantum computers," Phys. Rev. A 60, p 1956-65 (1999).
  17. B. M. Terhal, I. L. Chuang, D. P. DiVincenzo, M. Grassl, and J. A. Smolin, "Simulating quantum operations with mixed environments," Phys. Rev. A 60, p 881-5 (1999).
  18. B. M. Terhal and D. P. DiVincenzo, "Problem of equilibration and the computation of correlation functions on a quantum computer," Phys. Rev. A 61, 022301 (2000).
  19. L.-A. Wu, M. S. Byrd, and D. A. Lidar, "Polynomial-Time Simulation of Pairing Models on a Quantum Computer," Phys. Rev. Lett. 89, 057904 (2002).
  20. J. Yepez, "Quantum computation for physical modeling," Comput. Phys. Commun. 146, 277-279 (2002).
  21. J. Yepez and B. Boghosian, "An efficient and accurate quantum lattice-gas model for the many-body Schrödinger wave equation," Comput. Phys. Commun. , 280-294 (2002).
  22. J. Yepez, "Quantum lattice-gas model for computational fluid dynamics," Phys. Rev. E 63, 046702 (2001).
  23. J. Yepez, "Quantum lattice-gas model for the diffusion equation," Int. J. Mod. Phys. C 12, 1285-1303 (2001).
  24. C. Zalka, "Efficient Simulation of Quantum Systems by Quantum Computers," Fortsch. Phys. 46, 877-9 (1998).
  25. C. Zalka, "Simulating quantum systems on a quantum computer," Proc. R. Soc. Lond. A. 454, 313-22 (1998).
Number Partitioning problem
  1. H. De Raedt, K. Michielsen, K. De Raedt, and S. Miyashita, "Number Partitioning on a Quantum Computer," Phys. Lett. A 290, 227-233 (2001).
Eigenvalue estimation
  1. D. Abrams and S. Lloyd, "Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors," Phys. Rev. Lett. 83, 5162-5 (1999).
  2. B. C. Travaglione and G. J. Milburn, "Generation of eigenstates using the phase-estimation algorithm," Phys. Rev. A 63,032301 (2001).
Clock Synchronization
  1. I. L. Chuang, "Quantum Algorithm for Distributed Clock Synchronization," Phys. Rev. Lett 85, 2006-9 (2000).
  2. M. Genovese and C. Novero, "Quantum Clock Synchronisation based on entangled photon pairs transmission," LANL preprint quant-ph/0009119 (2000).
  3. R. Jozsa, D. S. Abrams, J. P. Dowling, and C. P. Williams "Quantum Clock Synchronization Based on Shared Prior Entanglement," Phys. Rev. Lett 85, 2010-13 (2000).
Games and Gambling
  1. S. C. Benjamin and P. M. Hayden, "Multiplayer quantum games" Phys. Rev. A 64, 030301(R) (2001.
  2. L. Goldenberg, L. Vaidman, and S. Wiesner, "Quantum gambling," Phys. Rev. Lett. 82, 3356-9 (1999).
  3. D. A. Meyer, "Quantum Strategies," Phys. Rev. Lett. 82, 1052-5 (1999).

Error Correction

Steane's 1998 article offers a good review of the scope and history of quantum error correction.

The first quantum error correction codes were discovered by Shor (1995) and Steane (1996). The general theory and properties of quantum error correction codes were first described by Knill and Laflamme (1997) and Bennett, et.al. (1996).

  1. A. Aharanov and M. Ben-Or, "Fault-tolerant quantum computation with constant error," Proceedings of the twenty-ninth annual ACM symposium on Theory of computing, 176-88 (1997).
  2. A. Ashikhmin, S. Litsyn, and M. A. Tsfasman, "Asymptotically good quantum codes," Phys. Rev. A 63, 032311 (2001).
  3. D. Bacon, J. Kempe, D. A. Lidar, and K. B. Whaley, "Universal Fault-Tolerant Quantum Computation on Decoherence-Free Subspaces," Phys. Rev. Lett. 85, 1758-61 (2000).
  4. A. Barenco, A. Berthiaume, D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, "Stabilization of Quantum Computations by Symmetrization," SIAM J. Comput. 26, 1541-1557 (1997).
  5. A. Barenco, T. Brun, R. Schack and T. P. Spiller, "Effects of noise on quantum error correction algorithms," Phys. Rev. A 56, 1177-88 (1997).
  6. J. P. Barnes and W. S. Warren, "Automatic Quantum Error Correction," Phys. Rev. Lett. 85, 856-9 (2000).
  7. A. Beige, D. Braun, B. Tregenna, and P. L. Knight, "Quantum Computing Using Dissipation to Remain in a Decoherence-Free Subspace," Phys. Rev. Lett. 85, 1762-5 (2000).
  8. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, "Mixed-state entanglement and quantum error correction," Phys. Rev. A 54, p3824-51 (1996).
  9. G. P. Berman, D. K. Campbell and V. I. Tsifirnovich, "Error correction for a spin quantum computer," Phys. Rev. B 55, 5929-36 (1997).
  10. N. E. Bonesteel, "Chiral spin liquids and quantum error-correcting codes" Phys. Rev. A 62, 062310 (2000).
  11. S. L. Braunstein and J. A. Smolin, "Perfect quantum-error-correction coding in 24 laser pulses," Phys. Rev. A 55, 945-50 (1997).
  12. G. Burkard, D. Loss, D. P. DiVincenzo, and J. A. Smolin, "Physical optimization of quantum error correction circuits," Phys. Rev. B 60, p11404-16 (1999).
  13. A. R. Calderbank and P. W. Shor, "Good quantum error correcting codes exist," Phys. Rev. A 54, 1098-1105 (1996)
  14. C. M. Caves, "Quantum Error Correction and Reversible Operations," J. Supercond. 12, 707-18 (1999).
  15. I. L. Chuang, D. W. Leung, and Y. Yamamoto, "Bosonic quantum codes for amplitude damping," Phys. Rev. A 56, 1114-25 (1997).
  16. E. Dennis, "Toward fault-tolerant quantum computation without concatenation," Phys. Rev. A 63, 052314 (2001).
  17. S. De Filippo, "Quantum computation using decoherence-free states of the physical operator algebra," Phys. Rev. A 62, 052307 (2000).
  18. L-M. Duan and G-C. Guo, "Quantum error avoiding codes verses quantum error correcting codes," Phys. Lett. A 255, p 209-12 (1999).
  19. A. Ekert and C. Macchiavello, "Quantum Error Correction for Communication," Phys. Rev. Lett. 77, 2585-88 (1996).
  20. J. Gea-Banacloche, "Error correction for mutually interacting qubits," Phys. Rev. A 62, 062313 (2000).
  21. M. Grassl and T. Beth, "Cyclic quantum error-correcting codes and quantum shift registers," Proc. R. Soc. Lond. A 456, 2689-2706 (2000).
  22. D. Gottesman, A. Kitaev, and J. Preskill, "Encoding a qubit in an oscillator," Phys. Rev. A 64 012310 (2001).
  23. D. Gottesman, "Fault-Tolerant Quantum Computation with local gates," J. Mod. Optics 47, 333-45 (2000).
  24. D. Gottesman, "Fault-Tolerant Quantum Computation with Higher-Dimensional Systems," Lect. Notes. Comput. Sci. 1509, 302-13 (1999).
  25. D. Gottesman, "Theory of fault-tolerant quantum computation," Phys. Rev. A 57, 127-37 (1998).
  26. W. Y. Hwang, D. Ahn, and S. W. Hwang, "Correlated errors in quantum-error corrections" Phys. Rev. A 63, 022303 (2001).
  27. J. Kempe, D. Bacon, D. A. Lidar, and K. B. Whaley, "Theory of decoherence-free fault-tolerant universal quantum computation" Phys. Rev. A 63, 042307 (2001).
  28. E. Knill, R. Laflamme and L. Viola, "Theory of Quantum Error Correction for General Noise," Phys. Rev. Lett. 84, 2525-28 (2000).
  29. E. Knill, R. Laflamme, W. H. Zurek, "Resilient quantum computation: error models and thresholds," Proc. R. Soc. Lond. A. 454, 365-84 (1998).
  30. E. Knill, R. Laflamme, W. H. Zurek, "Resilient Quantum Computation," Science 279, 342-5 16 Jan 1998.
  31. E. Knill and R. Laflamme, "Theory of quantum error-correcting codes," Phys. Rev. A 55, 900-11 (1997).
  32. R. Laflamme, C. Miquel, J. P. Paz, and W. H. Zurek, "Perfect quantum error correcting code," Phys. Rev. Lett. 77, 198 (1996).
  33. Daniel A. Lidar, Dave Bacon, Julia Kempe, and K. B. Whaley, "Decoherence-free subspaces for multiple-qubit errors. I. Characterization" Phys. Rev. A 63, 022306 (2001).
  34. Daniel A. Lidar, Dave Bacon, Julia Kempe, and K. B. Whaley, "Decoherence-free subspaces for multiple-qubit errors. II. Universal, fault-tolerant quantum computation," Phys. Rev. A 63, 022307 (2001).
  35. D. W. Leung, M. A. Nielsen, I. L. Chuang, and Y. Yamamoto, "Approximate quantum error correction can lead to better codes," Phys. Rev. A 56, 2567-73 (1997).
  36. S. Lloyd and J-J. E. Slotine, "Analog Quantum Error Correction," Phys. Rev. Lett 80, 4088-91 (1998).
  37. J. Preskill, "Reliable quantum computers," Proc. R. Soc. Lond. A. 454, 385-410 (1998).
  38. E. M. Rains, R. H. Hardin, P. W. Shor, and N. J. A. Sloane, "A Nonadditive Quantum Code," Phys. Rev. Lett. 79, 953-4 (1997).
  39. P. W. Shor, "Scheme for reducing decoherence in quantum computer memory," Phys. Rev. A 52, R2493-6 (1995).
  40. A. M. Steane, "Efficient fault-tolerant quantum computing," Nature 399, 124-6 (13 May 1999).
  41. A. M. Steane, "Introduction to quantum error correction," Phil. Trans. R. Soc. Lond. A 356, 1739-58 (1998).
  42. A. M. Steane, "Multiple-particle interference and quantum error correction," Proc. R. Soc. Lond. A 452, 2551-77 (1996).
  43. A. M. Steane, "Error correcting codes in quantum theory," Phys. Rev. Lett. 77, 793-7 (1996).
  44. J. Steinbach and J. Twamley, "Motional quantum error correction," J. Mod. Optics 47, 453-85 (2000).
  45. P. Zanardi, "Stabilizing quantum information," Phys. Rev. A 63, 012301 (2001).

