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ABSTRACT
We present Brain Automated Chorales (BACh), an adaptive
brain-computer system that dynamically increases the levels
of difficulty in a musical learning task based on pianists’ cog-
nitive workload measured by functional near-infrared spec-
troscopy. As users’ cognitive workload fell below a certain
threshold, suggesting that they had mastered the material and
could handle more cognitive information, BACh automati-
cally increased the difficulty of the learning task. We found
that learners played with significantly increased accuracy and
speed in the brain-based adaptive task compared to our con-
trol condition. Participant feedback indicated that they felt
they learned better with BACh and they liked the timings
of the level changes. The underlying premise of BACh can
be applied to learning situations where a task can be broken
down into increasing levels of difficulty.
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INTRODUCTION
Good teachers, whether they realize it or not, often guide their
students into the zone of proximal development. That is, they
help their students fulfill a learning potential with guidance
that the students could not have reached by themselves [51].
However, this is not always an easy task as learning is a com-
plex activity affected by factors such as difficulty of the task
to be learned, learner cognitive ability, instructional design,
and learner motivation.
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Intelligent tutoring systems (ITS) and other computer-based
education (CBE) systems have been developed in the last
decades to aid this learning process. There have been promis-
ing results; meta-analyses revealed that students tend to learn
faster and more accurately, and have increased enjoyment of
their learning material [27].

Cognitive learning theory (CLT) plays an important role in
the designing of instructional learning material and systems.
It is based on idea that there is only a finite capacity for work-
ing memory available [39, 46] so designers of learning ma-
terial should avoid overloading students. One approach has
been to present learners with tasks of increasing difficulty.
Interestingly, meta-analyses have revealed that this is only
helpful if the levels of difficulty are increased adaptively to
learners [52, 53].

Adaptive, interactive learning tasks generally tend to use a
mixture of performance and cognitive workload of learners
measured by self-reporting on a one-item scale (e.g. [40]).
While these studies have made progress one factor is repeat-
edly highlighted as the weak link in CLT studies and learning
studies in general: the measurement of cognitive workload
[10, 31, 24, 7]. An adaptive learning system that could adjust
task difficulty based on the learner’s actual cognitive state,
rather than their task performance, would address this issue.

Brain sensing using functional near-infrared spectroscopy
(fNIRS) has recently been demonstrated by HCI researchers
to measure user cognitive workload in adaptive systems [4,
44, 1] and is resilient to subject movement as might be seen
while playing a piano [43]. In this paper, we use brain sens-
ing as the determining factor in a learning task by increasing
task difficulty adaptively when the learner’s cognitive work-
load falls below a certain threshold, demonstrating that they
can handle more information.

We present Brain Automated Chorales (BACh), an adaptive
musical learning system that helps users learn to play Bach
chorales on the piano by increasing the difficulty of the prac-
tice sessions based on cognitive workload using brain sens-
ing. BACh aims to guide learners into the zone of proximal
development by measuring when they can cognitively handle



more information and providing them with the next stage of
learning at the right moment.

We use a musical task on the piano keyboard because it lends
itself well to task segmentation with increasing levels of diffi-
culty and to high element interactivity due to concurrency. A
musical task is also easy to evaluate in terms of accuracy and
speed when compared with a control condition. Research has
shown that cognitive workload can indeed be measured with
fNIRS brain sensing while playing the piano [55].

By analyzing performance data, we found that participants
played the pieces faster and with increased accuracy when us-
ing our BACh system compared to how they would normally
learn a piece of music. Participants also subjectively reported
that they played the pieces better, and liked the timings of the
level changes.

Thus, the contributions of this paper are as follows:

1. Build an adaptive, interactive musical learning system,
BACh, that uses objective measurement of cognitive work-
load to dynamically increase difficulty levels of Bach
chorales.

2. Demonstrate that users could play the musical pieces faster
and with more accuracy using BACh than a control condi-
tion.

3. Demonstrate through questionnaire and interview data that
participants felt they learnt the pieces better with BACh
and they liked timings of the level changes.

RELATED WORK

Computer-Based Education
Computer-based education (CBE) is a generic term that is fre-
quently used to encompass a broad spectrum of interactive,
adaptive computer applications used in teaching [21]. We will
use the term CBE as the broadest umbrella term in this paper,
covering all methods of computer aided pedagogy.

A more specific sub-set of computer applications used in
teaching is covered by the term intelligent tutoring systems
(ITS). These systems are delineated by having knowledge of:
(a) the domain by having the expert model for the subject,
(b)the student and following their progress, (c) tutor model
by making teaching choices based on the student and the ma-
terial or (d) user interface model to tie all models together
[33, 32].

CBE has shown that students tend to learn more, take around
30% less time and have increased enjoyment of their subject
[27]. This results in students feeling more successful leading
to greater motivation to learn and increased self-confidence
[6].

In this paper, we develop BACh, based on measuring and
adapting to learners’ cognitive workload using brain sensing,
under the broad category of CBE. We do not profess to our
system meeting all the requirements of the definition of an
ITS, instead, however, we think that our system can certainly
bring benefits to the field of ITS by providing knowledge
about the learner that can sway an ITS’s teaching choices.

