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ABSTRACT

We consider the problem of making graph databases such
as social networks available to researchers for knowledge
discovery while providing privacy to the participating en-
tities. We use a parametric graph model, the stochastic
Kronecker graph model, to model the observed graph and
construct an estimator of the “true parameter” in a way that
both satisfies the rigorous requirements of differential pri-
vacy and demonstrates experimental utility on several im-
portant graph statistics. The estimator, which may then
be published, defines a probability distribution on graphs.
Sampling such a distribution yields a synthetic graph that
mimics important properties of the original sensitive graph
and consequently, could be useful for knowledge discovery.

Categories and Subject Descriptors

K.4.1 [Computers and Society]: Public Policy Issues—
privacy; H.1.1 [Models and Principles]: Systems and In-
formation Theory

General Terms
Security

Keywords

Privacy, Information Theory

1. INTRODUCTION

As graph databases such as social networks become ubig-
uitous, researchers have an unprecedented opportunity to
understand and analyze complex social phenomena. For ex-
ample, access to a social network may help researchers track
the spread of an epidemic or a sexually-transmitted disease
in a community. While society would like to encourage such
scientific endeavors, if individuals run the risk of being iden-
tified, they may be apprehensive of participating in, or mak-
ing their social network data available for, such studies. To
ensure that public policy promotes such scientific projects,
we are faced with the problem of providing researchers with
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a fairly accurate picture of the quantities or trends they are
looking for without disclosing sensitive information about
participating individuals.

The problem of releasing aggregate information about a sta-
tistical database while simultaneously providing privacy to
the individual participants of the database has been exten-
sively studied in the computer science and statistical com-
munities. There have been attempts to formalize notions of
privacy in such settings and to capture the requirements of
privacy in a formal model, with an ultimate goal of facili-
tating rigorous analyses of solutions that may be proposed
as “privacy preserving”. Differential privacy (DP) has been
one of the main lines of research that has emerged out of
these attempts over the last seven years. See Dwork [4] for
a survey. Differential privacy formalizes the idea that pri-
vacy is provided if the privacy risk an individual faces does
not change significantly if he or she participates in a statis-
tical database.

There are numerous examples of data that have associations
between entities, such as social networks, routing networks,
citation graphs, biological networks, etc. Such associations
between entities may be modeled as a graph, where individu-
als are represented by the nodes, and relationships between
individuals as edges. Each node may be associated with
various attributes. The risk of being identified by partic-
ipating in such a database is two-fold: individuals may be
identified by virtue of their attributes or they may be identi-
fied from their associations with other individuals and some
background information, that they usually cannot predict
or control, or they might be identified using a combination
of the two. In this paper, we will only be concerned about
preventing identification of the nodes using associations be-
tween individuals and some possible background informa-
tion, an approach that Korolova et al. [12] call link privacy.
Using the work of Hay et al. [9], this can be extended to
include a weak form of node privacy. Our proposed mecha-
nism for synthetic graph generation, which aims to approx-
imate certain statistics of the original graph, satisfies the
rigorous definition of e-differential privacy. Private estima-
tion of the Stochastic Kronecker Graph (SKG) model pa-
rameter is an interesting problem, especially given the surge
in the popularity of SKGs for graph modeling. Our initial
attempt at private SKG estimation [I7] was based on the
Kronecker graph estimator of Leskovec and Faloutsos [15].
However, our solution was inefficient because we did not
have any practical way of bounding the global sensitivity of



the required parameters. Subsequent work by Gleich and
Owen [8], which estimates the graph model parameters by
using a “moment matching” method, makes it possible for
us to apply the work of Hay et al. [9] and Nissim et al. [I§]
to efficiently compute private approximations of the “match-
ing statistics” and, hence, to obtain private estimates of the
model parameter.