Gates, Circuits and Logic

  1. A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, "Elementary gates for quantum computation," Phys. Rev. A 52, p3457-67 (1995).
  2. A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, "Conditional Quantum Dynamics and Logic Gates," Phys. Rev. Lett. 74, 4083-86 (1995).
  3. G.P. Berman, G.D. Doolen, G. V. López and V.I. Tsifrinovich, "Simulations of quantum-logic operations in a quantum computer with a large number of qubits," Phys. Rev. A 61, 062305 (2000).
  4. G.P. Berman, G.D. Doolen, G. V. López and V.I. Tsifrinovich, "Nonresonant effects in the implementation of the quantum Shor algorithm," Phys. Rev. A 61, 042307 (2000).
  5. G.P. Berman, G.D. Doolen and V.I. Tsifrinovich, "Quantum computation as a dynamical process," Computer Physics Communications 127, 91-9 (2000)
  6. A. Blais, "Quantum network optimization," Phys. Rev. A 64, 022312 (2001).
  7. G. Burkard, D. Loss, D. P. DiVincenzo, and J. A. Smolin, "Physical optimization of quantum error correction circuits," Phys. Rev. B 60, p11404-16 (2000).
  8. V. Buzek, M. Hillery, R. F. Werner, "Optimal manipulations with qubits: Universal-NOT gate," Phys. Rev. A 60, 2626 (1999).
  9. H. K. Cummins, G. Llewellyn, and J. A. Jones, "Tackling systematic errors in quantum logic gates with composite rotations," Phys. Rev A 67, 042308 (2003).
  10. G. Cybenko, "Reducing quantum computations to elementary unitary operations," IEEE: Computing in Science & Engineering 3 (2), 27 -32 (2001).
  11. D. P. DiVincenzo, "Two-bit gates are universal for quantum computation," Phys. Rev. A 51, p1015-22 (1995).
  12. J. Eisert, K. Jacobs, P. Papadopoulos, and M. B. Plenio, "Optimal local implementation of nonlocal quantum gates," Phys. Rev. A 62, 052317 (2000).
  13. L. Hardy and D. D. Song, "Universal manipulation of a single qubit," Phys. Rev. A 63, 032304 (2001)
  14. A. W. Harrow, B. Recht and I. L. Chuang, "Efficient discrete approximations of quantum gates," J. Math. Phys. 4445-51 (2002).
  15. B. Hladký, G. Drobný, and V. Buzek, "Quantum synthesis of arbitrary unitary operators," Phys. Rev. A 61, 022102 (2000).
  16. J. A. Jones, "Robust quantum information processing with techniques from liquid state NMR," arXiv preprint quant-ph/0301019 (2003).
  17. J. A. Jones and E. Knill, "Efficient Refocusing of One-Spin and Two-Spin Interactions for NMR Quantum Computation," J. Mag. Res., 141, 322-5 (1999).
  18. J. Kim, J-S. Lee,and S. Lee, "Implementing unitary operators in quantum computation," Phys. Rev. A 61, 032312 (2000).
  19. J-S. Lee, Y. Chung, J. Kim and S. Lee, "A Practical Method of Constructing Quantum Combinatorial Logic Circuits" Sae Mulli 40, 24-31 (2000). LANL preprint
  20. D. W. Leung, I. L. Chuang, F. Yamaguchi, and Y. Yamamoto, "Efficient implementation of coupled logic gates for quantum computation," Phys. Rev. A 61, 042310 (2000).
  21. S. Lloyd, "Almost Any Quantum Logic Gate is Universal," Phys. Rev. Lett. 75, 346-9 (1995).
  22. G.-L. Long and Y. Sun, "Efficient scheme for initializing a quantum register with an arbitrary superposed state," Phys. Rev. A 64, 014303 (2001).
  23. K. Mølmer and A. Sørensen, "RISQ - reduced instruction set quantum computers," J. Mod. Opt. 47, 2515-27 (2000). Catchword
  24. M. A. Nielsen and Isaac L. Chuang, "Programmable Quantum Gate Arrays," Phys. Rev. Lett. 79, 321-4 (1997).
  25. N. Schuch and J. Siewert, "Programmable networks for quantum algorithms," arXiv:quant-ph/0303063 (2003).
  26. G. D. Sanders, K. W. Kim, W. C. Holton, "Quantum computing with complex instruction sets ," Phys. Rev. A 59, 1098 (1999).
  27. T. Sleator and H. Weinfurter, "Realizable Universal Quantum Logic Gates," Phys. Rev. Lett. 74, 4087-90 (1995).
  28. J. A. Smolin and D. P. DiVincenzo, "Five two-bit quantum gates are sufficient to implement the Fredkin gate," Phys. Rev. A 53, 2855-6 (1996).
  29. E. Solano, M. França Santos, and P. Milman, "Quantum phase gate with a selective interaction," Phys. Rev. A 64, 024304 (2001).
  30. S. S. Somaroo, D. G. Cory, and T. F. Havel, "Expressing the operations of quantum computing in multiparticle geometric algebra," Phys. Lett. A 240, 1-7 (1998).
  31. L. Tian and S. Lloyd, "Resonant cancellation of off-resonant effects in a multilevel qubit," Phys. Rev. A 62, 050301(R) (2000).
  32. X. Wang, A. Sørensen, and K. Mølmer, "Multibit Gates for Quantum Computing" Phys. Rev. Lett. 86, 3907-10 (2001).
  33. V. Vedral, A. Barenco, and A. Ekert, "Quantum networks for elementary arithmetic operations," Phys. Rev. A 54, 147-53 (2000).
  34. L. Viola, S. Lloyd and E. Knill, "Universal Control of Decoupled Quantum Systems," Phys. Rev. Lett. , 4888-91 (1999).
  35. G. Vidal and J. I. Cirac, "Storage of quantum dynamics on quantum states: a quasi-perfect programmable quantum gate," LANL preprint quant-ph/0012067
  36. J. Zhang, J. Vala, S. Sastry, and K. Birgitta Whaley, "Geometric theory of nonlocal two-qubit operations," Phys. rev. A 67, 042313 (2003).
  37. X. Zhou, D. W. Leung, and I. L. Chuang, "Methodology for quantum logic gate construction," Phys. Rev. A 62, 052316 (2000).