We now discuss the foundations of cognitive load theory and
how this fits into our system.

Finite Cognitive Workload and Learning
The fundamental idea behind both Baddeley’s working mem-
ory model [39] and CLT [46] is that cognitive workload is
limited in its capacity to handle information. CLT applies this
finite, limited cognitive capacity of working memory to in-
structional design in order to minimize any unnecessary bur-
dens on working memory and maximize the formation of au-
tomated schemas in long-term memory (i.e. learning).

The degree of element interactivity is seen to be the most im-
portant characteristic that determines the complexity of learn-
ing material. CLT says that an expert differs from a novice be-
cause they have previously acquired schemata that have built
complex elements into fewer elements. In the example of
a pianist, a skilled musician can cognitively group together
notes to form chords in their schemata, whereas a beginner
has to process each note individually, suggesting that the be-
ginner will have a higher cognitive workload while learning
the same piece as the skilled pianist.

Part-task approaches have been investigated to generate in-
structional design that does not overload the learner. How-
ever, artificially reducing cognitive workload by making the
learning material easier also reduces understanding therefore
it is important to know when to integrate all the parts that
have been learned separately. Meta-analyses have found part-
task training is only helpful with sequential material, such
as playing sequential notes on a piano (e.g. [3]), rather than
concurrent tasks, such as playing two hands on a piano at the
same time [52, 53]. The missing element in part-task training
strategies for this type of learning task is thought to be the
opportunity to practice time-sharing skills [9, 53, 52] to al-
low for the multitask fluency. However, it has been found that
increasing-difficulty task were helpful if the tasks adapted to
the learners individually and not with fixed scheduling [52].

These findings highlight the importance of adaptive learning
tasks, especially when using increasing-difficulty strategies.
In order for increasing-difficulty training to be adaptive, there
has to be some measurement of when the user is ready to
move on to the next level of difficulty.

Measurement of Cognitive Workload in Learning Studies
The method of cognitive workload measurement in learning
studies have come under criticism and scrutiny in recent years
[7, 10, 31, 24]. Moreno [31] has stated that “insufficient atten-
tion has been given to the rigorous development of [cognitive
load] measures”.

Cognitive workload in CLT studies have typically been mea-
sured in one of three ways: self-reporting, secondary-task
methodology, and physiological measures.

The most frequently used measure is the self-reporting ques-
tionnaire created by [35]. De Jong [10] and Moreno [31]
raise several issues with the scale’s sensitivity, reliability and
validity in measuring cognitive workload. Firstly, it is not
a direct measurement of cognitive workload, it is measured,



instead by interpretation of post-tests [10]. The need for di-
rect measurement of cognitive workload has been highlighted
[30]. In fact, more objective measures of cognitive workload
using brain sensing have shown discrepancies between self-
reported levels and brain activation levels [19].

Another important factor is the timing of the questionnaires,
which varies across studies [10]. Many studies only present
the questionnaire after learning has taken place, so it is not
clear if learners provide an average estimate for the whole
task, and it leaves reports open to memory and consciousness
effects. However, cognitive workload is a dynamic measure
that fluctuates during a learning task [54].

A second method used to measure cognitive workload in
CLT studies has been the use of secondary-task or dual-task
measures (e.g. [45, 7]). An important disadvantage to this
methodology is that the secondary task can interfere consid-
erably with the primary task, especially if the primary task
is complex and requires much of the learner’s limited cogni-
tive capacity [34, 7]. Furthermore, Brunken et al. [7] points
out that the sensory modality of the dual tasks will affect the
outcome. According to Baddeley’s working memory model
[39] different components of working memory use different
sensory inputs. However, the different components are not
completely independent and still affect each other.

Another set of methods that have been used to measure cogni-
tive workload in learning studies are physiological measures.
However, most physiological measures of cognitive workload
have only been analyzed offline. This misses the advantage
that physiological measures provide which is the continuous
availability of data which is especially important for adaptive
tasks that can react to learners’ needs in real-time.

Heart rate variability (HRV) and electrodermal activity
(EDA) (previously called galvanic skin response (GSR)) have
been shown to be affected cognitive workload [14, 28, 41].
However, changes physiological measures such as HRV and
EDA can also be mapped to other phenomenon [12] such as
changes in emotional state. Task-evoked pupillary responses
(TEPRs) have also been associated with changes in cognitive
workload [49, 20]. However, pupil size is sensitive to a num-
ber of factors that are not relative to cognitive workload such
as the ambient light in the environment [42].

Brain sensing or neuro-imaging techniques have been dis-
cussed in many studies as a promising field for cognitive
workload measurements during learning [34, 7, 42, 10].
Brain sensing provides a more direct measurement of the
physiological changes occurring in the brain during higher
cognitive workload and can be measured continuously which
can be used as a real-time determinant in adaptive learning
studies.