To generate representative synthetic graphs, we use tools
from statistical inference. Assuming that observed data is
generated from an underlying, but unknown, probability
distribution, we use the data to infer the distribution. A
graph G(V, E) is represented as a vector of random vari-
ables {E1, Ea, ..., En}, where each of the F;’s are 0-1 ran-
dom variables representing the presence or absence of an
edge (assuming a specific known ordering of all potential
edges between |V| vertices). We assume that data is gen-
erated from a parameterized family of probability distribu-
tions. Given a graph, that is treated as a sequence of obser-
vations in such a model, our goal is to infer the parameter
of the distribution and hence the distribution itself. If the
estimator preserves differential privacy and is a good esti-
mator, we can publish it and anyone interested in studying
statistical properties of the original graph G can sample the
distribution to yield a synthetic graph Gs which mimics the
statistical properties of G. We could also sample several
graphs from the distribution and compute an average of the
desired statistic over several such graphs. To use such an
approach, we need to impose a relevant model on the kinds
of graphs we are interested in. The choice of a model is
typically guided by empirical and theoretical considerations
of how well the model captures key properties of real-world
graphs. For our purpose, we use Leskovec et al.’s Kronecker
graph model [I5] [14] that effectively models salient features
of real-world graphs. We compute an estimator, based on
Gleich and Owen’s non-private estimator [§], that is prov-
ably differentially private and that still favorably compares
with the estimators proposed by Leskovec et al. [I4] and
Gleich and Owen [§] in terms of matching several statistics
of the original graph.

Section 2] summarizes related work in privacy and anonym-
ization. In Section B we provide the required background
about the stochastic Kronecker graph (SKG) model and pa-
rameter estimation in this model. In Section @ we discuss
our main results: we show how we can compute an estimator
of a given graph in the SKG model in a differentially private
manner and also experimentally demonstrate how well the
private estimator does on mimicking statistical properties
of the original graph when compared to non-private meth-
ods such as those of Gleich and Owen [§] and Leskovec et
al. [14]. We observe that our private estimator performs al-
most similalrly to Gleich and Owen’s non-private estimators,
for meaningful values of the privacy parameter ¢.

2. RELATED WORK IN PRIVACY AND
ANONYMIZATION

The problem of anonymizing databases has been receiving
considerable attention over the last decade. However re-
searchers have only recently started looking at the problem
of privacy preservation in graphs. Backstrom, Dwork, and
Kleinberg [1] describe a family of attacks where access to a
naively anonymized graph with the identifiers of the nodes

stripped can enable an adversary to learn whether edges ex-
ist or not between specified pairs of nodes. Many solutions
assuming various models of attacks have been proposed:
see [12, 2] 10, 23] 22] for examples. Most of that work,
provides guarantees only against a specific set of adversaries
who are assumed to have specific background knowledge. In
reality, however, individuals and even organizations manag-
ing the database have little or no control over auxiliary in-
formation available to the adversary. e-Differential privacy
provides a guarantee that even if a participating individual
removed his or her data from the database, the potential
outputs of a querying mechanism (whether interactive or
non-interactive) and consequences of those outputs would
not become significantly more or less probable. These rel-
ative probabilities are parametrized by ¢, a public parame-
ter. We review the formal definitions introduced by Dwork
et al. [6] in Section @l While e-differential privacy is not an
absolute guarantee, it is very strong (what Dwork [4] calls
an ad omnia guarantee), where no assumptions about the
auxiliary information or computational power available to
the attacker have been made.

Following the introduction of the DP framework in [3], a
growing line of work has emerged identifying differentially
private mechanisms for both interactive and non-interactive
settings. For example, see [16] [18] [6] [4].

We attempted to use the method of using stochastic graph
models to generate private “synthetic” graphs [I7] but were
unable to provide a useful upper bound on the global sensi-
tivity of the Maximum Likelihood Estimator or an approxi-
mation of the MLE of the Stochastic Kronecker graph model
used by Leskovec et al. [I5]. Consequently, we were unable to
use those ideas to actually model a real-world graph and re-
lease the estimator in a differentially private manner. How-
ever subsqequent work by Gleich et al. [8] estimates model
parameters using a moment matching method rather than
an approximation of the MLE. The algorithm matches four
statistics of the observed graph to the expected values of
these statistics over the probability distribution on graphs
defined by the parameters. This enables us to use the work
of Hay et al. [9] and the results of Nissim et al. [18] to com-
pute differentially private approximations to these features
F' of the observed graph that we seek to match. Hay et
al. [9] compute a differentially private approximation to the
degree distribution of a graph using post-processing tech-
niques. Nissim et al. [I§] compute a differentially private
approximation to the number of triangles of a graph.

Recently, Karwa et al. [I1] apply the notion of smooth sensi-
tivity formulated by Nissim et al. [18] to compute different-
ially private approximations to other graph statistics such as
the number of k-triangles and k-stars. Sala et al. [20] also
generate synthetic graphs that are similar to the original
graph by extracting the original graph’s detailed structure
into degree correlation statistics, and then computing dif-
ferentially private approximations of these statistics to gen-
erate a private synthetic graph. This is closest in spirit to
our work. We have not yet compared the qualitiy of their
private synthetic graphs to ours.

