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Abstract

We introduce the path resistance method for lower bounds
on the smallest nontrivial eigenvalue of the Laplacian matrix
of a graph. The method is based on viewing the graph
in terms of electrical circuits; it uses clique embeddings
to produce lower bounds on A and star embeddings to
produce lower bounds on the smallest Rayleigh quotient
when there is a Dirichlet boundary condition. The method
assigns priorities to the paths in the embedding; we show
that, for an unweighted tree 7', using uniform priorities for
a clique embedding produces a lower bound on A2 that is
off by at most an O(log diameter (7)) factor. We show that
the best bounds that this method can produce for clique
embeddings are the same as for a related method that uses
clique embeddings and edge lengths to produce bounds.

1 Introduction

In this paper we consider methods based on graph em-
beddings for estimating the smallest nontrivial eigen-
value of the Laplacian matrix representation of a graph.
The Laplacian is one of many ways to view a graph as
a matrix; it is defined as follows: Let G = (V, E) be
an undirected graph with vertices vy,...,v,. Then the
Laplacian of G is an n x n matrix L such that

degree(v;) ifi=j
lij = -1 if (i,j) € E
0 otherwise

Tt is not hard to see that I is positive semidefinite (all
eigenvalues are > 0). Since the row sums of L are all
zero, the smallest eigenvalue is zero. If GG is connected
the second smallest eigenvalue A5 is positive.

The study of the connection between Laplacian
spectra (particularly with respect to A2) and properties
of the associated graphs dates back to Fiedler’s work in
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the 1970’s (see, e.g., [Fie73] and [Fie75]). These prop-
erties have been used in graph algorithms, particularly
algorithms for finding small separators [PSL90].

The Laplacian also has an important role in rep-
resenting physical problems. It often occurs in finite
difference, finite element, and control volume represen-
tations of problem involving elliptic partial differential
equations. These problems often include a Dirichlet
boundary condition that specifies that the values at a
set of vertices are zero. To represent this condition in
the Laplacian, the rows and columns corresponding to
the boundary vertices are deleted from the matrix. The
resulting matrix is positive definite, and it is the small-
est eigenvalue of the matrix that is of interest.

Bounds on the smallest nonzero eigenvalues of both
forms of the Laplacian have other important applica-
tions. Since the matrices are symmetric, their extreme
eigenvalues can be used in computing their condition
numbers, which are used in the study of iterative linear
system solvers to estimate rates of convergence [HY81],
and to analyze the quality of preconditioners [Axe92,

Procedure: The Path Resistance Method
Method:
1. Construct a path embedding of K, into G, i.e.,
construct a path between ever pair of vertices

of G.

2. For each edge e;; compute the congestion ¢;; =

[{Plei; € P}

3. For each path P and each edge ¢;; on P allocate
a resistor of size ¢;; to P.

4. For each path P compute its resistance, i.e.,
ZeleP ¢;j. Let r be the maximum resistance
over all paths.

5. return “n/r < Ay”.

Figure 1: The Uniform Priority Path Resistance

Method



GMZ95]. Bounds on Ag are useful in the analysis of
spectral partitioning, both because Ay occurs in bounds
on cut quality [Moh89], and because they can be used in
isolating structural properties of the eigenvectors used
in making the cuts [GM95, ST96]. The eigenvalue Ag
has been related to expansion properties of graphs, and
can be used in determining if a graph is an expander
[AMB85a, Alo86].

In many of the preceding applications, it 1s neces-
sary to show bounds for classes of graphs in order to
state results in terms of asymptotic algorithm behavior.
For example, in the analysis of spectral partitioning,
[GM95] uses eigenvalue bounds on a family of bounded-
degree graphs to prove facts about the structure of
eigenvectors used in partitioning; [ST96] gives an up-
per bound on planar graph eigenvalues that can be ap-
plied in bounds on the cut quotient of the resulting cut.
The embedding techniques we present are well-suited
to producing such general results, and can be used with
known results about embeddings. We have used them to
generate lower bounds for families of graphs where the
critical path resistance can be parameterized in terms
of the size of the family member.

Note that the applications listed above involve both
upper and lower bounds. Upper bounds on Ay are
usually given by exhibiting small Rayleigh quotients.

