5 Fixed vs. periodic boundary conditions

The energy eigenstates of a single electron in an infinite cubic potential well with sides \(L \) are superpositions of
\[
\psi(x) = A e^{i k \cdot x}
\]
where \(A \) is a normalization constant and \(k \) a wavevector. The energy associated with this eigenstate is:
\[
E(k) = \frac{\hbar}{2m} k^2
\]
where \(m \) is the mass of the electron.

It is common to assume periodic boundary conditions for a single electron wavefunction in a cubic infinite well with sides \(L \):
\[
\psi(x, y, z) = \psi(x + L, y, z) \\
\psi(x, y, z) = \psi(x, y + L, z) \\
\psi(x, y, z) = \psi(x, y, z + L).
\]

These imply that
\[
k_x = \frac{2\pi}{L} n_x \quad k_y = \frac{2\pi}{L} n_y \quad k_z = \frac{2\pi}{L} n_z
\]
where \(n_x, n_y \) and \(n_z \) are any (positive or negative) integers.

In this problem, you will consider the more familiar alternative of fixed boundary conditions
\[
\psi(0, y, z) = \psi(L, y, z) = 0 \\
\psi(x, 0, z) = \psi(x, L, z) = 0 \\
\psi(x, y, 0) = \psi(x, y, L) = 0.
\]

The aim is to compare results for the Fermi energy and the total energy for the two boundary conditions.
a) Show that energy eigenstates of the form

$$\psi(x) = A \sin(k_x x) \sin(k_y y) \sin(k_z z)$$

satisfy the fixed boundary conditions provided that

$$k_x = \frac{\pi}{L} n_x \quad k_y = \frac{\pi}{L} n_y \quad k_z = \frac{\pi}{L} n_z$$

where $n_x, n_y, n_z = 1, 2, 3, \ldots$

b) Consider, for a moment, the two dimensional case. Indicate the 10 lowest energy eigenstates in the k_x and k_y plane.

c) Consider the three dimensional case. Suppose that a large number, N, of electrons are placed in the cubic infinite well. Verify that the region containing the filled states is a section of a sphere and describe this section. Determine the radius, k_F, of this section of the sphere in terms of the electron density $n = N/V$ where V is the volume of the well.

d) Determine the corresponding Fermi energy, E_F. How does this compare to the value obtained using the periodic boundary conditions?

e) Determine an expression for the density of states per unit volume, $g(E)$. Note that this could be different to the expression for the periodic boundary condition case.

f) Determine the total energy per unit volume, E. How does this compare to the value obtained using periodic boundary conditions?