3. PARAMETRIC MODELS AND ESTIMA -
TION



This section provides background on parametric model esti-
mation, the Stochastic Kronecker Graph Model [15] [14] and
the moment based estimation method of Gleich [§] in which
our work is grounded.

A parametric statistical model, say F, is a set of probabil-
ity distributions that can be parametrized by a finite set
of parameters. Parametric estimation in such a model as-
sumes that data observed is generated from a parametrized
family of probability distributions F = {f(x;0) : 6 € ©)},
where 6 is an unknown parameter (or vector of parame-
ters) that can take values in the parameter space ©. Let
X = (X1,X2,...Xn) denote N random variables represent-
ing observations X1 = z1, X2 = z2,..., XNy = zn, and let
the joint probability density function of (X1,..., Xn), given
by f(z1,z2,...,2n;0), depend on 0, the parameter of the
distribution.

After observing this data, an estimate 6§ of the unknown
true parameter 6 is formed. 6 is a function of the observa-
tions and hence, it is also a random variable. The problem
of parameter estimation is to pick a 6 from the parameter
space that best estimates the true parameter in some opti-
mum sense. Parameter estimation is a well studied branch
of statistics; see [21I] for a review.

As mentioned before, the choice of a generative parametric
model for graphs is typically based on empirical or theoret-
ical considerations of how well a model captures significant
descriptive properties of graphs, such as degree distribution,
specific patterns observed, etc. Once such a model is defined,
the task consists of estimating the parameter of the model
that generated a particular instance G. G can be looked at
as a sequence of observations F1, ..., Enx where the E;’s are
0-1 random variables representing the absence or presence
of an edge ¢ (according to a specific ordering). The esti-
mated parameter defines a probability distribution on all
graphs, one from which we assumed G was generated. One
can then sample this probability distribution to generate a
synthetic graph Gs and run queries on it to get an approx-
imation to the answers that would have obtained from the
original graph G. In this section, we introduce the Stochas-
tic Kronecker Graph (SKG) model, the specific generative
model we use. In Section[d] we show how to estimate the pa-
rameter in a differentially private manner that demonstrates
experimental utility with respect to certain statistics.

3.1 Kronecker graph model

Modeling graphs in general, and networks in particular, is
an important problem. Most work in graph modeling con-
sists of studying patterns and properties found in real-world
graphs and then finding models that help understand the
emergence of these properties. Some of the key properties
studied are degree distribution, diameter, hop-plot, scree
plot, and node triangle participation [I5, [14]. The Kro-
necker graph model effectively captures some of the salient
patterns of real-world graphs, such as heavy tailed in-degree
and out-degree distributions, heavy tails for eigenvalues and
eigenvectors, small diameters, and “densification power law”
observed in the Internet, the Web, citation graphs, and on-
line social networks. Many models in the literature focus
on modeling one static property of the network model while
neglecting others. Moreover, the properties of many such

network models have not been formally analyzed. Leskovec
et al.’s Kronecker graph model has been empirically shown
to match multiple properties of real networks. It also fa-
cilitates formal analysis of these properties and establishes,
empirically and analytically, that Kronecker graphs mimic
some important properties of real-world graphs such as those
described above. The Kronecker graph results of Leskovec
et al. [I4] [I5] have three important contributions:

1. Their graph generation model provably produces net-
works with many properties often found in real-world
graphs, such as a power-law degree distribution and
small diameter.

2. Their approximate MLE algorithm is fast and scalable,
being able to handle very large networks with millions
of nodes.

3. The estimated parameter generates realistic looking
graphs that empirically match the statistical proper-
ties of the target real graphs.

Kronecker graphs are based on a recursive construction, with
an aim of creating self-similar graphs recursively. The pro-
cess starts with an initiator graph G1 with N1 nodes. By a
recursive procedure, larger graphs Ga, ..., G, are generated
in succession such that the kth graph, Gk, has Ny = Nf
nodes. This procedure is formalized by introducing the con-
cept of Kronecker product of the adjacency matrices of two
graphs [15].