If x # 0 is an n-vector ? Rayleigh quotient is };TTL;(. In
fact Ay = minz x—0 % Thus a Rayleigh quotient

with >"x = 0 gives an upper bound on A;. As a
beautiful example, Spielman and Teng have shown that
Az = O(1/n) for bounded degree planar graphs by
constructing a small Rayleigh quotient for each such
graph [ST96].

In the Dirichlet boundary case we are interested in
the smallest eigenvalue A. Consider the Laplacian L
with the rows and columns of the boundary vertices
deleted. Then A = minx );TTLXX. In this case the
Rayleigh quotient has a continuous analog: Let Q be
a compact domain in IR? with boundary T, e.g. the
unit square in the plane, and let u # 0 vary over all
differentiable functions defined on € such that u = 0 on
['. Then the Rayleigh quotient is

where Vu is the gradient of u. This lower bound on ¢
is known as a Poincare inequality. This analog provides
useful insight on the problem and helps with the proofs
to follow.

We start by describing a very simple yet powerful
method for bounding As from below, shown in Figure 1.
We show that the Path Resistance Method correctly

bounds A; from below. Note that the quality of the
lower bound improves with the quality of the path em-
bedding since a better embedding should decrease the
congestion. We also show that it is sometimes possible
to improve the lower bound by assigning a priority to
each path and allocating the edge conductances based
on the priorities. Note that the path resistance method
as stated in the figure does not mention priorities; we
shall refer to that version as the unit-priority case.

The clique embedding version of the Path Resis-
tance Method is closely related to another clique embed-
ding technique presented in [Kah96] that assigns edge
lengths and computes the sum of the lengths of all paths
incident to each edge. We show that these methods are
duals of one another, and that the best lower bounds
computed by these methods are the same.

We also present a version of the Path Resistance
Method that is applicable in the Dirichlet boundary
case. Instead of embedding a clique, we embed a star
into the graph, with the boundary vertices consolidated
into the vertex at the center of the star.

Finally, we show that the clique embedding version
of the Path Resistance Method with uniform priorities
is robust when applied to trees. We produce upper and
lower bounds to show that for a tree T using uniform
priorities, our estimate 1s off by at most a factor of
O(log diameter(T")). Tt is somewhat surprising that such
a simple way of setting the priorities gives such a good
bound. It is open as to how well the uniform priority
method does for general graphs.

2 Previous Work

Prior work related to the applications of the lower
bounds has been cited in the Introduction. The use
of clique embeddings to bound eigenvalues arose in
the analysis of mixing times for Markov chains by
Jerrum and Sinclair [JS89] [ST89]. Further work in
this direction was done by Diaconis and Strook [DS91]
and by Sinclair [Sin92]. Kahale [Kah96] generalizes
this work in terms of methods assigning lengths to
the graph edges, and shows that the best bound over
all edge length assignments is the largest eigenvalue of
the matrix I”7T, where T is a matrix representing the
path embedding ([Kah96] also cites unpublished work
by Fill and Sokal in these directions). He also gives
a semidefinite programming formulation for a model
allowing fractional paths, and shows that the bound is
off by at most a factor of log? n. He shows this gap is
tight; he also notes that the results can be applied to
Laplacians with suitable modifications.



3 Terminology, Notation, and Background

Results

We assume that the reader is familiar with the basic
definitions of graph theory (in particular, for undirected
graphs), and with the basic definitions and results of
matrix theory. A graph consists of a set of vertices V'
and a set of edges F'; we denote the vertices (respectively
edges) of a particular graph G as V(G) (respectively
E(G)) if there is any ambiguity about which graph
is referred to. When it is clear which graph we are
referring to, we use n to denote |V].

We use the term path graph for a tree that has
exactly two vertices of degree one. That is, a path graph
is a graph consisting of exactly its maximal path. A star
is a tree with exactly one vertex that is not a leaf. We
call the non-leaf vertex the center of the star.