Bulk Quantum Computation, Initial State Preparation

  1. A. Ambainis, L. J. Schulman, and U. V. Vazirani, "Computing with highly mixed states," Proc 32nd Annual Symposium on the Theory of Computing, 697-704 (2000).
  2. E. Biham, G. Brassard, D. Kenigsberg, and T. Mor, "Quantum Computing Without Entanglement" arXiv preprint quant-ph/0306182 (2003).
  3. P. O. Boykin, T. Mor, V. Roychowdhury, F. Vatan, and R. Vrijen, "Algorithmic cooling and scalable NMR quantum computers" Proc. Natl. Acad. Sci. USA 99 (6) 3388-3393 (2002).
  4. P. O. Boykin, T. Mor, V. Roychowdhury, and F. Vatan, "Algorithms on Ensemble Quantum Computers" LANL preprint quant-ph/9907067 (1999).
  5. S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, "Separability of Very Noisy Mixed States and Implications for NMR Quantum Computing," Phys. Rev. Lett. 83, 1054-7 (1999).
  6. J. A. George, M. E. Colvin, and V.V. Krishnan, "A simulator for ensemble quantum computing," Comput. Phys. Commun. 144, 277-83 (2002).
  7. N. A. Gershenfeld and I. L. Chuang, "Bulk Spin-Resonance Quantum Computation," Science 275, 350-356, 17 Jan 1997.
  8. E. Knill, I. Chuang, and R. Laflamme, "Effective pure states for bulk quantum computation," Phys. Rev. A 57, 3348-63 (1997).
  9. N. Linden and S. Popescu, "Good Dynamics versus Bad Kinematics: Is Entanglement Needed for Quantum Computation?," Phys. Rev. Lett. , 047901 (2001).
  10. G. L. Long and L. Xiao, "Parallel Quantum Computing in a Single Ensemble Quantum Computer," arXiv preprint quant-ph/0307055 (2003).
  11. N. C. Menicucci and C. M. Caves, "Local Realistic Model for the Dynamics of Bulk-Ensemble NMR Information Processing," Phys. Rev. Lett. 88, 167901 (2002).
  12. J. M. Myers, A. F. Fahmy, S. J. Glaser, R. Marx, "Rapid solution of problems by nuclear-magnetic-resonance quantum computation," Phys. Rev. A 63, 032302 (2002).
  13. R. Schack and C. M. Caves, "Classical model for bulk-ensemble NMR quantum computation," Phys. Rev. A 60, 4354-62 (1999).
  14. L. J. Schulman and U. Vazirani, "Molecular scale heat engines and scalable quantum computation," Proc. 31st ACM Symposium on Theory of Computing, 322-9 (1999).
  15. X. Zhou, D. W. Leung, and I. L. Chuang, "Quantum algorithms which accept hot qubit inputs," arXiv preprint quant-ph/9906112 (1998).

Adiabatic Quantum Computation

  1. A. M. Childs, E. Deotto, E. Farhi, J. Goldstone, S. Gutmann, and A. J. Landahl "Quantum search by measurement" Phys. Rev. A 66, 032314 (2002).
  2. S. Das, R. Kobes, and G. Kunstatter, "Adiabatic quantum computation and Deutsch's algorithm," Phys. Rev. A 65, 062310 (2002).
  3. E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda, "A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem" Science 292, 472-6 (20 April 2001).
  4. J. Roland and N. J. Cerf, "Adiabatic quantum search algorithm for structured problems," arXiv preprint quant-ph/0304039 (2003).
  5. J. Roland and N. J. Cerf, "Quantum search by local adiabatic evolution," Phys Rev. A 65, 042308 (2002).
  6. W. van Dam, M. Mosca, U. Vazirani, "How powerful is adiabatic quantum computation?" Proc. 42nd Annual Symposium on the Foundations of Computer Science (2001).

Decoherence

  1. D. Aharonov, "Quantum to classical phase transition in noisy quantum computers," Phys. Rev. A 62, 062311 (2000).
  2. S. Mancini and R. Bonifacio, "Nondissipative decoherence bounds on quantum computation," Phys. Rev. A 63, 032310 (2001).
  3. G. Palma, K. Suominen, and A. Ekert, "Quantum computers and dissipation" Proc. R. Soc. Lond. A 452, 567-84 (1996). Appears as LANL preprint quant-ph/9702001.

Beyond qubits

  1. J. Ahn, T. C. Weinacht, and P. H. Bucksbaum, "Information Storage and Retrieval Through Quantum Phase," Science, 287, 460-462 21 Jan 2000.
  2. A. R. Kesel' and V. L. Ermakov, "Virtual Qubits: Multilevels Instead of Multiparticles," JETP 90, 452-9 (2000).
  3. A. R. Kessel' and V. L. Ermakov, "Physical Implementation of Three-Qubit Gates on a Separate Quantum Particle," JETP Lett. 71, 307-9 (2000).
  4. A. R. Kessel' and V. L. Ermakov, "Multiqubit spin," JETP Lett. 70, 61-65 (1999).
  5. A. Muthukrishnan and C. R. Stroud, Jr., "Multivalued logic gates for quantum computation," Phys. Rev. A 62, 052309 (2000).

Physical Realizations

General, Quantum Computer Dynamics

  1. A. Barenco, D. Deutsch, A. Ekert and R. Jozsa, "Conditional Quantum Dynamics and Logic Gates," Phys. Rev. Lett. 74, 4083-6 (1995).
  2. J. P. Barnes and W. S. Warren, "Decoherence and programmable quantum computation," Phys. Rev. A 60, 4363-74 (1999).
  3. G. Berman, A. R. Bishop, G.D. Doolen, G.V. López and V.I. Tsifrinovich, "Influence of non-resonant effects on the dynamics of quantum logic gates at room temperature" Physica B 293, 350-61 (2001).
  4. J.D. Franson, T.B. Pittman, "Nonlocality in Quantum Computing," Fortsch. Phys. 46, 697-705 (1998).
  5. J. Gea-Banacloche, "Qubit-qubit interaction in quantum computers. II. Adder algorithm with diagonal and off-diagonal interactions," Phys. Rev. A 60, 185-193 (1999).
  6. J. Gea-Banacloche, "Qubit-qubit interaction in quantum computers," Phys. Rev. A 57, R1-4 (1998).
  7. D. Gottesman, A. Kitaev, and J. Preskill, "Encoding a qubit in an oscillator," Phys. Rev. A 64 012310 (2001).
  8. L. Viola, E Knill, and R Laflamme, "Constructing qubits in physical systems," J. Phys. A 34, 7067-79 (2001).

Quantum Dots

  1. S. Bandyopadhyay, "Self-assembled nanoelectronic quantum computer based on the Rashba effect in quantum dots" Phys. Rev. B 61, 13813-20 (2000).
  2. A. A. Balandin and K. L. Wang, "Implementation of Quantum Controlled-NOT Gates Using Asymmetric Semiconductor Quantum Dots," Lect. Notes in Comp. Sci. 1509, 460-7 (1999).
  3. A. A. Balandin and K. L. Wang, "Feasibility study of the quantum XOR gate based on coupled asymmetric semiconductor quantum dots," Superlattices and Microstructures 25, 509-518 (1999).
  4. A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, "Conditional Quantum Dynamics and Logic Gates," Phys. Rev. Lett. 74, 4083-86 (1995).
  5. E. Biolatti, R. C. Iotti, P. Zanardi, and F. Rossi, "Quantum Information Processing with Semiconductor Macroatoms," Phys. Rev. Lett. 85,5647-50 (2000).
  6. G. Burkard, G. Seelig, and D. Loss, "Spin interactions and switching in vertically tunnel-coupled quantum dots" Phys. Rev. B 62, 2581-92 (2000).
  7. G. Burkard, D. Loss and D. P. DiVincenzo, "Coupled quantum dots as quantum gates," Phys. Rev. B 59, 2070-8 (1999).
  8. D. P. DiVincenzo and D. Loss, "Quantum computers and quantum coherence," J. Magnetism and Magnetic Materials 200, 202-218 (1999).
  9. D. P. DiVincenzo and D. Loss, "Quantum information is physical," Superlattices and Microstructures 23, 419-23 (1998).
  10. A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, "Quantum Information Processing Using Quantum Dot Spins and Cavity QED," Phys. Rev. Lett. 83, 4204-7 (1999).
  11. X-Q. Li and Y. Arakawa, "Single qubit from two coupled quantum dots: An approach to semiconductor quantum computations," Phys. Rev. A 63, 012302 (2001).
  12. D. Loss and D. P. DiVincenzo, "Quantum computation with quantum dots," Phys. Rev. A 57, 120-6 (1998).
  13. J. H. Oh, D. Ahn, and S. W. Hwang, "Optically driven qubits in artificial molecules" Phys. Rev. A 62 052306 (2000).
  14. T. Ohshima, "All-optical electron spin quantum computer with ancilla bits for operations in each coupled-dot cell," Phys. Rev. A 62, 062316 (2000).
  15. G. D. Sanders, K. W. Kim, W. C. Holton, "Optically driven quantum-dot quantum computer," Phys. Rev. A 60, 4146 (1999).
  16. G. D. Sanders, K. W. Kim, W. C. Holton, "Scalable solid-state quantum computer based on quantum dot pillar structures," Phys. Rev. B 61, 7526 (2000).
  17. J. H. Reina, L. Quiroga, and N. F. Johnson, "Quantum entanglement and information processing via excitons in optically driven quantum dots," Phys. Rev. A 62 012305 (2000).
  18. M. Sherwin, A. Imamoglu, and T. Montroy, "Quantum computation with quantum dots and terahertz cavity quantum electrodynamics," Phys. Rev. A 60, 3508-14 (1999).
  19. T. Tanamoto, "Quantum gates by coupled asymmetric quantum dots and controlled-NOT-gate operation," Phys. Rev. A 61, 022305 (2000).
  20. T. Tanamoto, Quantum gates by coupled quantum dots and measurement procedure in Si MOSFET," Physica B 272, 45-8 (1999).
  21. Géza Tóth and Craig S. Lent, "Quantum computing with quantum-dot cellular automata," Phys. Rev. A 63, 052315 (2001).
  22. P. Zanardi and F. Rossi, "Subdecoherent information encoding in a quantum-dot array," Phys. Rev. B 59, 8170-81 (1999).
  23. P. Zanardi and F. Rossi, Quantum information in semiconductor-based nanostructures," Physica B 272, 57-60 (1999).
  24. P. Zanardi and F. Rossi, "Quantum information in semiconductors: Noiseless encoding in a quantum-dot array," Phys. Rev. Lett. 81, 4752-55 (1998).