DEFINITION 3.1 ( [I5]). Given two matrices A and B
of sizes n x m amd n' x m' respectively, their Kronecker
product is a matriz C of dimensions (n -n') x (m - m')
defined as:

a1,1B a1,2B al,mB

a21B  a22B a2,mB
C=A®B= . .

an,lB an,QB an,mB

The Kronecker product of two graphs is the Kronecker prod-
uct of their adjacency matrices, defined as:

DEFINITION 3.2 ( [I5]). Let G and H be graphs with
adjacency matrices A(G) and A(H) respectively. The Kro-
necker product G ® H of the two graphs is the graph whose
adjacency matriz is the Kronecker product A(G) ® A(H).

Informally, the Kronecker product of two graphs G and H
is the “expanded” graph obtained by replacing each node in
G by a copy of H. G2 is obtained by taking the Kronecker
product of G1 with itself, Gs by taking the Kronecker prod-
uct of G2 with G1, and so on, such that the kth Kronecker
power of G1 gives Gj. Formally:

DEFINITION 3.3 (KRONECKER POWER [15]). Given a
Kronecker initiator adjacency matriz ©1, the kth power of



©1 defined by
ol—e, w0, 0...00, =6l geo,

k times

The graph Gy defined by 6[1k] is a Kronecker graph of order
k with respect to ©1.

3.2 Stochastic Kronecker graph model
In this section we review the SKG model and in Sections [3.3]
and 4] we review parameter estimation in this model.

Leskovec et al. [I5] introduce stochasticity in the Kronecker
graphs model by letting each entry of the N; x N initia-
tor matrix ©; take values in the range [0, 1] instead of bi-
nary values, representing the probability of that edge be-
ing present. If the Kronecker power of ©; is computed in
the manner explained above, larger and larger stochastic
adjacency matrices are obtained where each entry repre-
sents the probability of that particular edge appearing in
the graph. @[11@]7 therefore, defines a probability distribu-
tion on all graphs with N nodes. To obtain a stochastic
Kronecker graph (SKG), an edge is independently chosen
with a probability specified by the corresponding entry in
the matrix.

DEFINITION 3.4 (SKG). If© is an N1 x Ny probability
matriz such that 0;; € © denotes the probability that edge
(4,7) is present, 0;; € [0,1]. Then the kth Kronecker power
P = @[k], is a stochastic matrixz where each entry Py, €
P encodes the probability of edge (u,v) appearing. This
stochastic matriz encodes a stochastic Kronecker graph. To
obtain a graph G, an instance or realization of the dis-
tribution, denoted as R(P), an edge (u,v) is included in
G* = R(P) with probability Py..

Given a stochastic matrix P, and a graph G™ realized from
P in the manner specified above, each edge (i,7) in G* is
picked independently by tossing a coin with a bias specified
by Pjj.

Notice that, G* as defined is a directed graph, but in this
paper, like Gleich et al. [§] we examine modeling of undi-
rected graphs only. If A* is the adjacency matrix of G*,
then it may contain loops and may not necessarily be sym-
metric. These loops and the assymetry are removed by
defining the random graph G with an adjacency matrix A
such that, A;; = 0,Vi = j and symmetrizing A* by letting
Ai; = A} if i > j and having Aj; = AJ; if i < j.

2,7

3.3 Parameter Estimation in the SKG Model
For every graph G, P(G) is the probability that a given
stochastic graph model, with a given set of parameters, gen-
erates graph G. In the stochastic Kronecker graph model,
probability distributions over graphs are parametrized by
the initiator matrix, © of size N1 X Ni. An appropriate size
for N is decided upon using standard techniques of model
selection. Analysis in [I5] shows that for many real-world
graphs, having N; > 2 does not accrue a significant advan-
tage as far as matching of some statistics is concerned. In
this paper, we set N1 = 2, to compare our results to those
obtained by Gleich et al. [§].

Given a graph G that is assumed to be generated by an
SKG model, we want to estimate the true parameter—the
initiator matrix ©—that generated G' by an appropriate
©. Leskovec et al. provide an algorithm that is linear in
the number of edges to estimate the parameter O. Let G
have N nodes and assume N = NF, where the size of the
initiator matrix is N1 X N;. Using okl — P, P defines
a SKG on N nodes: P,, is the probability that there is
an edge between nodes u and v. Hence, the probability
p(G|®) = p(G = R(P)) that G is a realization of P can
be computed easily. The Maximum Likelihood Estimator 6
maximizes the likelihood of realizing G. Formally, the MLE
solves:

O = argmax p(G|O)
o

3.4 Moment based estimation of SKG’s

Gleich and Owen [8] propose an alternative method to es-
timate SKG model parameters. They do so for reasons
of computational cost of estimating the MLE of the SKG
model. Leskovec et al. [14] try to approximate the MLE. Gle-
ich and Owen use the so-called moment-based estimation of
the model parameter, where the observed values of certain
statistics of the graphs are equated with those of the ex-
pected value of these statistics over graphs that a paramter
would define. They remark that “while moment methods can
be statistically inefficient compared to maximum likelihood,
statistical efficiency is of reduced importance for enormous
samples and in settings where the dominant error is lack of
fit.”