3.1 Matrices and Matrix NotationWe use capital
letters to represent matrices and bold lower-case letters
for vectors. For a matrix A, a;; or [A];; represents
the element in row ¢ and column j; for the vector x,
z; or [x]; represents the i*P entry in the vector. The
notation with square brackets is useful in cases where
the matrix or vector name is already subscripted. The
notation x = 0 indicates that all entries of the vector
x are zero; | indicates the vector that has 1 for every
entry. For Laplacians, we index the eigenvalues of an
n X n matrix in non-decreasing order. A; represents the
smallest eigenvalue, and A, the largest. For 1 < i < n,
we have A;_1 < A; < Ajp1. We use the notation A;(L)
(respectively X;(G)) to indicate the i*" eigenvalue of
matrix I (respectively of the Laplacian of graph G) if
there is any ambiguity about which matrix (respectively
graph) the eigenvalue belongs to. wu; represents the
eigenvector corresponding to A;.

3.2 The Laplacian Matrix Representation of a
GraphA common matrix representation of graphs is the
Laplacian. Let D be the matrix with d;; = degree(v;)
for v; € V(G), and all off-diagonal entries equal to
zero. Let A be the adjacency matrix for G (a;; = 1
iff (vi,v;) € E(G), 0 otherwise). Then the Laplacian
representation of GG is the matrix L = D — A.
The following are some useful facts about the Lapla-
cian matrix:
e The Laplacian is symmetric positive semidefinite,
so all its eigenvalues are greater than or equal to 0

(see e.g. [AM85b]).

e A graph G is connected if and only if 0 is a simple
eigenvalue of its Laplacian (see e.g. [AM85b]).

e The following characterization of Ay holds (see

e.g. [Fie73]):

xT ILx
Tx

(3.1)

Ay = min
X171 X

e For any vector x and Laplacian L of the graph G,
we have (see e.g. [FieT5]):

2

(viv;)EE(G)

(3.2) x! Ix =

(2 — ;)

An edge-weighted graph is a graph for which a
real, nonzero weight w;; is associated with each edge
(vi,vj) (we consider a zero edge weight to indicate the
lack of an edge). Fiedler extended the notion of the
Laplacian to graphs with positive edge weights [Fie75];
he referred to this representation as the generalized
Laplacian. Let w;; be the (positive) weight of edge
(¢,7) in graph G. Then the entries of the generalized
Laplacian L of G are defined as follows: [;; is the sum
of the weights of the edges incident to vertex v;; for ¢ # j
and (v;,v;) € E(G), lij = —w;j, and l;; = 0 otherwise.

With the exception of equation (3.2), the proper-
ties listed above also apply to generalized Laplacians.
A slightly modified version of (3.2) holds for the gener-

alized Laplacian L:

xTIx = 2

by

(vi,vs)€B(G)

wij(xi — ;)

We usually use L to denote the Laplacian of a graph
G, and K to represent the Laplacian of the clique K
(whether K refers to the graph or the Laplacian will be
clear from context).

3.3 Graph EmbeddingsWe start with the notion
of embedding one graph into another. Let G and H
be connected graphs such that the vertex set of H is a
subset of the vertex set of G. An embedding of H into
G is a collection I' of path subgraphs of GG such that for
each edge (v;,v;) € E(H), the embedding contains a
simple path 7;; from v; to v; in G. For full generality,
we will allow fractional paths in our embeddings: i.e.,
an edge (v;,v;) € E(H) can be associated with a finite
collection of simple paths from v; to v; in G; each such
path has a positive fractional weight associated with it
such that the weights add up to 1. If a path v includes
edge e, we say that v is incident to e.

In the unit-priority case, the congestion cong(e)
of an edge e € F(G) is the number of paths in
the embedding incident to e (fractional paths using e
contribute their fractional weight to this count). The
resistance r(e) of an edge is its congestion divided by

its weight: r(e) = Cozﬁl. The resistance of a path



r(7y) is computed from the edge resistances in the same
way that the resistance of a series of resistors would
be computed in an electrical network. That is, r(y) =
Eeew r(e). The largest path resistance rmax is defined
as Pmax = max,er 7(y). The corresponding path is
called the critical path. Note that rp.. 1s always
defined with respect to an embedding; the particular
embedding will be clear from the context, and thus we
won’t specify it in the notation.