Cavity QED

  1. A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, "Conditional Quantum Dynamics and Logic Gates," Phys. Rev. Lett. 74, 4083-86 (1995).
  2. P. Domokos, J. M. Raimond, M. Brune, and S. Haroche, "Simple cavity-QED two-bit universal quantum logic gate: The principle and expected performances" Phys. Rev. A 52, 3554-9 (1995).
  3. T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller, "Decoherence, continuous observation, and quantum computing: A cavity QED model," Phys. Rev. Lett. 75 3788-91 (1995).
  4. T. Sleator and H. Weinfurter, "Realizable Universal Quantum Logic Gates," Phys. Rev. Lett. 74, 4087-90 (1995).
  5. S. van Enk, J.I. Cirac, P. Poller, H.J. Kimble, H. Mabuchi, "Transmission of Quantum Information in a Quantum Network: A Quantum Optical Implementation," Fortsch. Phys. 46, 689-95 (1998).
  6. S-B. Zheng and G-C. Guo, "Efficient Scheme for Two-Atom Entanglement and Quantum Information Processing in Cavity QED," Phys. Rev. Lett. , 2392-5 (2000).

Optical Systems

  1. C. Adami and N.J. Cerf, "Quantum computation with linear optics," Lecture Notes in Computer Science, 1509, 391-401 (1999).
  2. A. Barenco, D. Deutsch, A. Ekert and R. Jozsa, "Conditional Quantum Dynamics and Logic Gates," Phys. Rev. Lett. 74, 4083-6 (1995).
  3. I. L. Chuang and Y. Yamamoto, "Simple quantum computer," Phys. Rev. A 52, 3489-96 (1995).
  4. G.M. D'Ariano, C. Macchiavello, L. Maccone, "Quantum Computations with Polarized Photons," Fortsch. Phys. 48, 573-7 (2000).
  5. J.D. Franson and T.B. Pittman, "An optical approach to quantum computing," Lecture Notes in Computer Science, 1509, 383-90 (1999).
  6. J. C. Howell and J. A. Yeazell, "Quantum Computation through Entangling Single Photons in Multipath Interferometers," Phys. Rev. Lett. 85, p 198-201 (2000).
  7. E. Knill, R. Laflamme, G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (4 Jan 2001).
  8. J. Pachos and S. Chountasis, "Optical holonomic quantum computer," Phys. Rev. A 62, 052318 (2000).

Trapped Ions

  1. A. M. Childs and I. L. Chuang, "Universal quantum computation with two-level trapped ions," Phys. Rev. A 63, 012306 (2001).
  2. J. I. Cirac and P. Zoller, "A scalable quantum computer with ions in an array of microtrap," Nature 404, 579-81 (6 April 2000).
  3. J. I. Cirac and P. Zoller, "Quantum Computations with Cold Trapped Ions," Phys. Rev. Lett. 74, 4091-4 (1995).
  4. C. D'Helon, G.J. Milburn, "Measurements on Trapped Laser-Cooled Ions Using Quantum Computations," Fortsch. Phys. 46, 702-12 (1998).
  5. L.-M. Duan, J. I. Cirac, and P. Zoller, "Geometric Manipulation of Trapped Ions for Quantum Computation," Science 292, 1695-7 (2001).
  6. M. Feng, "Grover search with pairs of trapped ions," Phys. Rev. A 63, 052308 (2001).
  7. A. Garg, "Vibrational Decoherence in Ion Trap Quantum Computers," Fortsch. Phys. 46, 749-57 (1998).
  8. R. J. Hughes, D. F. V. James, E. H. Knill, R. Laflamme, and A. G. Petschek, "Decoherence Bounds on Quantum Computation with Trapped Ions," Phys. Rev. Lett. 77, 3240-3 (1996).
  9. D.F.V. James,"Quantum dynamics of cold trapped ions with application to quantum computation," Appl. Phys. B 66, 181-190 (1998).
  10. K. Mølmer and A. Sørensen, "Multiparticle Entanglement of Hot Trapped Ions," Phys. Rev. Lett. 82, 1835-8 (1999).
  11. C. Monroe, D. Leibfried, B. E. King, D. M. Meekhof, W. M. Itano, and D. J. Wineland, "Simplified quantum logic with trapped ions," Phys. Rev. A 55, 2489-91 (1997).
  12. H. C. Nägerl, W. Bechter, J. Eschner, F. Schmidt-Kaler, and R. Blatt, "Ion strings for quantum gates," Appl. Phys. B 66, 603-8 (1998).
  13. A. Sørensen and K. Mølmer, "Entanglement and quantum computation with ions in thermal motion," Phys Rev. A 62, 022311 (2000).
  14. A. Sørensen and K. Mølmer, "Quantum Computation with Ions in Thermal Motion," Phys. Rev. Lett. 82, 1971-4 (1999).
  15. A. Steane, C. F. Roos, D. Stevens, A. Mundt, D. Leibfried, F. Schmidt-Kaler, and R. Blatt "Speed of ion-trap quantum-information processors," Phys. Rev. A 62, 042305 (2000).

Atomic and Molecular Systems

  1. J. Ahn, T. C. Weinacht, and P. H. Bucksbaum, "Information Storage and Retrieval Through Quantum Phase," Science, 287, 460-462 (21 Jan 2000). See also the correspondence regarding this article, "Does Rydberg State Manipulation Equal Quantum Computation?" in the edition of Science published on 1 September 2000.
  2. G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch, "Quantum Logic Gates in Optical Lattices," Phys. Rev. Lett., 82, 1060-3 (1999).
  3. G. Ciaramicoli, I. Marzoli, and P. Tombesi, "Realization of a quantum algorithm using a trapped electron," Phys. Rev. A 63, 052307 (2001).
  4. V. Giovannetti, D. Vitali, P. Tombesi, and A. Ekert, "Scalable quantum computation with cavity QED systems," Phys. Rev. A 62, 032306 (2000).
  5. D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, "Fast Quantum Gates for Neutral Atoms," Phys. Rev. Lett. 85, 2208-11 (2000).
  6. D. Jaksch, H.-J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, "Entanglement of Atoms via Cold Controlled Collisions," Phys. Rev. Lett. 82, 1975-8 (1999).
  7. M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, "Dipole Blockade and Quantum Information Processing in Mesoscopic Atomic Ensembles," Phys. Rev. Lett. 87, 037901 (2001).
  8. D. A. Meyer, P. G. Kwiat and R. J. Hughes, "Does Rydberg State Manipulation Equal Quantum Computation? ," Science 289, 1431a (1 Sept. 2000). See the original article by Ahn, et.al., "Information Storage and Retrieval Through Quantum Phase," published in the 21 Jan 2000 edition of Science.
  9. M. O. Scully and M. Suhail Zubairy, "Quantum search protocol for an atomic array," Phys. Rev. A 64 022304 (2001).
  10. Y. Wu, "Elaboration of the Ahn-Weinacht-Bucksbaum scheme for information storage or retrieval through a quantum phase with a single operation," Phys. Rev. A 63, 052303 (2001).
  11. L. You and M. S. Chapman, "Quantum entanglement using trapped atomic spins," Phys. Rev. A 62, 052302 (2000).