EEG has been shown to measure cognitive workload via
changes in theta and alpha range signals (e.g. [18, 17, 16]).
Szafir and Mutlu [48] monitored student attention with EEG
and determined which lecture topic students would benefit
from reviewing. Szafir and Mutlu (2012) [47] used EEG to
detect and recapture dropping attention levels in real-time.
They found this improved recall abilities. This is a rare ex-

ample of how real-time adaptations can help learning using
physiological sensing. Instead of measuring attention levels,
however, in this paper we will be measuring user cognitive
workload.

fNIRS and the Prefrontal Cortex
Functional magnetic resonance imaging (FMRI) and positron
emission tomography (PET) studies have established that
cognitive workload can be measured in the prefrontal cortex
[11, 29]. More recently, brain imaging studies have examined
changes in brain function associated with improvements in
performance of tasks [15, 38, 5, 25]. Decreases in activation
in the prefrontal cortex as users learn have also been found
using functional near-infrared spectroscopy (fNIRS). FNIRS
is non-invasive imaging technique that measures levels of ac-
tivation in the brain due to the hemodynamic response. In-
creased activation in an area of the brain results in increased
levels of oxyhemoglobin [13]. These changes can be mea-
sured by emitting frequencies of near-infrared light around
3 cm deep into the brain tissue [50] and measuring the light
attenuation caused by levels of oxyhemoglobin.

We can therefore use fNIRS to measure levels of cognitive
activation in the anterior prefrontal cortex (PFC) by placing
sensors on the forehead. The PFC is seat of higher cognitive
functioning such as complex problem solving and multitask-
ing [26]. In this paper, we measure activation in the PFC with
fNIRS to analyze and respond to differences in cognitive ac-
tivity while users are engaged in a musical learning task.

The fNIRS signal has been found to be resilient to respiration,
heartbeat, eye movement, minor head motion, and mouse and
keyboard clicks [43]. It is generally more tolerant of motion
than EEG and has a higher spatial resolution. However it does
have a slower temporal resolution than EEG with a delay of 5-
7 seconds due to the hemodynamic response of blood flow to
the brain. Due to its general ease in setting up with users and
its relative tolerance of minor motion, fNIRS is an increas-
ingly popular method of brain sensing in the HCI community
[43, 4, 44, 36, 1, 2, 19].

Studies in HCI have successfully used fNIRS to measure and
adapt to cognitive workload in real-time [44, 1, 2, 55]. Such
studies have been aimed at increasing task efficiency [1, 2]
and automation of systems [44, 55]. However, real-time mon-
itoring of cognitive workload to act as determinant in a learn-
ing task has not yet been explored.

Harrison et al. [19] examined whether cognitive workload
could be accurately monitored for incrementally changing
task difficulty levels using fNIRS in an offline analysis. In
an air traffic control simulation, they found oxygenation lev-
els measured by fNIRS increased along with self-reports of
increased cognitive workload as the number of aircrafts un-
der operator control increased [19]. Interestingly, they also
found a learning effect with lower levels of mean oxygena-
tion values in the last two days compared to the first day [19].
However the authors did not measure task performance such
as error rate or task length, so while it is assumed the opera-
tors were learning, there are no performance metrics to com-
pare day differences in terms of learning effect. While their



Figure 1. fNIRS equipment and setup. A fNIRS sensor (top-left) that
can be placed on the forehead and held in place with a headband (top-
right). Experimental setup with participant wearing fNIRS playing at
piano keyboard (bottom). The Imagent is visible on the right.

study illustrates the possibility of using fNIRS as a measure-
ment device for cognitive workload during an increasingly
difficult air traffic control task, it does not use this signal for
the purposes of adaptive learning.

In this paper, we use fNIRS to measure learners’ cognitive
workload and adapt in real-time to increase levels of difficulty
in a musical learning task.

EXPERIMENTAL DESIGN
Sixteen participants (8 female, mean age of 21, SD of 2.4)
took part in a within-subject design. All participants first un-
dertook a training task where they played 15 easy and 15 hard
pieces on the piano. Each piece was 30 seconds long with a
30-second rest between each piece.

After completion of the training task participants received a
break and then moved onto the learning task. During the
learning task, each participant learned two Bach chorales.
They had 15 minutes to learn each chorale. One chorale was
presented in normal form and participants were instructed
to learn the piece the way they normally would. The other
chorale was presented with our adaptive interface BACh. The
order of the conditions alternated between participants. At
the end of the allotted learning time, participants were asked
to play the piece once all the way through the best they could.
Performance data from both conditions were recorded and
evaluated based on the performance where they played the
piece all the way through as best they could. Figure 1 shows
the fNIRS equipment and experimental setup. Participants
wore the fNIRS equipment throughout the entire experiment,
including both the control and experimental conditions.

At the conclusion of the learning task, participants were given
a questionnaire on how they felt they had learned the two
pieces. We also gave participants a short interview on what
they thought of the adaptations made by BACh.

All participants were compensated $20. While eleven out of
16 participants rated themselves as beginners, out of the re-
maining five who rated themselves as intermediate, 3 of them

no longer played piano. The median time our participants had
played piano was 3 years.