Four statistics for matching, in the sense explained above,
are considered: number of edges (E), number of triangles(A),
number of hairpins (2-stars or wedges)(H) and the number
of tripins (3-stars)(7"). They consider graphs with a 2 x 2
initiator matrix of the form

o= (3 2)

with a,b,c, € [0,1] and @ > ¢. The Kronecker structure of
P makes it possible to compute closed formulae for these
statistics from ©. Given O of the form above, the expected
count for these statistics can be calculated explicitly. Specif-
ically, given P = [G)]k7 closed formulae can be derived for H,
A and T in terms of a, b, c, as follows:

E(E) :% (@+25+0" —(a+0))

B(H) =5 (0 +5)* + 0+ %) ~2(ala+b) + el +b)*

— (a® + 20> + A +2(a® + cQ)k)
E(A) :% (((a3 +3b%(a+c) + c*)F —3a(a® + b°)+
e(b® +A)F +2(a® + cS)k)
E(T) :% (((a +b)° + (b+ C)S)k -3 (ala+ b)? +c(b+ C)Q)k
=3(a”® + ¢ +b(a® + %) + b (a + c) + 2b°)* + 2(a®+
26° + ) +50® + & + b2 (a+ o))"
+4(a® 4+ & + b(a® + ) —6(a® + &)F)
1)



The problem then is to find an initiator matrix whose ex-
pected counts match the counts of the features F'(G) of the
observed graph as closely as possible.

Given G, one way to choose © (or equivalently, a, b, and é)
is to solve

; (F —Eap,o(F))?
abre et Eapo(F)

where the sum is over three of four of the features I €
{E,A,H, T} and the minimization is taken over 0 < ¢ <
a<1land0<b<1. A more general minimization method
solves:
min Dist(F, Eq.p,.(F)) @)
abc Norm(F, Eqp,c(F)),
T b,

where Dist is either of the two distance functions:
DiStSQ(x7y) = (JZ - y)2 or DiStabS(x7y) = |$ - y'

and Norm is one of the normalizations:

Normp = (F,E) = F;Normp2(F,E) = F?; Normg(F,E) =
E; Normg: (F; E) = E2.

Gleich and Owen [8] find that robust results arise from the
combination of Distsq and Normpg2. The next section uses
these results.

4. A DIFFERENTIALLY PRIVATE GRAPH
ESTIMATOR

We present our main result in this section. We use the
results of Gleich and Owen [8] to provide a differentially
private estimator of a given graph. Based on experimen-
tal results, in Section we argue that a modification that
makes the estimator differentially private does not destroy
the desirable properties of the graph model estimator for
both some real-world and synthetic networks.

4.1 Differential Privacy

After a private estimator is computed, we may publish it and
sample graphs from this distribution to compute an approxi-
mation of relevant statistics. Under the assumption that the
model captures the essential properties of the graph, our es-
timator will define a probability distribution from which we
can sample graphs that are “similar” to the original graph
G. We emphasize here that we rely upon the results of [14]
to justify using the SKG model to maintain “similarity” of
synthetic graphs to the original graphs. Our private estima-
tor suffers from the same limitation that the SKG does in
capturing properties of a real-world network but also demon-
strates almost the same accuracy. In this section, we present
our main result showing how to compute an estimator for
the SKG model that is also differentially private. We first
formalize the idea that the output of the estimator should
not change significantly if a link between two individuals is
included or excluded from the observations.

DEFINITION 4.1 Given
a

graph G(V, E), the (edge) neighborhood of a graph is the set
IG)={G(V,E) st|E® E|=1}

(EDGE NEIGHBORHOOD [9], [I7]).

Applying the standard definition of differential privacy to
graphs instead of databases and using the above definition
of neighborhood yields the following:

DEFINITION 4.2  (EDGE DIFFERENTIAL PRIVACY [18]).
A parameter estimation algorithm that takes as input a graph
G, and outputs ©(G), preserves (e,d)-differential edge pri-
vacy if for all closed subsets S of the output parameter space,
and all pairs of neighboring graphs G and G', and for all
de€0,1],

Pr[O(G) € S] < exp(e) - Pr[O(G’) € S] + 6

The original notion of e-differential privacy [6] is a special
case of the (g, 0)-differential privacy in which § = 0.