Solid state devices

  1. C. H. W. Barnes, J. M. Shilton, and A. M. Robinson, "Quantum computation using electrons trapped by surface acoustic waves," Phys. Rev. B 62, 8410-9 (2000).
  2. G. P. Berman, G. D. Doolen, P. C. Hammel, and V. I. Tsifrinovich, "Magnetic Resonance Force Microscopy Quantum Computer with Tellurium Donors in Silicon," Phys. Rev. Lett. 86, (2001).
  3. G. P. Berman, G. D. Doolen, P. C. Hammel, and V. I. Tsifrinovich, "Solid-state nuclear-spin quantum computer based on magnetic resonance force microscopy" Phys. Rev. B 61, 14694-99 (2000).
  4. G. P Berman, D. K. Campbell, G. D. Doolen and K. E. Nagaev, "Dynamics of nuclear spin measurement in a mesoscopic solid-state quantum computer," J. Phys. Cond. Mat. 12, 2945-52 (2000).
  5. G. P. Berman, D. K. Campbell, G. D. Doolen and K. E. Nagaev, "Electron-Nuclear Spin Dynamics in a Mesoscopic Solid-State Quantum Computer," Microelectronic Engineering 47, 277-279 (1999).
  6. M. S. Byrd and D. A. Lidar, "Comprehensive Encoding and Decoupling Solution to Problems of Decoherence and Design in Solid-State Quantum Computing," Phys. Rev. Lett. 89, 047901 (2002).
  7. B. E. Kane, "A silicon-based nuclear spin quantum computer," Nature 393, 133-7 (14 May 1998).
  8. J. H. Reina, L. Quiroga, N. F. Johnson, "NMR-based nanostructure switch for quantum logic" Phys. Rev. B 62, R2267-70 (2000).
  9. F. Troiani, U. Hohenester, and E. Molinari, "Exploiting exciton-exciton interactions in semiconductor quantum dots for quantum-information processing" Phys. Rev. B 62, R2263-6 (2000).
  10. R. Vrijen, E. Yablonovitch, K. Wang, H. W. Jiang, A. Balandin, V. Roychowdhury, T. Mor, and D. DiVincenzo, "Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructure," Phys. Rev. A 62, 012306

Josephson Junction Devices

  1. D. V. Averin, "Quantum Computation and Quantum Coherence in Mesoscopic Josephson Junctions", J. Low Temp. Phys. 118,781-93 (2000).
  2. Y. Makhlin, G. Schön and A. Shnirman, "Josephson junction quantum logic gates," Computer Physics Communications 127, 156-64 (2000).
  3. Y. Makhlin, G. Schön and A. Shnirman, "Josephson junction quantum bits and logic gates," Physica B 280, 410-411 (2000).
  4. Y. Makhlin, G. Schön and A. Shnirman, "Josephson-junction qubits with controlled couplings," Nature 398 305-7 (25 March 1999).
  5. T. P. Orlando, J. E. Mooij, L. Tian, C. H. van der Wal, S. Levitov, S. Lloyd, and J. J. Mazo, "Superconducting persistent-current qubit" Phys. Rev. B 60, 15398-413 (1999).

Liqid He

  1. P. M. Platzman and M. I. Dykman, "Quantum Computing with Electrons Floating on Liquid Helium," Science, 284, 1967-9, 18 June 1998.