The definitions change slightly when we use path
priorities. Let p;; be the path priority for v;;, and let
p be the vector of priorities. The congestion cong(e)
of edge e is the sum of the priorities of e’s incident
paths. Each edge has a resistance factor r(e), defined
as the congestion of the edge divided by its weight. The
resistance of edge e with respect to 7;; is rp(fj). The
resistance r(7y) of a path 7 is the sum of the resistance
factors of the edges in the path divided by the path
priority (i.e., r(vij) = I%j EGE%]_ r(e)). The maximum
path resistance taken over all paths in I is denoted 7pax.
The corresponding path is called the critical path.

We note that using these modified definitions, the
general method for computing lower bounds using pri-
orities is clear: Compute 7y ax according to the revised
definitions. Then rn:LT < As.

4 Lower Bounds Xy  for Generalized

Laplacians

4.1 A Bound Based on a Clique Embedding
We now consider the case in which G is a graph for
which we would like to bound Ay of G’s (generalized)
Laplacian from below. We will use a clique embedding
to decompose the graph. The proof is based on a view
of Laplacians as electrical circuits.

We start with an easy lemma that helps convey
the nature of the bounding technique. Let L be the
Laplacian of (edge-weighted) graph G, and let K be the
Laplacian of the complete graph on n = |V(G)]| vertices.

LEMMA 4.1. Let « be a positive real number. If
al — K is positive semidefinite, then Ay(L) > .

Proof. Assume that o — K is positive semidefinite.
Consider uf (oL — K)uy, where uy is the eigenvector
corresponding to Az(L). Without loss of generality,
assume that us has been normalized to length 1. Note
that every vector orthogonal to Tisan eigenvector of K
with eigenvalue n. Therefore we have

on

ug(aL — K)uy = augLuz — ugKuz =aly—n >0,

where the last inequality holds by the definition of a

positive semidefinite matrix. The lemma follows. O
Thus, if we can demonstrate an « sufficiently large

to make o, — K positive semidefinite, we can bound A,

from below. To do this, we form an embedding (T, p)
of the complete graph into GG, then break aL — K into
pieces consisting of edges in K and the corresponding
paths in I'. We use the following additional notation:
E;; denotes the Laplacian of the graph on V(G) that
has only the single edge (7,7). L(7ij) represents the
generalized Laplacian on V(G) whose edges are the
edges of 7;;, and whose edge weights are set as follows:
each path 7;; using an edge (g, h) gets a share of wy
proportional to —24 This works out to

cong(g,h)"
Wgh Pij  _ Pij
cong(g,h) 7Ty

It is easy to see that the weights assigned to all incident
paths for (g,h) sum to wy,. (If fractional paths are
involved, then the matrix L(v;;) is multiplied by the
fractional coefficient of path 7;;.)

We now state the theorem that gives us the tech-
nique for bounding As:

THEOREM 4.1. For any generalized Laplacian L of
a connected graph G with positive edge weights, and any
cligue embedding into G,

n
Ay >

rm ax

Proof. Any embedding of the complete graph into
G defines a natural decomposition of the Laplacian L
in terms of the [;;’s: define the matrix Lyonpasn as the
Laplacian of the graph on V(G) that includes any edges
of GG not used in any path 7. It 1s easy to see that

L= Z L('}/) + Lnonpath~
vel

Since Lponpatnh 18 positive semidefinite, the following
inequality holds for any positive @ and real vector x:

(4.3) xT Z (aL(yi;) — Eij) | x <xT (ol — K)x.

Applying properties of linearity and rewriting gives
(4.4) E (axTL('yij)x — XTEZ']'X) < x7 (aL — K)x.
i<j

Now consider the terms axTL('yij)x—xT E;;x. By (3.2),
xTEl-jx = (z; — ;). Likewise, the term for the path
can be written in terms of its edges and edge weights:

oszL(’yij X =« E B (2, — l‘h)z
Tgh
(9,h)€7i5

Since all the priorities and resistance factors are posi-
tive, the sum in the expression above can be interpreted



as the energy dissipation of a series of resistances (the
reciprocals of the %78) given a set of potentials (the
z;’s) at the nodes between the resistances. Tt is well
known (see e.g. [DS84]) that this quantity is minimized
when the potentials at the internal nodes are consistent
with Kirchoff’s law (this is easily seen through an ap-
plication of the Cauchy-Schwartz inequality). At that
minimum the sum is the square of the potential differ-
ences of the endpoints divided by the path resistance:

E &(&l’g_l‘hf > 7(:6;(_ :1:]')2.

r .
(9,h)€v:; gh %ij)

Thus, if @ = rmax, we have for every path v;; that

(zi — ;)
r(7ij)
For this value of «, the left-hand sides of inequali-
ties (4.3) and (4.4) are nonnegative. Thus rmaxl —
K is positive semidefinite, and the theorem holds by

Lemma 4.1.