Hay et al. [9] also define node differential privacy, by analo-
gously defining the notion of node neighborhood of a graph.
Two graphs are node neighbors if they differ by at most
one node and all the incident edges. This notion of privacy
is highly restrictive when trying to compute accurate ap-
proximations of graph statistics because of potentially high
degree nodes and the loss of information that would accom-
pany their deletion. To provide some degree of privacy to
nodes, Hay et al. [9] introduce the notion of k-edge differ-
ential privacy. In k-edge differential privacy, graphs G and
G’ are k-edge neighbors if [V & V'| + |E @ E'| < k. They
also make the observation that any algorithm that provides
e-edge privacy with respect to (1-)edge neighbors, will pro-
vide ke-edge privacy with respect to k-edge neighbors using
a well-known composition theorem (stated here as Theo-
rem [£9). In this paper, we only examine 1-edge differential
privacy.

According to Definition [£2] for a graph estimator that pre-
serves differential privacy, outputs of the estimating algo-
rithm do not become significantly more or less likely if an
edge is included or excluded from the database. If the inclu-
sion or exclusion of a single link between individuals cannot
change the output distribution appreciably, even an adver-
sary who may have additional background information will
not, by interacting with the algorithm, learn significantly
more about an individual than could be learned about this
individual otherwise.

Dwork et al. [6] and Nissim et al. [I8] define the notions of
local sensitivity and global sensitivity:

DEFINITION 4.3 (LocAL SENSITIVITY [18]). The local
sensitivity of f : D — R, that maps a Domain D to reals,
at G €D is

L =
Sp(G) =, max

1£(G) = £(G))Ih

As an example, when computing the local sensitivity of the
number of triangles in a graph G having N nodes, the do-
main D is the space of all graphs on N nodes.

DEFINITION 4.4  (GLOBAL SENSITIVITY [6]). The
global sensitivity of a function of a graph G, f: D — R® is



Using these notions we compute a differentially private esti-
mator based on matching the expected count to the observed
counts of the statistics—we supply differentially private ap-
proximations of the statistics F, H, A and T to Equation
We do this by computing differentially private approxima-
tion to the degree sequence vector of G and the number of
triangles in G.

Let d be the vector of degrees of GG, such that d; is the de-
gree of node ¢ of graph G. Let d be sorted to yield ds such
that ds(2) is the i-th smallest degree. Hay et al. [9] propose
a method of computing a differentially private approxima-
tion d of the sorted degree vector ds by adding a vector
of appropriate Laplacian noise to ds and then using post-
processing techniques that they experimetally show to be a
highly accurate approximation of ds. Let (Lap(c))" denote
a NN length vector of independent random samples from a
Laplace distribution with mean zero and scale . We know
that the global sensitivity of ds, GSq is equal to 2. The
Laplacian noise adding method os as follows:

THEOREM 4.5  ([6]). Let Q denote the randomized al-
gorithm that takes as input graph G, a query Q of length ¢,
and some € > 0, and outputs

Q(G) = Q(G) + (Lap(GSq /2))".

Then, Algorithm Q satisfies (,0)-differential privacy.

Hay et al. [9] use Theorem to compute a “noisy” degree
sequence d as an approximation of ds:

d =ds + (Lap(2/¢))".

Therefore, d is then an (e,0)-differentially private approxi-
mation of ds. Hay et al. [9] use post-processing techniques
that seek to “remove some of the extra noise” in d, to com-
pute a d that is experimentally and theoretically shown
to provide higher accuracy. Using d, we compute (g,0)-
differentially private approximations of E, H, and T in the
following manner:

1)(d; — 2). Hence, we have:

FacT 4.6. Computing E, H and T using d is (e,0)-diff-
erentially private.

This is straightforward, as computing dis (e, 0)-differentially
private. Since the number A of triangles is not a simple
function of the degree distribution, we instead use the tehc-
niques of Nissim et al. [18] to compute an (g, §)-differentially
private approximation of A. To reduce the amount of noise
that needs to be added to compute an approximation to A,
Nissim et al. [I8] use an upper bound on the local sensitivity
of A(G) by computing the 8-smooth sensitivity of A(G).

Let dist(G, G’) be the symmetric difference between the edge
sets of graphs G and G’. Hence, if G and G’ are neighbors
by Definition 1] dist(G, G') = 1.

