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Let A be symmetric, positive definite (s.p.d.). Consider the problem of
solving
Ax=Db
using the conjugate gradient method. How fast does the approximate solution
converge?

One upper bound on the number of iterations needed for convergence uses
the spectral condition number k. For a symmetric positive definite matrix A,
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the ratio of the largest and smallest eigenvalues.
The bound on convergence is
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where [|e(;)[|a is the energy norm of the error at the i" iteration. This implies
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that, to reduce the initial error energy norm by a factor of €, i < [E\/Eln <—)]
€

iterations are required.

1 Preconditioned Conjugate Gradient
Idea: modify Ax = b to get faster convergence.
Let B be a symmetric positive definite matrix. Then any solution to
B 'Ax=B"'b=V
is also a solution to the original problem. B is called a preconditioning matriz

or preconditioner.
Useful preconditioners have the following properties:



e x(B~1A) should be substantially smaller than x(A).

e B should be casy to solve. Note that B~! could be dense even if B is
sparse, so we don’t want to form the inverse explicitly. However, we will
need to compute B~'y, which can be done by solving for z in Bz = y.

(Note that the product B~'A might not be symmetric. While there is not
time today to cover the details, the conjugate gradient can be applied to the
similar system B~'/2AB~1/2 which is symmetric. Further, the algorithm can
be performed in such a way that the similar system need not be constructed,
and only the preconditioner B need be used. See, e.g., Section 10.3 in Golub
and Van Loan.

Note also that B~'A will be positive definite. You can prove this as an
exercise, using the similar matrix given in the previous paragraph.)

But, how can we estimate x(B~!A)? Note that, since both A and B are
s.p.d., we have

Amin(B77A) = Amax((B=1A)=1) 7 Amax(A=1B)’ W

Note that in this reciprocal form, an upper bound on Apax (A~ B) will give a
lower bound on Amin(B~1A). Thus, if we can develop techniques for showing
upper bounds on the largest eigenvalue of B~'A, we can switch the role of A
and B, and use the techniques to get the lower bound as well.

The problem of bounding )\max(B_lA) from above is the topic for rest of
the lecture. We will first cover some general ideas, then examine a method that
works for generalized Laplacian matrices.

2 The Generalized Eigenvalue Problem

The problem of finding A’s and x’s that satisfy Ax = AB x is called the gener-
alized ergenvalue problem. For simplicity, today we will only consider the case
where both A and B are s.p.d. Thus,

Ax=ABx ¢« B 'Ax=\x. (2)

3 The Support Lemma

Let A and B be symmetric positive definite matrices, and let 7 be a real number.

Lemma 3.1 [Axelsson] If 7B — A is positive semidefinite, then Amax(B~1A) <
T.



Proof: Let u be an eigenvector of Apax(B~1A). By (2), Au = ABu. Starting
from the assumption that 7B — A is positive semidefinite, we can deduce the
following:

0 < uT(TB—A)u
ru’ Bu—u’Au
ru’ Bu—Au’Bu
= (T—)\)uTBu

Since u” Bu > 0 (B is positive definite), 7 — A > 0.
O
Definition: The support o(A, B) of matrix B for matrix A is

min{r : 7B — A is positive semidefinite}

3.1 A Way to Apply the Support Lemma

Note that, by the Support Lemma, Apmax(B~1A) < (A, B). Note also that, by
the Support Lemma and (1), 1/Amin(B71A) = Apax (A1 B) < o(B, A). Thus

 Amax(B7LA)
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<o(A,B) - -o(B,A).

We can use the Support Lemma to find upper bounds on o(A, B) and o(B, A).
Linearity is the key to using the Support Lemma. Assume that we can de-

compose A into k positive semidefinite pieces A1, As, ..., Ag such that Zle A; =

A. Likewise, suppose B can be decomposed into k positive semidefinite pieces.

Assume that we have a set {71, 7, ..., 7% } such that 7; B; — A; is positive semidef-

inite for all 7. Let 7* = max ;. Then 7*B; — A; is positive semidefinite for all

2

7, and
E
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Z(T*Bi —Al) = T*ZBZ' —ZAZ = T*B — A.
i=1 i=1 i=1

By linearity, 7* B — A is positive semidefinite.

One way to use the support lemma is to find such a decomposition of A
and B such that the subproblems are easier to solve. We can then choose the
maximum value from the 7;’s, and use that as our bound.

Can we always find such a decomposition? The answer is yes for certain
classes of matrices.



4 Generalized Laplacian Matrices

Definition: L is a generalized Laplacian matriz if and only if:
e [ is symmetric;
e all diagonal entries I;; > 0;
¢ all off-diagonal entries /;; < 0; and
o for every row 4, lii > > ., |lij].

To insure positive definiteness, we will assume that the matrix is irreducible,
and that the last inequality 1s strict for at least one row.

4.1 Generalized Laplacians and Graphs

Generalized Laplacians correspond to graphs with positive edge weights accord-
ing to the following rules:

e Each row (or column) corresponds to a vertex.

e Nonzero off-diagonal entries correspond to edges. That is, for ¢ # j, if
li; # 0, then there is an edge between vertices v; and v;. The weight of
this edge is |l;;].

e Diagonal entry l;; is the sum of the weights of the edges incident to vertex
(I

e If a diagonal entry is greater than the sum of the incident edge weights,
there is an additional edge from that vertex to an implicit zero-valued
boundary vertex.