Quantum Computation Experiment

Nuclear Magnetic Resonance

General Techniques
  1. M. S. Anwar, J. A. Jones, D. Blazina, S. B. Duckett, and H. A. Carteret, "Implementation of NMR quantum computation with parahydrogen-derived high-purity quantum states," Phys. Rev. A 70, 032324 (2004).
  2. P. Oscar Boykin, T. Mor, V. Roychowdhury, F. Vatan, and R. Vrijen, "Algorithmic cooling and scalable NMR quantum computers" Proc. Natl. Acad. Sci. USA 99 (6) 3388-3393 (2002). LANL preprint quant-ph/0106093
  3. S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, "Separability of Very Noisy Mixed States and Implications for NMR Quantum Computing," Phys. Rev. Lett. 83, 1054-7 (1999).
  4. R. Brüschweiler, "Novel Strategy for Database Searching in Spin Liouville Space by NMR Ensemble Computing," Phys. Rev. Lett. 85, 4815-4818 (2000).
  5. T. Brun and R. Schack, "Realizing the quantum baker's map on a NMR quantum computer," Phys. Rev. A 59, 2649-58 (1999).
  6. D. E. Chang, L. M. K. Vandersypen, M. Steffen, "NMR Implementation of a Building Block for Scalable NMR Quantum Computation," Chem. Phys. Lett. 338, 337-44 (2001).
  7. A. M. Childs, I. L. Chuang, and D. W. Leung, "Realization of quantum process tomography in NMR," Phys. Rev. A 64, 012314 (2001).
  8. I. L. Chuang, N. Gershenfeld., M. G. Kubinec, D. W. Leung, "Bulk quantum computation with nuclear magnetic resonance: theory and experiment," Proc. R. Soc. Lond. A. 454, 447-67 (1998).
  9. H. K. Cummins and J. A. Jones, "Use of composite rotations to correct systematic errors in NMR quantum computation," New J. Phys. 2, 6 (2000).
  10. D.G. Cory, R. Laflamme, E. Knill, L. Viola, T.F. Havel, N. Boulant, G. Boutis, E. Fortunato, S. Lloyd, R. Martinez, C. Negrevergne, M. Pravia, Y. Sharf, G. Teklemariam, Y.S. Weinstein, W.H. Zurek, "NMR Based Quantum Information Processing: Achievements and Prospects," Forts. Phys. 48, 875-907 (2000).
  11. D. G. Cory, M. D. Price, and T. F. Havel, "Nuclear magnetic resonance spectroscopy: An experimentally accessible paradigm for quantum computing," Physica D 120, 82-101 (1998).
  12. D. G. Cory, A. E. Dunlop, T. F. Havel, S. S. Somaroo, and W. Zhang, "The effective Hamiltonian of the Pound-Overhauser controlled-NOT gate," arXiv preprint quant-ph/9809045 (1998).
  13. D. G. Cory, A. F. Fahmy, and T. F. Havel, "Ensemble quantum computing by NMR spectroscopy," Proc. Nat. Acad. Sci. 94, 1634-39 (1997).
  14. S. Ding, C. A. McDowell, C. Ye, M. Zhan, X. Zhu, K. Gao, X. Sun, X-A. Mao, M. Liu, "Quantum Computation Based on Magic-Angle-Spinning Solid State Nuclear Magnetic Resonance Spectroscopy," LANL preprint quant-ph/0110014 (2001).
  15. K. Dorai, Arvind, and A. Kumar, "Implementing quantum-logic operations, pseudopure states, and the Deutsch-Jozsa algorithm using noncommuting selective pulses in NMR," Phys. Rev. A 61, 042306 (2000).
  16. Jiangfeng Du, Mingjun Shi, Jihui Wu, Xianyi Zhou, and Rongdian Han, "Implementing universal multiqubit quantum logic gates in three- and four-spin systems at room temperature" Phys. Rev. A 63, 042302 (2001).
  17. E. B. Fel'dman and S. Lacelle, "Perspectives on a Solid State NMR Quantum Computer," LANL preprint quant-ph/0108106 (2001).
  18. E. M. Fortunato, M. A. Pravia, N. Boulant, G. Teklemariam, T. F. Havel and D. G. Cory, "Design of strongly modulating pulses to implement precise effective Hamiltonians for quantum information processing," J. Chem. Phys 116, 7599-7606 (2002).
  19. B. M. Fung, "Pairs of pseudopure states for 4- and 5-qubit nuclear magnetic resonance systems" J. Chem. Phys. 115, 8044 (2001).
  20. B. M. Fung, "Use of pairs of pseudopure states for NMR quantum computing," Phys. Rev. A 63, 022304 (2001).
  21. J. A. George, M. E. Colvin, and V.V. Krishnan, "A simulator for ensemble quantum computing," Comput. Phys. Commun. 144, 277-83 (2002).
  22. N. A. Gershenfeld and I. L. Chuang, "Bulk Spin-Resonance Quantum Computation," Science 275, 350-356, 17 Jan 1997.
  23. J. R. Goldman, T. D. Ladd, F. Yamaguchi, and Y. Yamamoto, "Magnet designs for a crystal-lattice quantum computer," Appl. Phys. A 71, 11-17 (2000).
  24. T. F. Havel, D. G. Cory, S. Lloyd, N. Boulant, E. M. Fortunato, M. A. Pravia, G. Teklemariam, Y. S. Weinstein, A. Bhattacharyya, and J. Hou, "Quantum information processing by nuclear magnetic resonance spectroscopy," Am. J. Phys. 70, 345 (2002).
  25. P. Hübler, J. Bargon and S. Glaser, "Nuclear magnetic resonance quantum computing exploiting the pure spin state of para hydrogen," J. Chem. Phys. 113, 2056-9 (2000).
  26. J. A. Jones, "Quantum computing and nuclear magnetic resonance," Phys. Chem. Comm. 11, 1 (2001).
  27. J. A. Jones, "NMR Quantum Computation" Prog. Nucl. Mag. Res. Spec. 38, 325-360 (2000).
  28. J. A. Jones, "NMR Quantum Computation: A Critical Evaluation," Fortschr. Phys. 48, 909-24 (2000).
  29. J. A. Jones, R. H. Hansen, and M. Mosca, "Quantum Logic Gates and Nuclear Magnetic Resonance Pulse Sequences," J. Mag. Res. 135, 353-60 (1998).
  30. J. A. Jones and E. Knill, "Efficient Refocusing of One-Spin and Two-Spin Interactions for NMR Quantum Computation, "J. Mag. Res. 141, 322-5 (1999).
  31. J. A. Jones, V. Vedral, A. Ekert, and G. Castiagnoli, "Geometric quantum computation using nuclear magnetic resonance," Nature 403, 869-71 (24 Feb 2000).
  32. A. R. Kessel' and V. L. Ermakov, "Multiqubit spin," JETP Lett. 70, 61-65 (1999)
  33. N. Khaneja, S. J. Glaser, and R. Brockett, "Sub-Riemannian geometry and time optimal control of three spin systems: Quantum gates and coherence transfer," Phys. Rev. A 65, 032301 (2002).
  34. A. Khitrin, H. Sun, and B. M. Fung, "Method of multifrequency excitation for creating pseudopure states for NMR quantum computing" Phys Rev. A 63, 020301(R) (2001).
  35. A. K. Khitrin and B. M. Fung, "Nuclear magnetic resonance quantum logic gates using quadrupolar nuclei," J. Chem. Phys. 112, 6963-65 (2000).
  36. J. Kim, J-S. Lee, and S. Lee, "Implementing unitary operators in quantum computation," Phys. Rev. A 61, 032312 (2000).
  37. T. D. Ladd, J. R. Goldman, F. Yamaguchi,and Y. Yamamoto, "All-Silicon Quantum Computer," Phys. Rev. Lett. 89, 017901 (2002).
  38. T. D. Ladd, J. R. Goldman, F. Yamaguchi,and Y. Yamamoto, "Decoherence in crystal lattice quantum computation," Appl. Phys. A 71, 27-36 (2000).
  39. T. D. Ladd, J. R. Goldman, A. Dana, F. Yamaguchi, Y. Yamamoto, "Quantum computation in a one-dimensional crystal lattice with NMR force microscopy," LANL preprint quant-ph/0009122 (2000).
  40. N. Linden, H. Barjat, R. J. Carbajo and R. Freeman, "Pulse sequences for NMR quantum computers: how to manipulate nuclear spins while freezing the motion of coupled neighbours," Chem. Phys. Lett., 305, 28-34 (1999).
  41. N. Linden, H. Barjat, E. Kupce and R. Freeman, "How to exchange information between two coupled nuclear spins: the universal SWAP operation," Chem. Phys. Lett. 307, 198-204 (1999).
  42. N. Linden, E. Kupce and R. Freeman, "NMR quantum logic gates for homonuclear spin systems," Chem. Phys. Lett. 311, 321-7 (1999).
  43. G. L. Long, H. Y. Yan, Y. S. Li, C. C. Tu, S. J. Zhu, D. Ruan, Y. Sun, J. X. Tao, and H. M. Chen, "On the quantum mechanical nature in liquid NMR quantum computing," LANL preprint quant-ph/0007077 (2000).
  44. Z. L. Mádi, R. Brüschweiler, and R. R. Ernst, "One- and two-dimensional ensemble quantum computing in spin Liouville space," J. Chem. Phys. 109, 10603-11 (1998).
  45. T. S. Mahesh, Neeraj Sinha, K. V. Ramanathan, and Anil Kumar, "Ensemble quantum-information processing by NMR: Implementation of gates and the creation of pseudopure states using dipolar coupled spins as qubits," Phys. Rev. A 65, 022312 (2002).
  46. T. S. Mahesh, K. Dorai, Arvind, and A. Kumar, "Quantum Computing by Two-Dimensional NMR using Spin- and Transition-Selective Pulses," LANL preprint quant-ph/0006123 (2000).
  47. T. S. Mahesh and A. Kumar, "Ensemble quantum-information processing by NMR: Spatially averaged logical labeling technique for creating pseudopure states," Phys. Rev. A 64, 012307 (2001).
  48. M. Marjanska, I. L. Chuang, and M. G. Kubinec, "Demonstration of quantum logic gates in liquid crystal nuclear magnetic resonance," J. Chem. Phys. 112, 5095-99 (2000).
  49. R. Marx, A. F. Fahmy, J. M. Myers, W. Bermel, and S. J. Glaser, "Approaching five-bit NMR quantum computing," Phys. Rev. A 62, 012310 (2000).
  50. C. Miquel, J. P. Paz, M. Saraceno, E. Knill, R. Laflamme, and C. Negrevergne, "Interpretation of tomography and spectroscopy as dual forms of quantum computation," Nature 418, 59-62, 4 July 2002.
  51. J. M. Myers, A. F. Fahmy, S. J. Glaser, R. Marx, "Rapid solution of problems by nuclear-magnetic-resonance quantum computation," Phys. Rev. A 63, 032302 (2002).
  52. M. Pravia, E. Fortunato, Y. Weinstein, M. D. Price, G. Teklemariam, R. J. Nelson, Y. Sharf, S. Somaroo, C. H. Tseng, T. F. Havel, D. G. Cory, "Observations of quantum dynamics by solution-state NMR spectroscopy," Concepts in Mag. Res. 11(4), 225-38 (1999).
  53. M. D. Price, T. F. Havel and D. G. Cory, "Multiqubit logic gates in NMR quantum computing," New J. Phys. 2, 10 (2000).
  54. M. D. Price, S. S. Somaroo, A. E. Dunlop, T. F. Havel, and D. G. Cory, "Generalized methods for the development of quantum logic gates for an NMR quantum information processor," Phys. Rev. A 60, 2777-80 (1999).
  55. M. D. Price, S. S. Somaroo, C. H. Tseng, J. C. Gore, A. F. Fahmy, T. F. Havel, D. G. Cory , "Construction and Implementation of NMR Quantum Logic Gates for Two Spin Systems," J. Mag. Res. 140, 371-8 (1999).
  56. R. Schack and C. M. Caves, "Classical model for bulk-ensemble NMR quantum computation," Phys. Rev. A 60, 4354-62 (1999).
  57. Y. Sharf, T. F. Havel, and D. G. Cory, "Spatially encoded pseudopure states for NMR quantum-information processing," Phys. Rev. A 62 052314 (2000).
  58. N. Sinha, T. S. Mahesh, K, V. Ramanathan and A. Kumar, "Toward quantum information processing by nuclear magnetic resonance: Pseudopure states and logical operations using selective pulses on an oriented spin 3/2 nucleus" J. Chem. Phys. 114, 4415-20 (2001).
  59. S. S. Somaroo, D. G. Cory, and T. F. Havel, "Expressing the operations of quantum computing in multiparticle geometric algebra," Phys. Lett. A 240, 1-7 (1998).
  60. L. M. K. Vandersypen and I. L. Chuang, "NMR techniques for quantum control and computation," Rev. Mod. Phys. 76 1037 (2004).
  61. L. M. K. Vandersypen, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang, "Realization of logically labeled effective pure states for bulk quantum computation," Phys. Rev. Lett. 83, 3085-88 (1999).
  62. A. S. Verhulst, O. Liivak, M. H. Sherwood, H-M. Vieth, and I. L. Chuang, "Non-thermal nuclear magnetic resonance quantum computing using hyperpolarized xenon," App. Phys. Lett. 79, 2480-2 (2001).
  63. W. S. Warren, "The Usefulness of NMR Quantum Computing," Science, 277, 1688-1690 12 Sept 1997. Letter to Science with response from N. Gershenfeld and I. L. Chuang.
