Lecture Outline for Monday, Sept. 18

1. Review of properties of symmetric real matrices
a. $\quad A^{T}=A$
b. All eigenvalues are real; all eigenvectors are LI
c. Distinct eigenvalues \rightarrow orthogonal eigenvectors (also LI)
d. Repeated eigenvalues \rightarrow LI eigenvectors but might not be orthogonal
e. Singular symmetric matrices have at least one zero eigenvalue; even so, all eigenvectors are LI.
2. Orthogonal matrices $\left(A^{-1}=A^{T}\right.$, which implies that $\left.A^{T} A=I\right)$
a. A is orthogonal iff its columns form an orthonormal set (orthonormal is orthogonal with each vector having a length of 1; i.e., $|\mathbf{x}|=\mathbf{x}^{T} \mathbf{x}=1$)
b. Orthogonal matrices are not usually symmetric (The only orthogonal and symmetric matrix is I because a matrix that has both properties must satisfy $A^{-1}=A^{T}=A$.)
c. Important application: Various kinds of diagonalizations, which can improve the efficiency of difficult computations and reveal skewness of basis vectors
d. Example: Check that $A^{-1}=A^{T}$ and that the columns form an orthonormal set of vectors.

$$
A=\left[\begin{array}{ccc}
\frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \\
\frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\
-\frac{2}{3} & \frac{1}{3} & \frac{2}{3}
\end{array}\right]
$$

3. Diagonalization
a. Express $N \times N$ matrix A as $A=P D P^{-1}$, where D is a diagonal matrix
b. A does not have to be symmetric or orthogonal to be diagonalizable.
c. Theorem: An $N \times N$ matrix A is diagonalizable iff A has N LI eigenvectors.
d. Theorem: If $N \times N$ matrix A has N distinct eigenvalues then it is diagonalizable (but it might be diagonalizable even if the eigenvalues are not distinct, that is, if some are repeated).
e. Theorem: An $N \times N$ matrix A can be orthogonally diagonalized iff A is symmetric. (Orthogonal diagonalization means that P is orthogonal.)
f. Many ways to diagonalize a matrix.
g. One important example: Given an $N \times N$ matrix A with LI eigenvectors, since $A \mathbf{x}_{1}=$ $\lambda_{1} \mathbf{x}_{1}, A \mathbf{x}_{1}=\lambda_{1} \mathbf{x}_{1}$, etc., then, using the definitions

$$
\Lambda=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & & \vdots \\
\vdots & & \ddots & 0 \\
0 & \cdots & 0 & \lambda_{N}
\end{array}\right] \quad \text { and } \quad X=\left[\begin{array}{cccc}
\uparrow & \uparrow & & \uparrow \\
\mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{N} \\
\downarrow & \downarrow & & \downarrow
\end{array}\right]
$$

where X is formed by making its columns equal to the eigenvectors, we obtain $A X=X \Lambda \rightarrow A=X \Lambda X^{-1}$. Thus, an $N \times N$ matrix A with LI eigenvectors can be diagonalized into its eigenvalues and eigenvectors.
h. Example: Attempt to diagonalize the following matrix:

$$
A=\left[\begin{array}{cc}
-5 & 9 \\
-6 & 10
\end{array}\right]
$$