DEFINITION 4.7  (8-SMOOTH SENSITIVITY [18]).
For B > 0, the B-smooth sensitivity of f at G, is

885,1(G) = max (L8(G) - e (@)

The smooth sensitivity can be used to compute a differen-
tially private approximation to a function f:

THEOREM 4.8  ([18]). Let f : D™ — R be any real-
valued query function from an input x € D™ for some do-
main D,and let SSg ¢ : D™ — R be the B-smooth sensitivity
of f for some B > 0. Then, if B < #2/6) and § € (0,1),

the algorithm that outputs f = f(D) + 255%1'@
n ~ Lap(1), is (e, d)-differentially private.

.n, where

Algorithm [I] illustrates the process we adopt. Our results
use the above theorem and a composition theorem:

THEOREM 4.9 (COMPOSITION THEOREM [5]).
Let My, Ma, ..., My, be £ number of (g,0)-differentially
private mechanisms computed using graph G. Then any
mechanism M that is a composition of M1, Ma, ..., My,
is (Le, £9)-differentially private.

Using these results we compute an (g,0)-differentially pri-
vate approximation of A by outputting:

P SSs.A 2

A=A+22222% Lap(1),

€

as an (g, d)-differentially private approximation to the num-
ber of triangles in G. Using Theorems [4.9] [£.8] and Fact [£.6]
we have

THEOREM 4.10. o
The computation of F = {E, H, T, A} is (2¢,6) differentially
private.

Using these private statistics F7 in the moment-matching
algorithm of Gleich and Owen (Equation [2)), we obtains a
differentially private estimator. Algorithm [I]illustrates the
process. Hence, we have:

COROLLARY 4.11. © computed by Algorithm [ is (g,9)-
differentially private.

4.2 Experimental results

In this section, we discuss application of Algorithm[lto three
real-world networks and two synthetic Kronecker graphs.
CA-GrQC and CA-HepTh are co-authorship networks from
arXiv [14]. The nodes of the network represent authors,
and there is an edge between two nodes when the authors
jointly wrote a paper. AS20 is a real-world technological
infrastructure network [14]. Each node represents a router
on the internet and edges represent a physical or virtual
connection between the routers. All these graphs are nat-
urally undirected and all edges are unweighted. We down-
loaded these networks from Snap [I3] and used the provided



Algorithm 1 Differentially-private estimation of ©

Input: Graph G, privacy parameters (g, 0)
1. Compute the degree vector d of G.

2. Using Hay et al. [9] compute a e /2-differentially private
approximation of d, d

3. Compute E, f[,f from d.
4. Compute the smooth sensitivity SSg A of A

5. Use SS(G) to compute an (g/2,0) private approxima-
tion of A, A.

6. Use the Kronecker Moment Estimation of [§] with
{E,H,T,A} as inputs to Equation 2] to compute ©.

Output: ©

Network KronFit KronMom | Private
(a7 b, C) (a7 b, C) (a7 b, C)

CA-GrQC 0.999 1.000 1.000
0.245 0.4674 0.4618
0.691 0.2790 0.2930

CA-HepTh 0.999 1.000 1.000
0.271 0.4012 0.4048
0.587 0.3789 0.3720

AS20 0.987 1.000 1.000
0.571 0.6300 0.6286
0.049 0.000 0.000

Synthetic © = | 0.9523 0.9894 0.9924

[.99.45; .45.25] 0.4743 0.5396 0.5343
0.2493 0.2388 0.2466

Table 1: Comparison of parameter estimation for ¢ =
0.2,5 =0.01

library for our experiments. We also used the code provided
by Gleich [7] to compute both the private and non-private
moment-based estimators of the networks. Table [1 com-
pares the results of Algorithm [ (column titled “Private”)
to those of Gleich et al. [8] (“KroMom”) and Leskovec et
al. [I4] (“KronFit”). Our results are based on Gleich et al.’s
results, so it is not surprising that our results are close to
theirs—we observe that the private parameters we compute
are very similar. To provide a reasonable comparison, for
each of the graphs, we use the same Dist and Norm func-
tions in the parameter estimation of Equation [2] as Gleich
and Owen.

For the synthetic Kronecker graph we start with an initiator

matrix
o — 0.99 0.45
T\ 045 0.25
and k = 14 to obtain a synthetic graph on 2'* nodes. Then
we try to recover the parameters of this synthetic graph by
running all three algorithms on it. From Table [I] we see
that all three algorithms do a satisfactory job in recovering

the parameter when the modeling assumption is true, that
is when the graph indeed is a stochastic Kronecker graph.