The details of the materials, tasks, and data analysis are given
below.

EXPERIMENTAL SETUP

Equipment
We used a multichannel frequency domain Imagent fNIRS
device from ISS Inc. (Champaign, IL) for our data acqui-
sition. Two probes were placed on a participant’s forehead
to measure data from the two hemispheres of the prefrontal
cortex. Each probe contains four light sources, each emitting
near-infrared light at two wavelengths (690 and 830 nm) and
one detector; thus we had sixteen data channels (2 probes x 4
source-detector pairs x 2 wavelengths). The source-detector
distances ranged from 1.5 and 3.5 cm, and the sampling rate
was 11.79 Hz. The signals were filtered for heart rate, respira-
tion, and movement artifacts using a third-degree polynomial
filter and low-pass elliptical filter.

Training Task
All participants carried out a training task so that BACh could
classify their high and low cognitive workload. Participants
were given 15 easy and 15 hard pieces of music that were
chosen by a musicologist to play in random order on the pi-
ano. They were given 30 seconds to sight-read each piece (i.e.
play a previously unseen piece) followed by a 30 second rest
period. A metronome was played at the start of each piece
for 4 seconds at a speed of 60 beats per minute. Participants
were asked to try to play at this speed but told they could go
slower if they needed to.

The criteria for the easy pieces were that a) all notes were in
C major (i.e. no sharps or flats), b) there were only whole
notes (very slow, long notes), c) there were no accidentals
(i.e. no additional sharps, flats, or naturals that are not part of
the scale), d) all notes were within the C to G range so that
participants did not need to move their hands e) there were
no dynamics (i.e. volume of a note or stylistic execution).
The hard pieces were chosen by a musicologist and the crite-
ria consisted of pieces that a) had a harder key signature (most
pieces had a key signature of at least 3 sharps or flats), b) con-
tained accidentals , c) contained mostly eighth and sixteenth
notes (i.e. short, fast notes), d) required some moving of the
hands but not too excessively, and e) contained dynamics.

Modeling Brain Data in the Training Task
The easy and hard musical pieces were used to train the sys-
tem for each individual user’s cognitive activity during low
and high cognitive workload, respectively. During each piece,
the system calculated the change in optical intensity com-
pared to a baseline measurement for each of the sixteen chan-
nels. Markers sent at the beginning and end of each trial
denoted the segments for each piece. The mean and linear
regression slope were calculated for each 30 second trial for
each channel resulting in 32 features (16 channels x 2 descrip-
tive features). These features were inputted into LIBSVM, a
support vector machine classification tool, with a linear ker-
nel [1].



Learning Task
Music for Learning Task
For the learning task, we chose two Bach chorales. These
chorales were chosen because of their similarity in style and
difficulty. It is often hard to find two different pieces of mu-
sic that can objectively said to be similar in level of difficulty.
These two chorales, however, were composed using the prin-
ciples of musical counterpoint. Counterpoint is a set of rules
and guidelines that dictate how music can be composed. It
is a relationship between the voices of a piece that is interde-
pendent harmonically but independent in contour and rhythm.
The two chorales we chose are standardized based on this
principle. While they are different pieces of music, they ought
to be highly similar in musical difficulty level. They also have
an equal number of accidentals (sharps, flats or naturals in the
score). Both pieces are the same length, and each has four
voices bass, tenor, alto, and soprano. This allowed for an
easy way to segment the music in the adaptive condition in
order to progressively increase the difficulty. Due to exper-
imental constraints and skill level of participants, the pieces
were slightly altered. They were transposed into the same
key (G Major) and the eighth notes were removed to main-
tain rhythmic consistency. We note that by removing some of
the notes, some minor counterpoint rules are no longer met.
However, the underlying structure and form of both pieces is
still intact.

Figure 2 shows the musical scores for the BACh and normal
conditions. In the BACh condition, each level adds a full
line of music until it reaches the full piece at Level 4. In
the normal condition, learners were told they could learn the
piece the way they normally would. Piano players are typ-
ically classically taught to play pieces first with their right
hand, then their left hand, and finally both together. Dur-
ing that process, it is not uncommon for learners to play one
line of the right or left hand, and add further lines as com-
petency grows. As a result, all participants segmented the
pieces while they learnt during the normal condition. Most
participants started learning with their right hand only, one
participant who was very good with his left hand started with
his left hand first. Participants then incorporated the other
hand as they progressed while learning. This can be viewed
as akin to self-judgment of when to increase task complexity
while learning.

MIDI Keyboard and Bitwig
Participants completed tasks on a full-sized Yamaha keyboard
with weighted keys. The keyboard was transmitting MIDI
data via USB to a computer running Bitwig studio, a digital
audio workstation that allows for MIDI recording and play-
back as well as visual displays of recordings. Participants’
musical data was recorded with this equipment for later anal-
ysis.