  64. Y. S. Weinstein, M. A. Pravia, E. M. Fortunato, S. Lloyd, and D. G. Cory, "Implementation of the Quantum Fourier Transform" Phys. Rev. Lett. 86, 1889-91 (2001).
  65. F. Yamaguchi and Y. Yamamoto, "Crystal lattice quantum computer," Microelectronic Engineering 47, 273-275 (1999).
  66. X. D. Yang, D. X. Wei, J. Luo, and X. Maio, "Preparation of pseudopure state in nuclear spin ensemble using CNOT gates combination," Chinese Sci Bull 47, 1856-1860 (2002).
  67. C. S. Yannoni, M. H. Sherwood, D. C. Miller, I. L. Chuang, L. M. K. Vandersypen, M. G. Kubinec, "Nuclear magnetic resonance quantum computing using liquid crystal solvents," App. Phys. Lett. 75, 3563-5 (1999).
Deutsch-Jozsa Algorithm
  1. Arvind, K. Dorai, and A. Kumar, "Quantum entanglement in the NMR implementation of the Deutsch-Jozsa algorithm," LANL preprint quant-ph/9909067 (1999).
  2. I. L. Chuang, L. M. K. Vandersypen, X. Zhou, D. W. Leung, and S. LLoyd, "Experimental realization of a quantum algorithm," Nature, 393, 143-6, (1998).
  3. D. Collins, K. W. Kim, W. C. Holton, H. Sierzputowska-Grazc, and E. O. Stejskal, "NMR quantum computation with indirectly coupled gates," Phys. Rev. A 62 022304 (2000).
  4. K. Dorai, Arvind, and A. Kumar, "Implementing quantum-logic operations, pseudopure states, and the Deutsch-Jozsa algorithm using noncommuting selective pulses in NMR," Phys. Rev. A 61, 042306 (2000).
  5. K. Dorai, Arvind, and A. Kumar, "Implementation of a Deutsch-like quantum algorithm utilizing entanglement at the two-qubit level, on an NMR quantum information processor," Phys. Rev. A 63, 034101 (2001).
  6. V. L. Ermakov and B. M. Fung, "Nuclear magnetic resonance implementation of the Deutsch-Jozsa algorithm using different initial states," J. Chem. Phys. 118 p10376-10381 (2003).
  7. J. A. Jones and M. Mosca, "Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer," J. Chem. Phys. 109, 1648-53 (1998).
  8. J. Kim, J.-S. Lee, S. Lee, and C. Cheong, "Implementation of the refined Deutsch-Jozsa algorithm on a 3-bit NMR quantum computer," Phys. Rev. A 62, 022312 (2000).
  9. N. Linden, H. Barjat and R. Freeman, "An implementation of the Deutsch-Jozsa algorithm on a three-qubit NMR quantum computer," Chem. Phys. Lett. 296, 61-7 (1998).
  10. R. Marx, A. F. Fahmy, J. M. Myers, W. Bermel, and S. J. Glaser, "Approaching five-bit NMR quantum computing," Phys. Rev. A 62, 012310 (2000).
  11. J. M. Myers, A. F. Fahmy, S. J. Glaser, and R. Marx, "Rapid solution of problems by nuclear-magnetic-resonance quantum computation" Phys. Rev. A 63, 032302 (2001).
  12. J. Vala, Z. Amitay, B. Zhang, S. R. Leone, and R. Kosloff, "Experimental implementation of the Deutsch-Jozsa algorithm for three-qubit functions using pure coherent molecular superpositions" Phys. Rev. A 66, 062316 (2002).
Search algorithms
  1. R. Brüschweiler, "Novel Strategy for Database Searching in Spin Liouville Space by NMR Ensemble Computing," Phys. Rev. Lett. 85, 4815-4818 (2000).
  2. I. L. Chuang, N. Gershenfeld, and M. Kubinec, "Experimental implementation of fast quantum searching," Phys. Rev. Lett. 80, 3408-11 (1998).
  3. H. K. Cummins and J. A. Jones, "Use of composite rotations to correct systematic errors in NMR quantum computation," New J. Phys. 2, 6 (2000).
  4. J. A. Jones and M. Mosca, " Approximate Quantum Counting on an NMR Ensemble Quantum Computer," Phys. Rev. Lett. 83, 1050-3 (1999).
  5. J. A. Jones, M. Mosca, and R. H. Hansen, "Implementation of a quantum search algorithm on a quantum computer" Nature 399, 344-6 (28May 1998).
  6. J. Kim, J-S. Lee, and S. Lee, "Experimental realization of a target-accepting quantum search by NMR," Phys. Rev. A 65, 054301 (2002).
  7. G. L. Long, H. Y. Yan, Y. S. Li, C. C. Tu, J. X. Tao, H. M. Chen, M. L. Liu, X. Zhang, J. Luo, L. Xiao, X. Z. Zheng, "Experimental NMR realization of a generalized quantum search algorithm," Phys. Lett. A 286, 121-6(2001)
  8. X. Peng, X. Zhu, X. Fang, M. Feng, M. Liu, and K. Gao, "Experimental Implementation of Hogg's Algorithm on a Three-Quantum-bit NMR Quantum Computer," Phys. Rev. A 65, 042315 (2002).
  9. X. Peng, X. Zhu, X. Fang, M. Feng, K. Gao, X. Yang and M. Liu, "Preparation of pseudo-pure states by line-selective pulses in nuclear magnetic resonance" Chem. Phys. Lett. 340, 509-16 (2001).
  10. L. M. K. Vandersypen, M. Steffen, M. H. Sherwood, C. S. Yannoni, G. Breyta, and I. L. Chuang, "Implementation of a three-quantum-bit search algorithm," App. Phys. Lett. 76, 646-8 (2000).
  11. L. Xiao, G. L. Long, H.-Y. Yan, and Y. Sun, "Experimental realization of the Brüschweiler's algorithm in a homonuclear system," J. Chem. Phys. 117, 3310-3315 (2002).
  12. L. Xiao and G. L. Long, "Fetching marked items from an unsorted database in NMR ensemble computing," Phys. Rev. A 66, 052320 (2002).
  13. X. D. Yang and X. Maio, "The theoretic design of NMR pulses program of arbitrary N-qubit Grover's algorithm and the NMR experiment proof," Sci China Ser A 45,1610-1619 (2002).
  14. X. D. Yang, D. Wei, J. Luo, and X. Miao, "Modification and realization of Bruschweiler's search," Phys. Rev. A 66, 042305 (2002).
  15. J. Zhang, Z. Lu, L. Shan, and Z. Deng, "Realization of generalized quantum searching using nuclear magnetic resonance," Phys. Rev. A 65, 034301 (2002).
  16. X. Zhu, X. Fang, M. Feng, F. Du, K. Gao, X. Mao, "Experimental realization of a highly structured search algorithm," Physica D 156, 179-85 (2001).
Bernstein-Vazirani algorithm
  1. J. Du, Mingjun Shi, J. Wu, X. Zhou, Y. Fan, B. Ye, R. Han, "Implementation of a quantum algorithm to solve Bernstein-Vazirani's parity problem without entanglement on an ensemble quantum computer" LANL preprint quant-ph/0012114 (2000).
  2. X. Peng, X. Zhu, X. Fang, M. Feng, M. Liu, and K. Gao, ""Spectral implementation" for creating a labeled pseudo-pure state and the Bernstein-Vazirani algorithm in a four-qubit nuclear magnetic resonance quantum processor," J. Chem. Phys. 120 p3579-3585 (2004).
Shor's factorizing algorithm and relatives
  1. M. Steffen, L. M. K. Vandersypen, and I. L. Chuang, "Toward Quantum Computation: A Five-Qubit Quantum Processor," IEEE MICRO 21, 24-34 (2001).
  2. L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, I. L. Chuang, "Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance," Nature 414, 883-7 (20 Dec. 2001).
  3. L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, R. Cleve, and I. L. Chuang, "Experimental realization of order-finding with a quantum computer," Phys. Rev. Lett. 85, 5452-55 (2000).
Quantum simulations
  1. T. F. Havel, Y. Sharf, L. Viola, D. Cory, "Hadamard products of product operators and the design of gradient-diffusion experiments for simulating decoherence by NMR spectroscopy" Phys. Lett. A 280, 282-8 (2001).
  2. A. K. Khitrin and B. M. Fung, "NMR Simulation of an Eight-State Quantum System" Phys. Rev. A 64, 032306 (2001).
  3. M. A. Pravia, Z. Chen, and D. G. Cory, "Experimental Demonstration of Quantum Lattice Gas Computation" arXiv preprint quant-ph/0303183 (2003).
  4. M. A. Pravia, Z. Chen, J. Yepez and D. G. Cory, "Towards a NMR implementation of a quantum lattice gas algorithm," Comput. Phys. Commun. 146, 339-344 (2002).
  5. M. Steffen, W. van Dam, T. Hogg, G. Breyta, and Isaac Chuang "Experimental Implementation of an Adiabatic Quantum Optimization Algorithm," Phys. Rev. Lett. 90, 067903 (2003).
  6. G. Teklemariam, E. M. Fortunato, M. A. Pravia, T. F. Havel, and D. G. Cory, "Experimental investigations of decoherence on a quantum information processor," Chaos Soliton Fract 16, 457-465 (2003).
  7. C. H. Tseng, S. Somaroo, Y. Sharf, E. Knill, R. Laflamme, T. F. Havel, and D. G. Cory, "Quantum simulation of a three-body-interaction Hamiltonian on an NMR quantum computer," Phys. Rev. A 61, 012302 (2000).
  8. C. H. Tseng, S. Somaroo, Y. Sharf, E. Knill, R. Laflamme, T. F. Havel, and D. G. Cory, "Quantum simulation with natural decoherence," Phys. Rev. A 62 032309 (2000).
  9. S. Somaroo, C. H. Tseng, T. F. Havel, R. Laflamme, and D. G. Cory, "Quantum simulations on a quantum computer," Phys. Rev. Lett. 82, 5381-84 (1999).
Error correction
  1. D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. H. Zurek, T. F. Havel, and S. S. Somaroo, "Experimental quantum error correction," Phys. Rev. Lett. 81, 2152-55 (1999).
  2. E. Knill, R. Laflamme, R. Martinez, and C. Negrevergne, "Implementation of the Five Qubit Error Correction Benchmark" LANL preprint quant-ph/0101034 (2001).
  3. D. Leung, L. Vandersypen, X. Zhou, M. Sherwood, C. Yannoni, M. Kubinec, and I. Chuang, "Experimental realization of a two-bit phase damping quantum code," Phys. Rev. A 60, 1924-43 (1999).
  4. J. E. Ollerenshaw, D. A. Lidar, and L. E. Kay, "Magnetic Resonance Realization of Decoherence-Free Quantum Computation," Phys. Rev. Lett. 91 217904 (2003).
  5. Y. Sharf, T. F. Havel, and D. G. Cory, "Quantum codes for controlling coherent evolution," J. Chem. Phys. 113 10878-885(2000).
  6. Y. Sharf, D. G. Cory, S. S. Somaroo, T. F. Havel, E. Knill, R. Laflamme, and W. H. Zurek, "A study of quantum error correction by geometric algebra and liquid-state NMR spectroscopy" Mol. Phys. 98 1347-63 (2000). Catchword Link.
  7. L. Viola, E. M. Fortunato, M. A. Pravia, E. Knill, R. Laflamme, and D. G. Cory, "Experimental Realization of Noiseless Subsystems for Quantum Information Processing," Science 293, 2059-2063 (2001).
Quantum fundamentals
  1. N. Boulant, E. M. Fortunato, M. A. Pravia, G. Teklemariam, D. G. Cory, and T. F. Havel, "Entanglement transfer processing," Phys. Rev. A 65, 024302 (2002).
  2. X. Fang, X. Zhu, M. Feng, X. Mao and F. Du, "Experimental implementation of dense coding using nuclear magnetic resonance," Phys. Rev. A 61 022307 (2000).
  3. E.Knill, R. Laflamme, R. Martinez, and C-H Tseng, "An algorithmic benchmark for quantum information processing," Nature 404, 368-70 (23 March 2000).
  4. R. Laflamme; E. Knill; W. H. Zurek; P. Catasti; S. V. S. Mariappan, "NMR Greenberger-Horne-Zeilinger states," Phil. Trans. R. Soc. Lond. A 356, 1941-8 (1998).
  5. M. A. Nielsen, E. Knill, and R. Laflamme, "Complete quantum teleportation using nuclear magnetic resonance," Nature 396, 52-4 (5 November 1998).
  6. R. J. Nelson, Y. Weinstein, D. Cory, and S. Lloyd "Experimental Demonstration of Fully Coherent Quantum Feedback," Phys. Rev. Lett. 85, 3045-48 (2000).
  7. R. J. Nelson, D. G. Cory, and S. Lloyd, "Experimental demonstration of Greenberger-Horne-Zeilinger correlations using nuclear magnetic resonance," Phys. Rev. A 61, 022106 (2000).
  8. U. Sakaguchi, H. Ozawa, C. Amano, and T. Fukumi, "Microscopic analogs of the Greenberger-Horne-Zeilinger experiment on an NMR quantum computer," Phys. Rev. A 60, 1906-11 (1999).
  9. G. Teklemariam, E. M. Fortunato, M. A. Pravia, T. F. Havel, and D. G. Cory, "NMR Analog of the Quantum Disentanglement Eraser," Phys. Rev. Lett. 87, 5845-5849 (2001).

