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Abstract

A class of graphs called generalized ladder graphs is defined. A sufficient
condition for pairs of these graphs to be chromatically equivalent is proven.
In addition a formula for the chromatic polynomial of a graph of this type is
proven. Finally, the chromatic polynomials of special cases of these graphs
are explicitly computed.
Key Words: chromatic polynomial, chromatically equivalent graphs, lad-
der graphs, generalized ladder graphs

Introduction and Definitions

We define topped ladders TLn with apex a and base pair b1 and b2 for
n = 0, 1, 2, 3, . . . . We call the edge joining the base pair simply the base of
the topped ladder. TL0 is K3 with any vertex designated as its apex and
the other two vertices designated as the base pair.

We define TL1 as TL0 with an additional “rung” adjoined. Let TL0 be
given with apex a and base pair b1 and b2. Let (r1, r2), (r2, r3), and (r3, r4)
form a path of length three. Identify r1 with b1 in TL0 and r4 with b2 in
TL0. Rename the identified vertices as r1 and r2. The resulting graph on
seven vertices is TL1. Designate r2 and r3 as the base pair of TL1 and
rename them b1 and b2. Repeat this process to form TLn from TLn−1 and
a path of length three for n > 1. The construction for TL1 is shown in
Figure 2.
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Figure 1: TL0
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Figure 2: Constructing TL1

We refer to TLn simply as an n − ladder. TLn for n = 0, 1, 2, 3, and 4 are
shown in Figure 3.
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Figure 3: TLi for i = 0, 1, 2, 3, 4.

We use the n-ladder graphs as building blocks to form the graphs we
want to study.

Let TLn1
and TLn2

be n1- and n2-ladder graphs. Join the apex of TLn1

with the apex of TLn2
by an edge. Denote such a graph as L(n1, n2). Let

M be any graph such that V (M)∩ V (L(n1, n2)) = {b1, b2, b3, b4}, where b1

and b2 are the base pair for TLn1
and b3 and b4 are the base pair for TLn2

.
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Let E(M) ∩ E(L(n1, n2)) = {(b1, b2), (b3, b4)}. Define the new graph as a
generalized ladder graph and denote it as GL(n1, n2, M).

The results of this paper give a condition for two generalized ladder
graphs to be chromatically equivalent. The chromatic polynomial of any
generalized ladder graph will be computed in terms of P (M, λ) and
P (GL(0, 0, M), λ).

In [HM] it was pointed out that if the n − ladders for n = 2, 3, and 4
are joined as shown in Figure 4, the resulting graphs are chromatically
equivalent.

Figure 4: Chromatically Equivalent Graphs

Since these graphs are special generalized ladder pairs, we will show the
fact that their chromatic polynomials are the same is no random event.

For a graph G = (V, E) we use G/(a, b) to denote the graph formed by
deleting the edge (a, b) and then identifying the two vertices a and b as a
new vertex x. Any edges incident to a and b other than (a, b) are made
incident to x. This new graph is called the contraction graph for the edge
(a, b). We use G − (a, b) to denote the graph resulting from deleting the
edge a, b) from G; the set of vertices remains the same in this case.

The Delete-Contract Theorem for a graph G relative an edge (a, b) in
E(G) expresses the chromatic polynomial of G in terms of the chromatic
polynomials of graphs formed by contracting and deleting (a, b). The the-
orem states

P (G, λ) = P (G − (a, b), λ) − P (G/(a, b), λ)

where we assume for G−(a, b) that the vertex set of this graph is V (G). For
G/(a, b) we assume the vertex set is (V (G)−{a, b})∪{x} where x 6∈ V (G).
This is a form of Theorem 1 from [RCR. Other standard notions and results
about chromatic polynomials are found in [RCR].
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Fundamental Lemma

A reduction formula for a square-triangle subgraph will be the key to prov-
ing that GL(n1, n2, M) and GL(n3, n4, M) are chromatically equivalent
when n1 + n2 = n3 + n4.