Learning Task Real Time Classification
BACh analyzed the last 30 seconds of real-time fNIRS data in
order to calculate a prediction and confidence interval based
on the LIBSVM model created by the training task. How-
ever, we found during pilot studies that this was not sensitive
enough by itself for the varying levels of difficulty presented

BACh condition - Level 1

BACh condition - Level 2

BACh condition - Level 3

BACh condition - Level 4

Normal Condition

Figure 2. Scores used for BACh and Normal conditions. BACh increased
the difficulty level by adding a full line of music when users’ cognitive
workload fell below a threshold, indicating that they could handle more
information. Learners were told that they could learn the normal condi-
tion in any way they wished as they normally would. As a consequence,
all learners segmented the pieces while they learnt during the normal
condition.

in BACh. We therefore used an algorithm that took in the
LIBSVM model from the training task and learners’ cogni-
tive workload during each level of difficulty while they were
learning the Bach chorales in order to decide when to increase
task difficulty.

For each level of difficulty, we measured each learner’s cogni-
tive workload for a period of time determined by pilot studies.
We started measuring their workload after they started play-
ing each line of the level that they were on. For example, if
the learner was on Level 3, we started measuring their cogni-
tive workload after they were playing all 3 lines of music. We
found that if we started measuring their cognitive workload
earlier before the full level of difficulty, BACh would quite
correctly think that they were ready to move on earlier as it
was reading their cognitive workload for an easier difficulty
level.

BACh would then set an individual threshold for each learner
for each level based on a combination of brain data from the
training task and brain data from the level that the learner was



currently on. We ran many pilot studies to create an algorithm
that worked for beginners.

EVALUATION OF DEPENDENT VARIABLES

Dependent Variables
We compared the following dependent variables between the
BCI and control conditions:

• Correct notes: This is the number of correct notes on the
musical score given to participants.

• Incorrect notes: When an incorrect note is played in the
place of a correct note (Figure 3). This is a measure of
precision or quality of learning.

• Extra notes: A note that is a correct repeat or incorrect
extra note. This is different from an incorrect note. Often
when learners make a mistake they will play the beat again
to correct it, this will result in extra notes (see Figure 3)
and is indicative of incomplete learning.

• Errors: A temporal group of notes that is a mistake which
includes incorrect or extra notes. This is a more lenient
measure as it differs from incorrect or extra notes which
are counted individually. For example, a user could play
several incorrect notes in one temporal group, this would
be counted as one error (Figure 3).

• Missed notes: This measure is to account for recall (vs.
precision which can be measured by the number of correct
and incorrect notes). Some people may play very few notes
and prioritize precision (i.e. a high number of correct notes
out of total notes) but this would not be an accurate repre-
sentation of learning. The number of missed notes (Figure
3) will account for recall and acts as a measure of com-
pleteness.

• Total time played: Learners had an unlimited length of time
to play the piece once all the way through at the end. The
total time it took to play the piece is a good indicator of
how well they learned the piece by fast they could play it.

• Gap between notes: This is an indicator of well a piece is
learned by how long it takes to move from beat to beat.
Incomplete learning often involves hesitation and variance
between notes as learners try to move from one group of
notes to the next.

• Beats per minute (bpm): A faster tempo indicates increased
learning as players can move with more ease from beat to
beat. This is different from gap between notes which can
illustrate greater variance while bpm shows overall speed.

Musical Assessment
The dependent variables total time played, gap between notes
and bpm were assessed computationally from the perfor-
mance data. The others had to be compared to the groundtruth
by hand as participants all played at different speeds and score
following is an open research problem and beyond the scope
of this paper. An expert musician who had taught piano in the
past rated participants’ learning compared to the groundtruth
piano rolls. Figure 3 shows piano rolls from an example of a

Figure 3. Examples of piano rolls from a participant’s performance (top)
compared with a computer generated groundtruth of the same piece
(bottom). Incorrect notes are denoted by a cross, extra notes by a cir-
cle, and missed notes by a triangle. An error is a temporal group of
notes and is denoted by an arrow pointing up at the column of notes
containing an error.

participant’s performance compared to a computer generated
groundtruth of how the piece should be played. The figure
shows how incorrect notes, missed notes, extra notes and er-
rors were identified and counted.

RESULTS

fNIRS Data
We first verify that the brain data demonstrated effective clas-
sification of high and low cognitive workload while users
played easy and hard pieces on the piano.

Figure 4 shows the mean and standard error in the oxygenated
hemoglobin (oxy-Hb) of participants while they played easy
(blue) versus hard (green) pieces on the piano. We present
the mean findings across all participants across all 30 trials in
Figure 4 to illustrate this general trend.

To investigate differences between hard and easy pieces,
we performed a t-test on the mean change in oxygenated
hemoglobin. This revealed a significant difference between
conditions when participants played an easy piece (µ =
−0.068, σ = 0.077) versus a hard piece (µ = −0.00005, σ =
0.124) on the piano (t(29) = −2.42, p = .01). Means and
standard errors are shown in Figure 4.



