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ENGR 695 Advanced Topics in Engineering Mathematics Fall 2023 
 

Review Sheet for Midterm Exam 
 
 
The following policies will be in effect for the exam: 
 
1. You will be allowed to use a non-wireless enabled calculator, such as a TI-99. You should 

put away smart watches, cell phones, tablets, laptops, and other devices that can connect to 
the internet wirelessly. I will record your calculator make and model during the exam. 

2. You will be allowed to use an unlimited number of paper help sheets. These could include 
the notes that you recorded in class, homework solutions, supplemental notes from the course 
Moodle site, copied or printed pages from the textbook, or any other printed or handwritten 
material. A copy of the linear system solvability flowchart (Fig. 8.3.1 of Zill, 6th ed.) will be 
provided. If there is anything else that you feel would be helpful, please notify me. 

3. You may not leave the exam room without prior permission except in an emergency or 
for an urgent medical condition. Please use the restroom before the exam. 

 
The following is a list of topics that could appear in one form or another on the exam. Not all of 
these topics will be covered, and it is possible that an exam problem could cover a detail not 
specifically listed here. However, this list has been made as comprehensive as possible. 
 
Although significant effort has been made to ensure that there are no errors in this review sheet, 
some might nevertheless appear. The textbook and the course lecture notes are the final authority 
in all factual matters, unless errors have been specifically identified there. You are ultimately 
responsible for obtaining accurate information when preparing for the exam. 

 
 
Solution of systems of linear algebraic equations in matrix form 

- rank of matrix = max. no. of linearly independent row or column vectors 
- max. rank = min{M, N}, M = no. rows and N = no. of columns 
- rules of linear algebra; interactions between matrices, vectors, and scalars; dimensions 
- matrix transpose and its properties 
- solution of Ax = b; for an N × N system, the following statements are equivalent: 

o Ax = b has a unique solution 
o A has a unique inverse (A−1) 
o A is non-singular 
o A has full rank (i.e., rank(A) = N) 
o det(A) = |A| ≠ 0 

- solution using element row operations (EROs) to obtain reduced echelon form 
- consistency 

o consistent = one solution or infinitely many solutions (2-D analogy: solution 
space is a point or line) 

o inconsistent = no solution (2-D analogy: parallel lines – no intersecting point) 
- solvability of M × N systems (see Fig. 8.3.1 of Zill, 6th ed.) 

o M = no. of equations; N = no. of unknowns 
o r = rank(A) = rank(A|b): consistent & solution possible 

 r = N: unique solution; typically, a square system 
 r < N: infinitely many solutions; typically, an underdetermined system 

o r = rank(A) < rank(A|b): inconsistent & no solution possible (but “best” fit is 
possible); typically, an overdetermined system 
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Curve-fitting and the method of least squares 
- data set: (xi, yi), i = 1 to M    →    data vectors x and y 
- model: a set of functions {fj(x)}j = 1 to N and coefficients {cj}j = 1 to N that yield the best 

approximation to {yi}i = 1 to M (data set) or y(x) (continuous function): 

( ) ( ) ( )
1

ˆ ˆ
N

j j
j

y x y x c f x F
=

≈ = → =∑ y c , where Fij = fj(xi); ŷ  contains best fit; 

vector c contains coefficients 
- basis functions {fj(x)} are usually elementary functions like polynomials (including 

constant, linear, quadratic, and cubic), sin/cos, exponentials, logarithms 
- seemingly nonlinear models can sometimes be transformed into linear models via 

changes of variables and/or algebraic manipulation 
- least squares approach 

o minimize residual vector:  ˆ= −r y y     →    minimize 2E F= −c y  by setting 
∂E/∂ck = 0 for all k = 1 to N 

o minimize |r|2 = rTr or make residual orthogonal to approximation ( ˆ 0T =r y ) 
- basic normal equation 

( ) 1T T T TF F F F F F
−

= → =c y c y , 
- practical considerations: 

o In Matlab, can write c = F\y; automatically forms solution using normal 
equation (or its equivalent) 

o FTF is symmetric and nonsingular if there are no repeated data points 
o F is M × N, so FTF is N × N 

- constrained LS optimization 
o many constraints are possible; need to express them in linear algebraic form 
o one approach: suppress magnitudes of coefficients 

 cost function: 2 TE F γ= − +c y c c  

 modified normal equation: ( ) 1T T
NF F I Fγ

−
= +c y  

o another approach: suppress magnitudes of second finite differences of coefficients 
 cost function: 2 TE F Hγ= − +c y c c  

 H = KTK, where 
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 modified normal equation: ( ) 1T TF F H Fγ
−

= +c y  

o adjust value of Lagrange multiplier γ until coefficients vary smoothly and have 
reasonable magnitudes 

Eigenvalues and eigenvectors for an N × N matrix A 
- basic form: Ax = λx 
- geometric interpretation: For Ax = b, if x is an eigenvector, then b is a stretched or shrunk 

and possibly flipped but not rotated version of x 
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- computing eigenvalues: ( )det 0A Iλ− =  
o eigenvalues are roots of Nth-order polynomial 
o special case: If N = 2, then ( ) ( )2 tr det 0A Aλ − + = , where tr(A) = trace of A, the 

sum of the entries on the main diagonal 
o eigenvalues can be repeated, and they can be complex 
o eigenvalues of upper and lower-triangular matrices are the diagonal values 
o eigenvalues of diagonal matrices are the diagonal values 