In the lemma below, We represent a chromatic polynomial by a diagram
of the graph it comes from. More specifically, in the lemma statement we
show only the part of the graph showing the square-triangle subgraph.

Lemma 1.
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P (G, λ) = P (G − (y, C), λ) − P (G/(y, C), λ)

= P ([G − (y, C)] ∪ (A, x), λ)

+ P ([[G − (y, C)] ∪ (A, x)]/(A, x), λ)

− P ([G/(y, C)] − (x, y = C), λ)

+ P ([G/(y, C)]/(x, y = C), λ)

= (λ − 2)P ([[G − (y, C)] ∪ (A, x)] − {(A, y), (y, x)}, λ)

+ P ([[G − (y, C)] ∪ (A, x)]/(A, x), λ)

− P ([G/(y, C)] − (x, y = C), λ)

+ P ([G/(y, C)]/(x, y = C), λ)

Since

P ([[G − (y, C)] ∪ (A, x)]/(A, x), λ) = P ([G/(y, C)] − (x, y = C), λ),

we have

P (G, λ) = (λ − 2)P ([[G − (y, C)] ∪ (A, x)] − {(A, y), (y, x)}, λ)
+P ({G/{(y, C)}}/(x, y = C), λ)
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as required. 5

Using Lemma 1 we can prove how P (GL(n1, n2, M), λ) and P (GL(n1−
1, n2 + 1, M), λ) are related.

Theorem 1. Let n1 > 0. Then

P (GL(n1, n2, M), λ) = P (GL(n1 − 1, n2 + 1, M), λ).

Proof. We provide a diagrammatic proof. In Figure 5 you can see the
result of applying Lemma 1 to the relevant portions of the two graphs
GL(n1, n2, M) and GL(n1 − 1, n2 + 1, M).
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Figure 5: P (GL(n1, n2, M), λ) = P (GL(n1 − 1, n2 + 1, M), λ)

Since the sum of the chromatic polynomials of the graphs on the right
hand sides are equal, the result follows. 5

We can now prove that graphs of the form GL(n1, n2, M) are chromat-
ically equivalent when n1 and n2 are suitably restricted.

Theorem 2. Let GL(n1, n2, M) and GL(n3, n4, M) be generalized ladder
graphs for some graph M . If n1 + n2 = n3 + n4 and either (i) n1 > 0 or
n3 > 0 or (ii) n1 = n2 = 0, then

P (GL(n1, n2, M), λ) = P (GL(n3, n4, M), λ).

Proof. If n1 = n2 = 0, the result is obvious. Without loss of generality let
n1 > n3 and n1 > 0. Using Theorem 1 we prove by induction on i that

P (GL(n1, n2, M), λ) = P (GL(n1 − i, n2 + i, M), λ).

Setting i = n1 − n3 proves the required result. 5
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Computing the Chromial of GL(n1, n2, M)

We will find a recurrence relation for the chromial of GL(n1, n2, M) in terms
of the value of the sum n1 + n2. GL(n1, n2, M) is shown in Figure 6.
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Figure 6: GL(n1, n2, M)

Theorem 3. Let GL(n1, n2, M) be a generalized ladder graph for n1, n2 ≥
0. Then

P (GL(n1, n2, M), λ) =
1

λ
(λ − 1)(λ − 2)2

·[(λ2 − 3λ + 3)n1+n2 − (3 − λ)n1+n2 ]P (M, λ)

+(3 − λ)n1+n2P (GL(0, 0, M), λ).

Proof. We use standard techniques for computing chromatic polynomials
as found in [RCR]. We need both Theorems 1 and 3 from that paper.