Trapped Ions

  1. R.J. Hughes, D.F.V. James, "Prospects for Quantum Computation with Trapped Ions," Fortsch. Phys. 46, 759-69 (1998).
  2. L. X. Li and G. C. Guo, "Quantum logic operation with a single trapped ion using the nonlinear interaction beyond the Lamb-Dicke limit," J. Opt. B: Quantum Semiclass. Opt., 2, 62-4 (2000).
  3. C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland "Demonstration of a fundamental quantum logic gate," Phys. Rev. Lett. 75, 4714-7 (1995).
  4. D. J. Wineland, C. Monroe, D. M. Meekhof, B. E. King, D. Leibfried, W. M. Itano, J. C. Bergquist, D. Berkeland, J. J. Bollinger, J. Miller, "Quantum state manipulation of trapped atomic ions," Proc. R. Soc. Lond. A. 454, 411-29 (1998).

Cavity QED

  1. Philippe Grangier, Georges Reymond, Nicolas Schlosser, "Implementations of Quantum Computing Using Cavity Quantum Electrodynamics Schemes," Forts. Phys. 48, 859-874 (2000).
  2. A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, "Coherent Operation of a Tunable Quantum Phase Gate in Cavity QED," Phys. Rev. Lett. 83 5166-69 (1999).
  3. Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, "Measurement of conditional phase shifts for quantum logic," Phys. Rev. Lett. 75, 4710-13 (1995).

Atomic Systems

  1. J. Ahn, T. C. Weinacht, and P. H. Bucksbaum, "Information Storage and Retrieval Through Quantum Phase," Science, 287, 460-462 (21 Jan 2000). See also the correspondence regarding this article, "Does Rydberg State Manipulation Equal Quantum Computation?" in the edition of Science published on 1 September 2000.
  2. V. Giovannetti, D. Vitali, P. Tombesi, and A. Ekert, "Scalable quantum computation with cavity QED systems," Phys. Rev. A 62 032306 (2000).
  3. D. A. Meyer, P. G. Kwiat and R. J. Hughes, "Does Rydberg State Manipulation Equal Quantum Computation? ," Science 289, 1431a (1 Sept. 2000). See the original article by Ahn, et.al., "Information Storage and Retrieval Through Quantum Phase," published in the 21 Jan 2000 edition of Science.

Optical Systems

  1. P. Londero, C. Dorrer, M. Anderson, S. Wallentowitz, K. Banaszek, and I. A. Walmsley, "Efficient optical implementation of the Bernstein-Vazirani algorithm," Phys. Rev. A 69, 010302 (2004)
  2. S. Takeuchi, "Experimental demonstration of a three-qubit quantum computation algorithm using a single photon and linear optics," Phys. Rev. A 62, 032301 (2000).

Books, Dissertations, Conference Proceedings and Special Journal Editions

  1. G. P. Berman, Introduction to quantum computers, World Scientific, Singapore,1998.
  2. A. J. G. Hay ed, Feynman and computation : exploring the limits of computers, Perseus Books, Reading, MA, 1999.
  3. A. Y. Kitaev, A. H. Shen, and M. N. Vyalyi, Classical and Quantum Computation, American Mathematical Society, Providence, 2002.
  4. D. W. Leung, "Towards Robust Quantum Computation," PhD Dissertation, Stanford University, July 2000 (LANL archive version).
  5. H-K. Lo, S. Popescu, and T. Spiller eds, Introduction to quantum computation and information, World Scientific, Singapore, 1998.
  6. D. C. Marinescu, G. M. Marinescu,"Approaching Quantum Computing," Prentice Hall, 2004
  7. M. A. Nielsen and I. L. Chuang, "Quantum Computation and Quantum Information," Cambridge University Press, Cambridge, 2000.
  8. M. A. Nielsen, "Quantum information theory," Dissertation submitted for the Doctor of Philosophy in Physics at the University of New Mexico, August 1998 (LANL archive version).
  9. W-H. Steeb and Y. Hardy, "Problems & Solutions in Quantum Computing & Quantum Information," World Scientific 2004.
  10. J. Stolze and D. Suter, "Quantum Computing," Wiley, 2004.
  11. C. P. Williams and S. H. Clearwater, Explorations in quantum computing, TELOS, Santa Clara, CA 1998.
  12. C. P. Williams (ed.), Quantum Computing and Quantum Communications, First NASA International Conference, QCQC'98, Palm Springs, California, USA, February 17-20, 1998. Lecture Notes in Computer Science 1509, Springer-Verlag, Berlin, 1999.
  13. SIAM Journal on Computing 26 (5), 1409-1557 (1997). Contains a special section on quantum computing.
  14. Fortschritte der Physik 46 (4-5), 329-589 (1998).
  15. Quantum coherence and decoherence. Proceedings of the ITP Conference in Santa Barbara, 15 to 18 December 1996., Proc. R. Soc. Lond. A 454 (1969), 259-486 (1998).
  16. Quantum computation: theory and experiment. Proceedings of a Discussion Meeting held at the Royal Society of London on 5 and 6 November 1997., Phil. Trans. R. Soc. Lond. A 356 (1743), 1715 - 1948 (1998).
  17. Special Issue on Quantum Optics and Quantum Information, Acta Phys. Slovonica 48(3) (1998).
  18. Physica D, 120, 1-252 (1998).
  19. Special issue in honor of Rolf Landauer, Superlattices and Microstrutures 23 No. 3/4 (1998).
  20. Quantum Computing, Chaos, Soliton Fract 10 (1999).
  21. Journal of Modern Optics 47 (2-3) Feb 2000.
  22. Quantum Computing - Applicable Algebra goes to Physics, Appl. Algebr. Eng. Comm. 10 (2000).
  23. Fortschritte der Physik 48 issue 9-11, (2000). Special edition devoted to quantum information.
  24. Computing in Scince and Engineering 3, Issue 2, March 2001. Special theme on quantum computation.
  25. Journal of Physics A 34 (35) 7 Sept. 2001. Special issue on quantum information and computation.

Quantum Foundations

  1. H. Barnum, C. M. Caves, J. Finkelstein, C. A. Fuchs, R. Schack, "Quantum probability from decision theory?" Proc. R. Soc. Lond. A, 456, 1175-82 (2000)
  2. J. I. Cirac, W. Dür, B. Kraus, and M. Lewenstein, "Entangling operations and their implementation using a small amount of entanglement" LANL preprint quant-ph/0007057 (2000).
  3. D. Deutsch, "Quantum theory of probability and decisions," Proc. R. Soc. Lond. A 455, 3129-37 (1999).

 


Return to homepage.


David Collins
Last modified 28 August 2005.