To further understand how well the private estimator cap-
tures various properties of the graph, we carry out further
experiments. All experiments are conducted for (0.2,0.1)-
differential privacy. Using the parameter estimates of a
graph, we generate 100 synthetic graphs from the estimated
parameters for all three methods, and compute various ex-
pected statistics over these 100 graphs. These statistics
have been computed in [14] for these graphs, so we compare
the performance of our private estimator on these statistics
to Leskovec et al.’s results. We summarize these statistics
briefly:

1. The degree distribution plots the distribution of the
degrees of the nodes.

2. The Hop-plot plots the number of reachable pairs of
noded within h hops, as a function of the number of
hops h.

3. The Scree plot plots the eigenvalues (or singular values)
of the graph adjacency matrix, versus their rank, using
the logarithmic scale.

4. The Network values plots the distribution of eigenvec-
tor components (indicators of “network value”) associ-
ated with the largest eigenvalue of the graph adjacency
matrix.

5. The average clustering coefficient plotted as a func-
tion of the node degree. The clustering coefficient is a
measure of the extent to which nodes in a graph tend
to cluster together.

For each of these graphs we plot these statistics. “Origi-
nal” refers to the original graph, “KronFit’ refers to a single
synthetic Kronecker graph generated from the parameter ©
which is computed using the KronFit algorithm of Leskovec
et al. [15]. “KronMom” refers to a single synthetic Kronecker
graph generated from the parameter © that is computed us-
ing the “KronMom”, moment-matching algorithm of Gleich
and Owen [8]. “Private” refers to a single Kronecker graph
generated from © computed in Algorithm[Il The prefix “Ez-
pected’ refers to the expected value of the statistics being
computed over 100 synthetic realizations of the appropriate
Kronecker graphs.

From Fig[Il we notice that the observed statistics for a single
realization are very close to the expected values, hence one
realization appears to give us a representative sample, at
least for these four graphs.

To reduce clutter, for CA-HepTh (Figure B), AS20 (Fig-
ure [2), and the synthetic Kronecker graph (Figure M), we
only show single realizations. We observe that in all four
cases, the statistics are well-approximated and very close
to the “predictions” made by both the “KronFit” and the
“KronMom” estimators. In the case of the synthetic Kro-
necker graph we also observe a good matching of the aver-
age clustering coefficient which is usually not the case for
real-world networks. This has to do with modeling assump-
tions. We see that the SKG models the clustering coefficient
well for AS20 but not for CA-GrQC and CA-HepTh. The
private estimators are also observed to perform comparably.
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graphs using the three different estimators.

N = 6,474, E = 26,467) and the estimated synthetic Kronecker

S. CONCLUSIONS AND FUTURE DIREC-
TIONS

We applied the rigorous differential privacy framework to
problems of generating synthetic graphs that can be made
publicly available for research purposes while providing pri-
vacy to the individual participants. We built upon the work
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Figure 4: Overlayed patterns of a synthetic source Kronecker network and the estimated sythetic Kronecker graph using the
three different estimators.

of Leskovec et al. [I4] [I5] and Gleich and Owen [§] in the sensitive graphs can be generated in a manner that is dif-
generative Kronecker graph model to demonstrate that syn- ferentially private. While we used a specific model and a
thetic graphs that are statistically similar to the original specific estimator, our work can be broadly placed in the



framework of private parametric estimation for graph mod-
els.

There are several future directions for future work. A com-
parison of our results to those of Sala et al. [20] seems most
relevant. We plan on undertaking a study that compares the
estimated statistics of the synthetic graphs derived by our
method to those computed by Sala et al. An empirical study
of the smooth sensitivity of the number of triangles in the
SKG is another direction we are currently pursuing. Nissim
et al. [I8] propose an upper bound on the smooth sensitivity
of the number of triangles in the G(n, p) Erdos-Renyi model.
It would be interesting to examine the smooth sensitivity of
A as a function of the size of the graph G. Preliminary ex-
periments indicate that in the SKG model, SSA might grow
slowly. Yet another direction that presents itself is exam-
ine private estimation in other graph models such as the
Ezponential Random Graph Model (ERGM) [19], especially
since the results of Karwa et al. [I1] provide accurate differ-
entially private approximations to statistics used in ERGM
estimation.
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