- eigensystem properties 
o if A is square with real entries, then any complex eigenvalues/eigenvectors come 

in conjugate pairs 
o if A is square, then 0 is an eigenvalue iff (if and only if) A is singular 
o if A is nonsingular and λ is an eigenvalue, then 1/λ is an eigenvalue of A−1; both 

eigenvalues have the same corresponding eigenvectors 
o simple eigensystem has N distinct eigenvalues, N linearly independent 

eigenvectors 
o i iA AX Xλ= → = Λx x (horizontal augmentation of column vectors) 
o symmetric matrices behave well 

 eigenvalues of nonsingular symmetric matrices are nonzero and real 
 eigenvectors for distinct eigenvalues are orthogonal 
 repeated eigenvalues also have linearly independent (LI) eigenvectors (LI 

≠ orthogonal); however, the eigenvectors could be orthogonal; it is always 
possible to find orthogonal eigenvectors with enough effort 

 symmetric matrices can be singular and therefore have at least one zero 
eigenvalue; even so, the properties above still apply 

o orthogonal matrices ( 1 TA A− = , which implies that TA A I= ) 
 A is orthogonal iff its columns form an orthonormal set (orthonormal is 

orthogonal with each vector having a length of 1; i.e., |x| = xTx = 1) 
 orthogonal matrices are not usually symmetric (The only orthogonal and 

symmetric matrix is I because a matrix that is both satisfies 1 TA A A− = = .) 
 if eigenvectors are orthogonal, a matrix formed with eigenvectors as 

columns is orthogonal and has the property 1 TX X− =  
o linearly independent ≠ orthogonal 

- diagonalization 
o express N × N matrix A as 1A PDP−= , where D is a diagonal matrix 
o A does not have to be symmetric or orthogonal to be diagonalizable 
o Theorem: An N × N matrix A is diagonalizable iff A has N LI eigenvectors 
o Theorem: If N × N matrix A has N distinct eigenvalues then it is diagonalizable 

(but it might be diagonalizable even if the eigenvalues are not distinct, that is, if 
some are repeated) 

o Theorem: An N × N matrix A can be orthogonally diagonalized iff A is symmetric 
(orthogonal diagonalization means that P is orthogonal) 

o many ways to diagonalize a matrix 
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o one important example: Given an N × N matrix A with N LI eigenvectors (i.e., A 
is full rank), since Ax1 = λ1x1, Ax1 = λ1x1, etc., then, using the definitions 
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x x x , 

 
where X is formed by arranging the eigenvectors in adjacent columns, we obtain 
AX = XΛ → 1A X X −= Λ . Thus, an N × N matrix A with LI eigenvectors can be 
diagonalized into its eigenvalues and eigenvectors. 

Some basic factorizations 
- LU factorization 

o express N × N matrix A as A LU=  , where L is a lower triangular matrix and U is 
upper triangular 

o One application is solution of Ax = b: 
Ax = b → LUx = b. Let Ux = y → Ly = b. Solve Ly = b for y and then Ux = y for 
x. Both solutions are straightforward using forward and backward substitution. 

o LU factorizations are not typically unique; results depend on method used 
o Matlab command [L, U] = lu(A) 
o determinants: det(A) = det (L) det(U) 

- QR factorization 
o LU factorization is for square systems; QR factorization is for over- and 

underdetermined systems (M > N or M < N). (It also works for square systems, 
but it is computational overkill.) 

o for overdetermined (M > N) systems, express M × N matrix A in the product form
A QR= , where Q is an M × M orthogonal matrix and R is an M × N upper 
triangular matrix 

o only the first N columns of Q are actually needed 
o to solve a system Ax = b: 

Ax = b → QRx = b. Let Rx = z → Qz = b. Solve Qz = b for z and then Rx = z for 
x using backward substitution. Matrix Q is orthogonal, so Q−1 = QT. Thus, z = 
QTb. 

o Matlab command [Q, R] = qr(A) 
Singular value decomposition (SVD) 

- using “economy-sized” or “thin” decomposition, an M × N matrix A can be expressed in 
the product form A = UΣVT, where U is an M × N column-orthogonal matrix, Σ 
(sometimes labeled S) is an N × N diagonal matrix, and V is an N × N orthogonal matrix: 
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where ui

Tuj = δij (orthogonal column vectors) and vi
Tvj = δij (orthogonal column vectors), 

and where δij = 1 if i = j and 0 if i ≠ j 
- the above assumes M > N or M = N; the M < N case requires a little more care 
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- in full SVD, U is M × M and Σ is M × N, but parts of U and Σ are not necessary for non-
square systems, hence the “economy-sized” decomposition 

