Energy eigenstates + Time evolution.

So far we have discussed energy eigenstates, $| \psi_n \rangle$ which satisfy

$$\hat{H} | \psi_n \rangle = E_n | \psi_n \rangle$$

In terms of wavefunctions,

$$\left\{ -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x) \right\} \psi_n(x) = E_n \psi_n(x).$$

We also noted that the most general state can be expressed as a superposition

$$| \Psi \rangle = \sum_{n=1}^{\infty} C_n(t) | \psi_n \rangle \quad \rightarrow \quad \Psi(x,t) = \sum_{n=1}^{\infty} C_n(t) \psi_n(x)$$

Then we saw that the system evolves via:

$$| \Psi(0) \rangle \rightarrow | \Psi(t) \rangle = e^{-iHt/\hbar} | \Psi(0) \rangle.$$

and that

$$e^{-iHt/\hbar} | \psi_n \rangle = e^{-iE_nt/\hbar} | \psi_n \rangle.$$

Finally suppose that a system is in the state

$$| \Psi(0) \rangle = \sum_{n=1}^{\infty} C_n | \psi_n \rangle$$

It follows that

$$| \Psi(t) \rangle = \sum_{n=1}^{\infty} C_n e^{-iE_nt/\hbar} | \psi_n \rangle \quad \rightarrow \quad \Psi(x,t) = \sum_{n=1}^{\infty} C_n e^{-iE_nt/\hbar} \psi_n(x).$$
Example: Suppose $|\Psi(0)\rangle = 1_{n}\rangle$ for some n. Then

$$|\Psi(t)\rangle = e^{-i\Delta t/t} |\Psi_{n}\rangle$$

or, in terms of wavefunctions,

$$\Psi(x,t) = e^{-i\Delta t/t} \Psi_{n}(x)$$

Thus the position probability density is

$$|\Psi(x,t)|^2 = |\Psi_{n}(x)|^2$$

and is independent of t. So here $e^{-i\Delta t/t}$ is a global phase
and is irrelevant for physical predictions.

Position Wavefunctions. Townsend 6.1

We have seen that every state of a quantum system can be represented as a superposition of energy eigenstates:

$$|\Psi\rangle = \sum c_{n} |\Psi_{n}\rangle$$

and all you need to describe it are

- eigenstates $|\Psi_{n}\rangle$
- coefficients c_{n}.

Recall that $c_{n} = \langle \Psi_{n}|\Psi\rangle$, gives a method for computing c_{n}.

But we have seen that wavefunctions can also be used to describe the state of a quantum system. How can we extract these from the state $|\Psi\rangle$?

We start by introducing "position eigenstates"

$$|x\rangle \quad \text{particle will be located at position } x \text{ with certainty}$$

for all real x.

Such eigenstates, it turns out do not truly belong in the set of quantum states, but they are useful in calculations. That is why we should be careful about saying, a particle is in state $|x\rangle$ or $|x,\rangle$ etc....
We can however, construct superpositions of these states:

\[|\Psi(t)\rangle = \int_{-\infty}^{\infty} \Psi(x,t) |x\rangle. \]

Again, you may suspect that you will actually have to evaluate such an integral in closed form. This is not the case. Rather you should think of the various \(|x\rangle\) kets as distinct basis vectors, the \(\Psi(x,t)\) as components and \(\int_{-\infty}^{\infty} dx\) as a sum over all possible basis vectors.