P (GL(n1, n2, M), λ) =

(λ − 2)P (GL(n1, n2, M)/(x, y), λ)

+ P ([GL(n1, n2, M)/(x, y)]/(x = y, C), λ) (by Lemma 1)

= (λ − 2)P ([GL(n1, n2, M)/(x, y)] − (C, D), λ)

− (λ − 2)P ([GL(n1, n2, M)/(x, y)]/(C, D), λ)

+ P ([GL(n1, n2, M)/(x, y)]/(x = y, C), λ)

= (λ − 1)(λ − 2)P ([[GL(n1, n2, M)/(x, y)] − (C, D)] − (x = y, C), λ)

− (λ − 3)P ([GL(n1, n2, M)/(x, y)]/(C, D), λ)
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A fuller view of the first graph on the last right hand side (see Figure 7)
will make the computation of its chromial clearer.
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Figure 7: First Graph on the Right Hand Side

The two triangles contribute (λ − 2)2 to the chromial of GL(n1, n2, M).
The remainder of the two ladders contribute (λ2 − 3λ + 3)n1+n2−1P (M, λ)
where there is a total of n1 + n2 − 1 rungs in the two ladders.

The second graph on the last right hand side has (λ− 3)P (GL(n1, n2 −
1, M), λ) as its chromial. For clearer computations define Vk = GL(n1, n2, M)
where n1 + n2 = k with k ≥ 0. Let

α = (λ − 1)(λ − 2)3P (M, λ)

and
β = λ2 − 3λ + 3.

Then

P (Vk, λ) = (λ − 1)(λ − 2)3(λ2 − 3λ + 3)k−1P (M, λ) − (λ − 3)P (Vk−1, λ)

= αβk−1 + (3 − λ)P (Vk−1, λ)

= αβk−1 + (3 − λ)αβk−2 + (3 − λ)2P (Vk−2, λ)

= · · ·

= α[βk−1 + (3 − λ)βk−2 + (3 − λ)2βk−3 +

· · · + (3 − λ)k−1] + (3 − λ)kP (GL(0, 0, M), λ)

=
α[βk − (3 − λ)k]

β − (3 − λ)
+ (3 − λ)kP (GL(0, 0, M), λ)
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=
1

λ
(λ − 1)(λ − 2)2[(λ2 − 3λ + 3)k − (3 − λ)k ]P (M, λ)

+ (3 − λ)kP (GL(0, 0, M), λ) 5

Application 1. Let M = K2 and identify the base pairs of TLn1
and

TLn2
to form the rope-ladder graph [RR] shown in Figure 8.
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Figure 8: Rope-Ladder Graph

P (GL(n1, n2, K2) = (λ − 1)2(λ − 2)2(λ2 − 3λ + 3)n1+n2

− 2(λ − 1)(λ − 2)(3 − λ)n1+n2 .

Proof. We have that

P (M, λ) = P (K2, λ) = λ(λ − 1)

and
P (GL(0, 0, K2), λ) = P (K4, λ) = λ(λ − 1)(λ − 2)(λ − 3).

Therefore,

P (GL(n1, n2, K2), λ) =
1

λ
(λ − 1)(λ − 2)2

· {(λ2 − 3λ + 3)n1+n2 − (3 − λ)n1+n2}λ(λ − 1)

+ (3 − λ)n1+n2λ(λ − 1)(λ − 2)(λ − 3)

= (λ − 1)2(λ − 2)2(λ2 − 3λ + 3)n1+n2

− 2(λ − 1)(λ − 2)(3 − λ)n1+n2 5

This is another proof of a computation found in [RR].
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Application 2. Let M be the graph shown in Figure 9.

M

Figure 9: M

Then GL(0, 0, M) is as shown in Figure 10:

a b

c d

Figure 10: GL(0, 0, M)

For the specified M, we have that:

P (GL(n1, n2, M), λ) = (λ− 1)4(λ− 2)4{(λ2 − 3λ+3)n1+n2 − (3−λ)n1+n2}

+(3 − λ)n1+n2P (GL(0, 0, M).
Proof. Using the alternate form of Theorem 1 from [RCR], we get

P (M, λ) = λ(λ − 2)2(λ − 1)3.