If fractional paths are involved, then each L(y;;)
is multiplied by the fractional coefficient, as is the
corresponding F;;. It is easy to see that the theorem
also holds in this case. O

OzXTL(")/Z']')X—XTEZ’jX Z Tmax —(:EZ'—.CL‘]')Z Z 0.

We now compare the path resistance method with
the edge length method described in [Kah96]. The
method as applied to Laplacians is described as follows:

e Specify a clique embedding for the graph, and
assign each edge a positive length.

e Compute the length of each path with respect to
the edge lengths.

e For each edge, compute the sum of the lengths of all
incident paths divided by the length of that edge.

Let pmax be the maximum such value taken over all

the edges. Then —— is a lower bound for As.

The proof that thlfgxproduces a lower bound can
be done in a fashion similar to the proof given above
for the path resistance method; however, the argument
manipulates the x” Kx term.

The two methods can be thought of in terms of
the following electrical analogies: the path resistance
method partitions the conductance (i.e., the reciprocal
of the resistance) of each edge with respect to the inci-
dent paths. The resulting paths have conductances; we
find a multiplier sufficient to increase the conductance
of every path so that it is at least as big as the conduc-
tance of the corresponding clique edge. The edge length
method also deals with path conductances, but instead
increases the conductance of each edge in the graph such
that the conductance of each path in the embedding is
equal to the conductance of the associated clique edge.

The two methods are duals of each other in the
following sense:

THEOREM 4.2. Guwen a path embedding, the best
lower bound for the path resistance method taken over all
allowed priority assignments and the best lower bound
for the edge length method taken over all allowed length
assignments is the same.

Proof. To show this, we will use a representation
presented by Kahale in [Kah96]. He defines an embed-
ding matrix [' as follows: Each row of I' represents a
path between a pair of distinct vertices. A row entry is
1 if the corresponding edge is in the path and zero oth-
erwise (this is easily generalized to fractional paths). Tt
is easy to see that multiplying a vector of edge lengths
by ' computes the length of each path, and that multi-
plying the result by I'" sums the lengths of the incident
paths for each edge. Thus multiplying an edge vector by
I'TT and dividing the result for each edge by the original
length and taking the maximumis a way to compute the
value pmax used in the edge length lower bound. I''T
is clearly a nonnegative matrix, and Kahale shows, us-
ing the properties of such matrices (see, e.g., [Min88]),
that the best lower bound for this method is the largest
eigenvalue of this matrix.

The path resistance lower bound can be computed
by multiplying a vector of priorities by I'T”, then
dividing the result termwise by the original priorities
and setting rmyax to the maximum. The same arguments
about nonnegative matrices apply. However, I'T7 and
I'TT have the same set of nonzero eigenvalues; this is
easily seen by showing that for every eigenvector u of a
nonzero eigenvalue of I'T” TTu is an eigenvector of I7TT
with nonzero eigenvalue; likewise, if u is an eigenvector
of a nonzero eigenvalue of T7T, Tu is an eigenvector
of I'TT with nonzero eigenvalue. Thus the best lower
bounds produced are the same. O

4.2 Star EmbeddingsEmbeddings other than clique
embeddings are useful. In particular, we embed a star
into graphs with Dirichlet boundary conditions. Such
boundary conditions specify a set of vertices whose
values are zero. Let G be a graph with such a zero
boundary, and let I be its Laplacian. Let X be the
set of non-zero vectors consistent with the boundary
restriction. We are interested in that value of the
following quantity:

o xTrx
A = min =
xXex xT'x

To find a lower bound, we embed a star into G such
that every boundary vertex is mapped to the center
of the star, and every other vertex is mapped to a



distinct leaf. Thus we specify a path in G from each
non-boundary vertex to a boundary vertex. Priorities,
congestions, resistances, and ry.x are all defined as

before. The following theorem applies:
THEOREM 4.3.