Figure 4. Mean change and standard error in oxy-Hb across all partic-
ipants. Although each participant was modeled individually, the fNIRS
signal exhibited a general trend with higher levels of oxy-Hb correspond-
ing with hard pieces. The mean change in oxy-Hb was significantly
higher in participants when they played an hard piece than an easy piece
(p = .01).

The significantly higher levels of oxy-Hb when participants
were playing harder pieces on the piano correspond with the
hemodynamic literature, whereby, when there is increased
cognitive activity in an area of the brain, excess oxygen is
provided to that area. The increase in oxygen consumption is
less than the volume of oxy-Hb provided, resulting in more
oxy-Hb [13].

Performance Data
We evaluated the performance data of participants using sev-
eral dependent variables (Table 1). We carried out Shapiro-
Wilk tests that verifed that the data was non-parametric, fol-
lowed by Wilcoxon Signed-rank tests on all dependent vari-
ables (Table 1).

Results indicated a pattern for two traits: 1) Increased Accu-
racy, and 2) Faster speed with BACh. We present the results
below.

Increased Accuracy
Results showed that participants played significantly more
correct notes (Z = −1.9689, p = .05), missed significantly
fewer notes (Z = 2.3151, p = .019), played significantly
fewer incorrect notes (Z = 2.4401, p = .015) and made fewer
errors (Z = 3.0351, p = .004) with BACh (Table 1). All of
these findings are indicative of higher accuracy with BACh.

The first two graphs in Figure 5 represent the number of incor-
rect notes and number of errors for each participant. The up-
ward sloping lines (blue) are indicative of better performance
with BACh with fewer incorrect notes and errors. Downward
sloping lines (green) indicate better performance in the nor-
mal condition. Horizontal lines that indicate equality are also
indicated in green. Only three participants played fewer in-

Dependent Variable Z p effect size
Number of correct notes -1.9689 0.05202 0.304
Number of incorrect notes 2.4401 0.0153 0.377
Number of missed notes 2.3151 0.01911 0.357
Number of errors 3.0351 0.003793 0.468
Number of extra notes 0.8796 0.3633 –
Total time played 2.5337 0.009186 0.391
Mean gap between notes 2.482 0.01099 0.383
Average BPM -2.719 0.00525 0.419

Table 1. Results from Wilcoxon Signed-rank test. Significant results are
highlighted in bold. Findings indicate a pattern for increased accuracy
and speed in BACh over the normal condition.

correct notes in the normal condition, and only one partici-
pant played fewer errors in the normal condition.

Figure 5 reveals that players who are less skilled (i.e. play
more incorrect notes or make more errors) tend to benefit
more greatly from BACh with steeper slopes demonstrating
that there was a larger difference between the two conditions.

Faster Speed
Results also showed a propensity towards faster playing speed
with BACh. With BACh, participants had a faster overall time
in the playing the whole piece (Z = 2.5337, p = .009), had
a lower time in the mean gap between notes (Z = 2.482, p =
.01), and had a higher beats per minute (bpm) speed (Z =
−2.719, p = .005) than in the normal condition.

The last two graphs in Figure 5 represent the total time it took
to play the whole piece and the mean time in between notes.
The upward sloping lines (blue) are indicative of better per-
formance with BACh with faster overall playing time and less
time between notes. Downward sloping lines (green) indicate
better performance in the normal condition. Horizontal lines
that indicate equality are also indicated in green. Only three
participants played a faster time in the normal condition and
only one participant had less gaps between notes in the nor-
mal condition.

Taken together, these results suggest that BACh helps piano
players to play with significantly higher accuracy and speed
than the normal condition.

Questionnaire Data
Participants’ subjective ratings correspond with their perfor-
mance. Figure 6 shows that participants showed noticeable
preferences for BACh in how well they felt they mastered the
piece, how correctly they felt they played, and how easy they
felt the piece was to learn.

Timings of Level Changes
One of the key contributions of this paper is a learning task
where difficulty is increased based on participant cognitive
workload falling below a certain threshold. We investigated
the timing of these changes while users’ were learning the
pieces in further detail in two ways: 1) We interviewed par-
ticipants and asked them what they thought of the changes in
the levels of difficulty, and 2) We investigated the variance
in timing data to see if there were individual differences in
learning times. We present the results below.



Figure 5. Slopegraphs showing the effects of BACh for each participant. Upward sloping lines (blue) are indicative of better performance with BACh.
Downward sloping lines (green) indicate better performance in the normal condition. Horizontal lines that indicate equality are also indicated in green.
Participants showed significantly better performance with BACh in all four conditions (p < .01). Interestingly, participants who were less skilled seemed
to benefit more greatly from BACh.

Interview Data
After the experiment was over we gave participants a
recorded interview where we asked them what they thought
of the timing of the changes in difficulty levels. The goal of
BACh was to change the level of difficulty at a time when
the participants’ cognitive workload was low enough to han-
dle more information and a higher level of difficulty. When
participants were asked about the timings of these changes,
which were controlled entirely by the system, their feedback
was generally positive:

“I thought it was good timings because by the time I
learned, it gave me enough time to learn the individual
lines, one by one.”

