ENGR 695 Advanced Topics in Engineering Mathematics Fall 2023

Lecture Outline for Wednesday, Nov. 29

1. Crank-Nicholson Method (an implicit FD method) applied to heat equation
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a. Issues with explicit FD method:
i. centered difference for x-derivative and forward difference for #-derivative
i1. mixed differencing reduces accuracy slightly for a given Ax
1ii.  stability criterion limits size of At
b. One alternative: center all derivatives at time ¢ + 0.5A¢ instead of at ¢ or # + At. FD
approximations become
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.. Qu(x,t+0.5A1)  u(x+Ax,t+0.5A1) = 2u(x,t+0.5A1)+u(x— Ax,t +0.5At)
x-derivative: Y ~ e

c. Indexing doesn’t allow half time-steps, so
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d. Approximation of x-derivative using index notation:

0*u (x,t + O.SAt) o1
x> T AN

(uHu+1 —2u. . +u +u,,— 2“i,; +u, )

i,j+l i1, j+1

e. FD approximation of heat equation becomes

¢ U j U
2Ax2 (”i+1,j+1 - 2ui,j+1 + Uiy jn + Uipj— zui,j + ui—l,j) = At

(continued on next page)



f.  Multiply both sides by 2Ax*/c, then gather j + 1 (new) terms on the left and j (old)
terms on the right:
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Left-hand side has terms at three adjacent locations (i + 1, i, and i — 1), which leads to
a set of coupled equations, that is, a system of equations (matrix equation).

g. Special cases at boundaries. For Dirichlet BCs (u1,+1 = us and unxj+1 = up) use:

at x = a, substitute u1 j+1 = ua+1 and u1; = uq; (if u, does not vary with time, then
substitute u1+1 = u1,; = ua):
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at x = b, substitute uny+1 = us;+1 and unx; = up; (if up does not vary with time, then
substitute unx+1 = Unx; = Up):
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h. Result is an (Ny — 2) x (N, — 2) system of equations:
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Note that the values of u1+1 and u1,; are defined by the boundary condition at x = a.
Likewise, the values of unyj+1 and unx, are defined by the boundary condition at x = b.
The matrix does not change with time, so its inverse can be computed once and stored
before the algorithm begins. The matrix is tridiagonal; efficient routines are available.
(Could use Cholesky or LDL factorization, or special forms of them, for example.)
Pre-multiply the right-hand-side vector by the stored inverted matrix at every time
step. It’s time consuming, but at least Gaussian elimination is not required.

Implicit method — no restriction on size of Az for stability purposes

Improved accuracy if Ax, At, or both are small, but computation time increases
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