When necessary, we use the following notation to relate graphs and matrices:
For a Laplacian L, the associated graph is G(L). The generalized Laplacian of
a graph G is denoted L(G).

The following property is a useful consequence of interpreting a Laplacian
as a graph: Let L be a Laplacian with associated graph G. Let w;; = —I;; be
the weight of edge (v;, v;). Then for all x,

xI' Lx= Z wij(ébz' - Ij)2~ (3)

(viv;)€E(G)



5 Graph Embeddings

Let G be a connected graph, and let H be a graph such that V(H) C V(G). To
embed H into G, for each edge (v;,v;) € E(H) we specify a simple path in G
from v; to v;. We apply the following definitions to embeddings:

o The weight of a path is the weight of the corresponding edge in H.

e The congestion of an edge e € (G is the sum of the weights of the paths that
include e divided by the weight of e. (In the unweighted case, this is just
the number of paths that include e.) The congestion of the embedding is
the maximum edge congestion taken over all edges in G.

e The dilation of an edge f in H is the length (the number of edges) in f’s
path in the embedding. The dilation of the embedding is the maximum
dilation taken over all edges in H.

An example of an embedding is given in Figure 1 below.
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Embedding:

Congestions:
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Figure 1: Embedding Example

5.1 Decompositions from Embeddings

These embeddings can be used to decompose the matrix 7B — A. Let &k be the
number of edges in G(A), the graph corresponding to the generalized Laplacian



A. We will decompose 7B — A into pieces TB; — A;, where A; is the Laplacian
of the graph on V(G(A)) consisting of only edge e; of G(A). B; is the Laplacian
of the (appropriately weighted) corresponding path in G(B).

To determine the appropriate weighting of the paths, note that an edge e
in G(B) may show up in multiple paths in the decomposition. We must choose
the weights of e on these paths such that they sum to w,, the weight of e.

Let c. be the congestion of edge e in B; let w; be the weight of edge f in A.
Assume that the path for f includes e. The amount of weight from w, assigned
to the path associated with f is w

f
Ce
(In the unweighted case, this will be just --.)

There is no problem if there are edgese in G(B) that do not occur in any
path. These edges can be separated out into a generalized Laplacian, which is
positive semidefinite.

An example of such a decomposition is given in Figure 2 below.

Path Weights:

Figure 2: Decomposition Example

6 The Path Problem

We’ve reduced the problem of finding a 7 that is an upper bound of o(A, B)
to the problem of computing 7;’s for a number of problems that consist of
supporting an edge with a path, then setting 7 to the maximum over the 7;’s.
The problems involving paths are much easier to solve than the original.



Now consider the problem of a path p supporting an edge e. Assume the
dilation for edge e is j, and let w, be the weight of e in G(A). For simplicity,
we will reindex the vertices from 1 to j + 1 according to their order along the
path. Let ¢; be the congestion on edge i of the path. The weight of edge ¢ in
the path is we/c¢;.

Using (3), we can state the path problem as follows: Choose 7, such that

w
T ) (@i = i)’ 2 we(en = zj4a)7,
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6.1 The Path Problem and Electrical Circuits

CLAIM: The path problem looks like the power problem in a series resistive
circuit. In particular, the entries in x correspond to voltages at path nodes.
The question is, given voltages at the ends of the circuit, what voltages at the
internal nodes produce the minimum power dissipation?

Laplacians can be used to represent resistive circuits, where the off-diagonal
entries represent conductances between nodes in the circuit (conductances are
the reciprocals of resistances). We construct a series resistive circuit correspond-
ing to path p as follows: For edge ¢ on the path, assign a resistor with resistance
r; = ¢; (i.e., resistance corresponds to congestion). Let

J J
ST
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The following theorem is well-known:

Theorem 6.1 For any x,

J
1
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Proof: We can rewrite the left-hand side of the theorem statement in terms of
congestions as follows:

Eclzcl —CEZ'_H)?.

i=1 i=1



Rewriting slightly and applying Cauchy-Schwarz gives the following;:
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1 (Ver)? 2_; W(fm—l‘m)? > (Z; \/a%(lz - :m+1)) = (w1 —xj11)°.

The last inequality follows because the sum telescopes. This proves the theorem.
O

Thus, for any path problem, it is sufficient to set 7, = r,, the sum of the
congestions along the path.

6.2 A Simplification

To compute 7 in a simpler way, we note the following two facts:

e For any path p in the embedding, setting all congestions equal to the
maximum congestion on the path only increases 7,, which remains an
upper bound.

o If all congestions on the path have value ¢, then the value we compute for
7, is the product of the path length times c.

Thus, the 7, we compute for any path p is less than the product of the
path’s length times the maximum congestion on any path edge. This product
is bounded above for any path by the product of the embedding’s congestion
times its dilation.

Though the product of the congestion of the embedding times dilation can
be greater than the value of 7 derived by looking at all paths, in many cases the
difference is not more than a constant factor. Since this product is often much
easier to compute, it is a valuable simplification.