“I thought they were good times for changes, all of
them.”

“Having a timing system can be jarring; you should only
add new things when you know that the person has com-
pleted the existing part, but these timings were fine.”

One participant even seemed convinced that the experi-
menters were triggering the changes:

“I wasn’t sure if you were controlling it or not because
when it was added was a pretty appropriate time for me
to add on to a part. Especially because in the beginning,
one line, for me at least, is very easy to sight read so just
getting that melody in my head and figuring out fingering
for that one line and then adding on to it very quickly
afterwards was helpful. I felt the timing was pretty good.
I wasn’t sure if it was timed or if you were like, oh she’s
done with this part, so add on to the second part.”

Such comments suggest that BACh was able to effectively
support participants in their learning process by increasing
difficulty levels when they were ready and able to handle
more information. Some participants were not completely
satisfied but in cases like these comments were similar to
phrases like this:

“Sometimes I wouldn’t notice it would change until I
would look at the screen; it was a little confusing when
I would look up. Yeah, it changed when I had learnt
pretty much what I could learn before it changed; it was
enough time to learn it.”

or

“I thought they [the timings] were pretty good. I think it
seemed pretty good overall; the only thing would be the
first one was a lot easier to learn because there was only
one line, but it wasn’t that bad.”

The comment about the levels changing without being no-
ticed can be easily fixed with a small notification sound.
The comment about the easiest level taking too long can
also remedied by increasing the cognitive workload threshold
when levels are very easy. Overall, there were no standalone
or overtly negative comments about the timings of BACh.
Participants seemed to feel the changes were happening at ap-
propriate times, suggesting that we could help manage their
cognitive workload as they were learning by altering the dif-
ficulty of a given stimulus.

Individual Differences in Level Changes
While participants spent less time on easier levels and longer
lengths of time on levels with increasing difficulty, we did
find individual differences in time spent within levels. The



Figure 6. Mean and standard error of participants’ ratings of BACh
and the normal condition. Participants showed noticeable preferences
for BACh in how well they felt they mastered the piece, how correctly
they felt they played, and how easy they felt the piece was to learn.

length of time (in seconds) spent on level 1 (µ = 58.58, σ =
33.47), level 2 (µ = 185.60, σ = 64.62), level 3 (µ =
248.49, σ = 151.59), and level 4 (µ = 407.32, σ = 179.80)
had high standard deviations, suggesting that BACh was re-
sponding to individuals’ cognitive workload and learning
abilities.

Figure 7 shows the variation in time within levels for each
participant and the general pattern of longer time spent on
more difficult levels.

DISCUSSION
We presented an adaptive brain-computer interface, BACh,
that increases difficulty in a musical learning task when learn-
ers’ cognitive workload fell below a certain threshold. We
showed that BACh significantly increased speed and accuracy
compared to a control condition where participants learned
pieces the way they normally would. Participant feedback
also demonstrated that they felt that they played better and
it was easier to learn with BACh. Participants felt that the
timings of the difficulty level changes were accurate. Results
showed that while there was a general pattern of participants
spending longer time on the more difficult levels, there was
individual variation on time spent within levels, indicating
that BACh was responding to individual differences.

We now discuss the challenges of modeling and adapting to
learner cognitive workload using brain sensing and design-
ing adaptations accordingly, the importance of responding to
learners individually, and designing learning systems based
on learner expertise.

Modeling and Adapting to Cognitive Workload
When designing BACh, we were extremely careful to first do
no harm to the learning process. We did not want the adapta-
tions made by BACh to impede or interrupt periods of learn-
ing in the user. We did this by avoiding disruptive adaptations
during periods of cognitive workload that indicated possible
learning.

Figure 7. Length of time spent participants spent on each level of diffi-
culty. While participants spent increasing lengths of time as level diffi-
culty increased, there were individual variation within levels, suggesting
that they system was responding to user cognitive workload for each
participant individually.

One of the limitations of physiological computing is that of
mapping from physiological signals to psychological states
[12]. For example, if the fNIRS data signals that the learner’s
cognitive workload is high, this could be indicative of either a
phase of learning where the user is being pushed cognitively
in a constructive way, or it could indicate that the user is over-
loaded or overwhelmed and is not able to learn in that state.

We purposefully designed BACh not to interfere when learn-
ers’ cognitive workload was high in order to avoid disrupt-
ing a period of possible learning. This is the reason why the
adaptations never decreased the difficulty level during peri-
ods of high cognitive workload, as this could have proven
both disruptive and frustrating to the learners. However, using
high cognitive workload as the determining factor in adaptive
learning systems would be a very interesting topic to investi-
gate further. The discussion on whether high cognitive work-
load is ‘good’ or ‘bad’ during learning is still an open research
problem. It may be that the solution lies in identifying learner
emotion, or affect, in conjunction with cognitive workload, to
reveal a higher dimensional mapping of the learner’s state.