Before doing any calculations, you will need the notion of an inner-product between basis vectors \(\langle x | x' \rangle\). Clearly if \(x = x'\) then \(\langle x | x' \rangle = 0\) but what if \(x = x'\)? We will insist on the following rule:

\[\langle x | x' \rangle = \delta(x-x') \]

where \(\delta(x-x')\) is the Dirac delta function. This function is defined as

\[\delta(x-x') = \begin{cases} 0 & x \neq x' \\ \infty & x = x' \end{cases} \]

and such that

\[\int_{-\infty}^{\infty} dx \, f(x) \delta(x-x') = f(x') \quad \text{or} \quad \int_{-\infty}^{\infty} dx \, f(x) \delta(x-x') = f(x') \]

In particular

\[\int_{-\infty}^{\infty} dx \, \delta(x-x') = 1. \quad \text{(unit area under } \delta(x-x')\text{)} \]

You can picture the Dirac delta function as a sequence of constant functions:
Now take the limit as $\epsilon \to 0$ and you get $\delta(x-x')$.

Note that this gives

$$
\langle x | \Psi(t) \rangle = \langle x | \int_{-\infty}^{\infty} dx' \, \Psi(x',t) | x' \rangle \\
= \int_{-\infty}^{\infty} dx' \, \Psi(x',t) \langle x | x' \rangle \\
= \Psi(x,t)
$$

So we get an analogous rule for the position-basis components

$$
\Psi(x,t) = \langle x | \Psi(t) \rangle.
$$

Furthermore note that the usual rules for manipulating bras and kets apply. Thus:

$$
(\Psi(x,t))^\dagger = (\langle x | \Psi(t) \rangle)^\dagger = \langle \Psi(t) | x \rangle \\
= \Psi^*(x,t)
$$

and thus

$$
\Psi^*(x,t) = \langle \Psi(t) | x \rangle.
$$
Lastly there is a completeness relation for $|x\rangle$ basis:

$$\int_{-\infty}^{\infty} dx \, |x\rangle \langle x| = \mathbb{1}$$

Again this will be used as a calculating tool, and you are not expected to explicitly integrate.

Example: These can be used to compute inner products. So

$$\langle \Phi | \Psi \rangle = \langle \Phi | \mathbb{1} | \Psi \rangle = \langle \Phi | \int_{-\infty}^{\infty} dx \, |x\rangle \langle x| | \Psi \rangle = \int_{-\infty}^{\infty} dx \, \Phi^*(x) \Psi(x)$$

Here one never actually evaluated $\int_{-\infty}^{\infty} dx \, |x\rangle \langle x| | \Psi \rangle$.

Position Operator.

One can measure the position of the particle. Thus there must be an observable that corresponds to it. In fact we use

$$\hat{x} |x\rangle = x |x\rangle$$

for all real x. This is the eigenvalue equation for \hat{x}. Now suppose that you want to determine

$$| \Phi \rangle := \hat{x} | \Psi \rangle$$

for an arbitrary state $| \Psi \rangle$.
We show how this can be viewed in terms of wavefunctions:

\[\hat{\Phi}(x,t) = \langle x | \hat{\Phi}(t) \rangle. \]

\[= \langle x | \hat{x} | \Psi \rangle. \]

\[= \langle x | \hat{x} | \hat{I} | \Psi \rangle. \]

\[= \int_{-\infty}^{\infty} dx' \langle x | x' \rangle \langle x' | \Psi \rangle. \]

\[= \int_{-\infty}^{\infty} dx' \langle x | x' \rangle \Psi(x',t). \]

\[= \int_{-\infty}^{\infty} dx' \Psi(x',t) \langle x | x' \rangle \frac{\delta(x-x')}{\delta(x-x')} \]

\[= \int_{-\infty}^{\infty} dx' \Psi(x',t) \delta(x-x') = x \Psi(x,t). \]

Thus

\[|\Phi\rangle = \hat{x} |\Psi\rangle \quad \rightarrow \quad \Phi(x,t) = x \Psi(x,t). \]

A similar argument results in:

\[\langle \Phi | \hat{x} | \Phi \rangle = \int_{-\infty}^{\infty} dx \Phi^*(x,t) x \Phi(x,t) \]

and the expectation value of \(\hat{x} \) is:

\[\langle x \rangle = \langle \Phi(t) | \hat{x} | \Phi(t) \rangle. \]