P (GL(0, 0, M), λ) = P (GL(0, 0, M) ∪ (a, d), λ)
+P (GL(0, 0, M) ∪ (a, d)/(a, d), λ).

Using two applications of Theorem 3 from [RCR], we get

P (GL(0, 0, M), λ) =
(λ(λ − 1)2(λ − 2)2 − λ(λ − 1)(λ − 2)(λ − 3))2

λ(λ − 1)

+
λ2(λ − 1)2(λ − 2)2(λ − 3)2

λ

= λ(λ − 1)(λ − 2)2(λ4 − 7λ3 + 19λ2 − 25λ + 16)
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The computation can now be completed using Theorem 3 above:

GL(n1, n2, M), λ) =

1

λ
(λ − 1)(λ − 2)2{(λ2 − 3λ + 3)n1+n2

− (3 − λ)n1+n2}λ(λ − 2)2(λ − 1)3

+ (3 − λ)n1+n2P (GL(0, 0, M), λ)

= (λ − 1)4(λ − 2)4{(λ2 − 3λ + 3)n1+n2 − (3 − λ)n1+n2}

+ (3 − λ)n1+n2P (GL(0, 0, M), λ)

= (λ − 1)4(λ − 2)4{(λ2 − 3λ + 3)n1+n2 − (3 − λ)n1+n2}

− λ(λ − 1)(λ − 2)2(3 − λ)n1+n2(λ4 − 7λ3 + 19λ2 − 25λ + 16) 5

Cycle of Ladders

The next result requires a slight generalization of the definition of a ladder.
For any ladder TLn with base pair b1 and b2 we define the based ladder

TBLn to be the graph TLn with one new vertex b, called the base point,
together with two new edges (b1, b) and (b2, b). We can now define a sequence
of TBLni

for 1 ≤ i ≤ k, called a cycle of ladders, by adding edges joining
the base point of TBLn1

to the apex of TBLn2
, the base point of TBLn2

to the apex of TBLn3
, . . . , and the base point of TBLnk

to the apex of
TBLn1

. We denote a cycle of ladders as C(n1, n2, · · ·nk), where the ni

specify the size of the based ladders in the order in which they appear. An
example of T = C(1, 2, 3, 1) is shown in Figure 11.

Figure 11: Cycle of Ladders

Theorem 4 leads to a characterization of those cycles of ladders that are
chromatically equivalent. Finally, we can actually compute the chromatic
polynomial of any cycle of ladders. We use the transformation of the cycle
of ladders given in Theorem 4 to find a convenient form for computation.
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Theorem 4. Let T be a cycle of ladders C(n1, n2, . . . nk) composed of
TBLn1

, TBLn2
, . . ., TBLnk

where these graphs are connected in that
order. Then

P (T, λ) = P (C(0, 0, · · · , 0, n1 + n2 + · · · + nk), λ).

Proof. The proof is straightforward, and we leave the details to the reader.
The proof involves repeated application of Theorem 2, using generalized
ladders drawn from adjacent ladders in the cycle. Working around the cycle,
Theorem 2 shows that if we have adjacent ladders TBLni

and TBLni+1

where i ∈ {1, 2, . . . , k − 1} the chromatic polynomial is the same for the
cycle of ladders in which TBLni

and TBLni+1
are replaced with TBL0

and TBLni+ni+1
, respectively. In this way all ladders but TBLnk

can be
transformed into copies of TBL0 as in the statement of the theorem. 5

As an example of using this theorem, Figure 12 shows the decomposition
step needed for computing the chromatic polynomial of the graph T =
C(1, 2, 3, 1) that was shown in Figure 11.

M

Figure 12: Decomposition for Computing the Chromatic Polynomial of a
Cycle of Ladders

Using Theorem 3 of [RCR] it is easy to show that P (M, λ) = λ(λ−1)7(λ−
2)6. The details of the rest of this computation and the general formula
that can result from using Theorem 4 are left for the reader.
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