- product form A = UΣVT still valid in full SVD 
- Matlab command (full SVD unless ‘econ’ option is added): [U, S, V] = svd(A) 
- diagonal elements of Σ are called singular values; always real and either positive or zero, 

even if A has complex entries, and can repeat 
1 2 3 Nσ σ σ σ≥ ≥ ≥ ≥  

- zero singular values, if any, occupy the highest index numbers (i.e., up to and including 
σN) 

- if A is symmetric, then ATA = AAT = A2, so 2 2
i i i iλ σ λ σ= → =  (sign ambiguity) 

- implications and properties: 
o condition number of a matrix A: cond(A) = σ1/σN; figure of merit that indicates 

how close the matrix is to being singular; it could be “numerically singular” 
because of finite precision of stored numbers in computer 

o 
1

N
T T

j j j
j

A U V σ
=

= Σ =∑ u v , where T
j ju v  is an M × N outer product; weights are 

singular values (σj) and grow smaller with increasing j. Also, rank(ujvj
T) = 1. 

o U and V are both orthogonal ( 1 TU U− = and 1 TV V− = ); thus, 
 T

i i iA U V AV U A σ= Σ → = Σ → =v u  
 T T T T T T

i i iA U V A V U A U V A σ= Σ → = Σ → = Σ → =u v  

 ( ) ( )TT T T T T T T TA A U V U V V U U V V V= Σ Σ = Σ Σ = Σ Σ  

( ) ( ) 2T T T
i i iA A V V A A σ→ = Σ Σ → =v v  

σi
2 are the eigenvalues of ATA, and {vi}i = 1 to N are the eigenvectors; 

one way to find singular values and v eigenvectors 
 ( )( )TT T T T T T T TAA U V U V U V V U U U= Σ Σ = Σ Σ = ΣΣ  

( ) ( ) 2T T T
i i iAA U U AA σ→ = Σ Σ → =u u  

σi
2 are also the eigenvalues of AAT, and {ui}i = 1 to N are the eigenvectors; 

one way to find singular values and u eigenvectors 
- to solve a system Ax = b (for overdetermined and square systems; underdetermined 

requires interpretation): 
1 1T T T T T TU V V U V U V U− −Σ = → Σ = → = Σ → = Σx b x b x b x b  

- for overdetermined curve-fitting 
o 1 TV U−= Σc y  yields same coefficients as unconstrained LS if all singular values 

are used 
o equivalent to 

1

TM
i

i
i iσ=

 
=  

 
∑ u yc v  

o to smooth oscillating coefficient values, set entries in Σ−1 matrix corresponding to 
small singular values (i.e., below a certain threshold) to zero; reduces impact of 
eigenvectors that do not model data vector y very well 
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Ordinary differential equations (ODEs) 
- linear differential equations have the form 

( ) ( ) ( ) ( ) ( )
1

1 01

n n

n nn n

d y d ya x x a x a x y g x
dx dx

−

− −+ + + =  

coefficients can be constant or variable; if variable, they are functions of indep. variable 
- important special case is the 2nd order linear equation 
- distinction between homogeneous and inhomogeneous ODEs; does g(x) = 0? 
- distinction between initial value problems (IVPs) and boundary value problems (BVPs) 

o IVP: dependent variable and/or derivatives defined at one point 
o IVP: always have unique solutions 
o BVP: dependent variable and/or derivatives defined at two or more points 
o BVP: can have no solution, a unique solution, or many solutions 
o BVPs are often eigenvalue problems (EVPs) as well 

- superposition principle; a linear combination of solutions to a homogeneous DE over an 
interval is also a solution over the same interval 

- corollaries: 
o a constant multiple of a solution is also a solution 
o a homogeneous ODE always possess the trivial solution y = 0 

- linearly independent vs. linearly dependent solutions (analogy to vectors) 
- Nth order homogeneous linear ODE has a fundamental set of N linear indep. solutions 
- nonhomogeneous ODEs: general solution = complementary solution + particular solution 

(complementary solution is the full solution set of the corresponding homogenous ODE) 
- superposition also applies to particular solutions: If yp1 is a solution of the ODE with 

g1(x), yp2 is a solution with g2(x), etc., then yp1 + yp2 + … is a solution to ODE with 
g(x) = g1(x) + g1(x) + … 

 
Relevant course material: 
 
Homework: #1, #2, and part of #3 
Labs:  #1 through #5 
Reading: Assignments from Aug. 21 through Sept. 29, including the supplemental readings: 

“Constrained Least-Squares Optimization Using Minimized Coefficient 
Magnitudes” 
Mathworks Help Center documentation on factorizations 
SVD readings from Numerical Recipes in C, 2nd ed. 
“The Fundamental Theorem of Linear Algebra” (optional) 

 
This exam will focus primarily on the course outcomes listed below, although only the parts of 
the third outcome relevant to linear algebra will be covered. 
 

• To review basic concepts of linear algebra  
• To apply linear-algebraic methods to the solution of applied problems  
• To develop the concept of an eigenvalue problem in both linear algebra and differential 

equations 
 
The course outcomes are listed on the course syllabus, which was distributed at the beginning of 
the semester and is available on the Syllabus and Policies page at the course web site. The 
outcomes are also listed on the Course Description page at the web site. Note, however, that 
some topics not directly related to the course outcomes could be covered on the exam as well. 
 