By examining the performance data and participant feedback,
it seems that BACh was able to correctly respond to learner
cognitive workload to improve playing speed and accuracy.
This suggests that we were able to accurately model and adapt
to learner cognitive workload in a learning task and guide
learners into the zone of proximal development.

Responding to Learners Individually
BACh responds to each learner individually. In the early
stages of development, BACh was originally designed to in-
crease difficulty levels during learning when learners’ cogni-
tive workload fell below a fixed percentage threshold. Early
studies showed us very quickly that this was not going to
work. Each learner was very individual in their brain mea-
surements, and what worked very well for some, would not
even trigger a fixed percentage threshold for others. Further-
more, even if it worked well for one level, it certainly was not
guaranteed that it would work for levels of varying difficulty.

Through a series of iterative design techniques, extensive par-
ticipant feedback, and many pilot studies, we came to an al-



gorithm that would assess learner cognitive workload using
both the learner’s brain data from the training task and brain
data from the current level of difficulty that the learner was
on to create a threshold for that individual on that level of
difficulty.

While there is room for further improvement, our algorithm
significantly increased learner speed and accuracy compared
to how learners would normally learn a piece of music. Some
of this individual responsiveness of BACh can be seen in the
variation of the length of time taken by learners on each level.
While there was a general pattern of longer periods of time
spent on levels with increasing difficulty, there were still in-
dividual differences within each level. Individual differences
in learning is a significant and complex topic and it is impor-
tant for any CBE system to take it into account.

Expertise of Learners
Learning and CLT literature has explored a phenomenon
called the expertise reversal effect whereby instructional tech-
niques that are beneficial to beginners can have the reverse
effects on more experienced learners [22, 23]. This differ-
ence between expert and novice is thought to be due to ex-
perts’ previously acquired schemata that have built complex
elements into fewer elements. In a task, the novice will have
to use more of their limited working memory to access and
process the individual elements than the expert, reflecting in
the difference in skill.

Our results actually suggested that less skilled piano players
benefited more from learning with BACh, as demonstrated
by the steeper lines in Figure 5 for players who made more
mistakes. BACh was designed for beginner piano players. We
had originally recruited both beginner and intermediate piano
players during our pilot studies, but quickly found that both
the musical pieces and the algorithmic parameters of BACh
were too easy and frustrating for intermediate players.

We foresee a similar system being of use to intermediate play-
ers with harder pieces to learn and different parameter set-
tings for threshold changes. We can also see such a system
being frustrating to even more advanced players who might
prefer to learn their own way and have access to the whole
piece from the beginning. We, therefore, simply suggest that
our system is targeted at and useful for beginner piano play-
ers.

FUTURE WORK
This work takes a first step in using cognitive workload, mea-
sured by brain sensing, as a determining factor in a user inter-
face for adaptive learning. While meta-analyses have shown
that fixed scheduling when increasing task difficulty is not
helpful [52, 53], now that we have sufficient data for the
length of time participants spent on each level, we can also
investigate and compare other conditions such as using ran-
dom intervals to increase difficulty level based on means or
ranges of the times spent on the different levels in this study.

We can also look at increasing task difficulty based on judg-
ment from an expert such as a piano teacher or self-judgment
from the player of when to move onto the next level. The

latter is very similar to the normal condition in this paper as
learners were encouraged to learn how they normally would.
They therefore segmented the piece between the left and
right hands and increased the complexity as their competency
grew.

We are very enthusiastic about adding the detection of emo-
tion to BACh. There has been much work carried out on the
detection of emotion using physiological sensing and facial
expression recognition in the field of affective computing for
several decades [8]. Such measurements could be used in
conjunction with fNIRS or other brain sensing devices that
are relatively resilient to motion artifacts. Emotion and learn-
ing are very closely tied together [37], with frustration often
preceding giving up. If a learning system could detect both
cognitive workload and affective state, it could be very pow-
erful learning tool indeed.

Lastly, we address the topic of generalizability to other fields
of learning. There has been a wealth of learning literature
on other subjects such as mathematics or electrical engineer-
ing. The underlying premise of BACh is to increase the level
of difficulty in a task when cognitive workload falls below a
certain threshold measured by brain sensing. This can be ap-
plied, or at least investigated, in any field where information
can be presented in increasing steps of difficulty.

CONCLUSION
We presented a brain-computer interface, BACh, that mea-
sured cognitive workload using brain sensing and increased
difficulty levels when learners’ cognitive state indicated that
they could handle more information. We showed that par-
ticipants learned musical pieces with increased accuracy and
could play with faster speed with BACh compared to a con-
trol where they learned the way they normally would. Partic-
ipants also commented that they felt that they played better
and they liked the timings of the changes. We also found
individual variations in the time spent within each level of
difficulty, suggesting that it is important for tutoring systems
to respond to individual differences and needs.

We designed BACh for beginner piano players, however, the
underlying premise of BACh can be applied to any learning
situation for a complex task that can be broken down into
steps of increasing difficulty. By using brain sensing, BACh
is able to acquire an objective view into the learner’s cognitive
state and adjust the learning task to best guide the learner into
the zone of proximal development.
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