1

rm ax

<A

For brevity, we omit the proof, which is almost the same
as the proof in the clique case. For readers wishing to
construct the proof themselves, we note that for the
star, the Rayleigh quotient of any nonzero vector with
zero at the center is exactly 1.

4.3 Paths with MassesTo simplify the computation
of quantities such as congestions for embeddings into
trees in the unit priority case, we introduce the idea of
mass. Consider a tree 7" and a unit priority embedding
of a graph H into into T' (note that this embedding T is
unique). Using the definitions from Section 3.3 above,
we can compute the critical path. We distinguish two
types of vertices that do not lie on the critical path:
those not in any path containing a critical path edge
(noncontributing vertices), and those that are in some
such path (contributing vertices). For each contributing
vertex v, there is a first critical path vertex v. on any
path that includes both v and a critical path edge. Note
that since we are working with a tree, v, is the same
for every such path. We will call v, the connection
point for v. Assume that the critical path has k vertices
indexed from 1 to k in order. We assign masses to the
critical path vertices as follows: Vertex v; has a mass
m; equal to 1 plus the number of contributing vertices
that have v; as a connection point.

We refer to the graph P consisting of a path on k
vertices plus the masses for the critical path as the path-
with-masses model. It has an embedding of a subgraph
of H consisting of a subset of I' that includes paths
with both endpoints on the critical path. Congestions
are computed as before, except that now each path
contributes an amount equal to the product of the
masses of its endpoints to the edge congestions. It is
easy to see that the path congestion of P in this model
is equal to the congestion on the critical path of the
original embedding.

We can also use the path-with-masses model in
computing upper bounds. Let y be a vector of length
k. Let L(P) be the Laplacian of P, and let M be
the diagonal matrix with entry [M]; = m;. Let L
be the Laplacian of T', the tree we are working with.
Construct a vector x on n vertices as follows: For the
i'h vertex on the critical path, set the corresponding
entry of x to y;. For each noncontributing vertex, set
the corresponding entry of x to 0. For each contributing

vertex, set the corresponding entry of x to the value of
y for its connection point. It is easy to show that

_Y'L(P)y

xT Lx
xI'x = yT'My

In the star case with Dirichlet boundary, it is easy to
see that if we enforce the boundary condition in y,
Y'L(P)Y
y'my

is an upper bound on A as defined above. For clique
embeddings, note that enforcing the condition yI M1 =
0 is equivalent to enforcing the condition xT1 = 0; in
Y L(P)y
y'my

then it is enforced in x, which implies that

this case, is an upper bound on As.

5 Lower Bounds for Trees

In this section we show that, for an arbitrary unweighted
tree T with diameter diam(7'), assigning all paths
priority 1 in the clique embedding gives a lower bound
within a log diam(T") factor of Ay. The argument works
by first showing the bound holds for a tree with a single
zero boundary vertex, then applying this fact along the
critical path to handle the clique embedding case.

We start with a Dirichlet boundary case, where A
is defined as in Section 4.2. Let k be the length of the
critical path.

THEOREM 5.1. For any unweighted tree with a sin-
gle zero boundary vertex, let rmax be the mazimum path
resistance for the star embedding in the unit priority
Then

case.
max (logk, 1) —a(.
Tmax
Proof. Note that if the boundary vertex separates
the tree into multiple components, the components can
be considered separately. We need only consider the
component with the critical path.
Let L be the Laplacian of the tree. For any such
tree and boundary, we construct a nonzero vector x
consistent with the boundary condition such that

¢ max (logk, 1)

bl

xT Ix
<

xTx

(55) rmax

where ¢ is a constant independent of the choice of tree
and boundary. By the definition of A, the theorem then
holds. The construction of x is done with respect to the
path-with-masses model of the critical path as described
in Section 4.3.

Let P be the critical path. By assumption 1t has &
edges. We index its vertices as follows: vertex 0 is the
boundary vertex. Vertex ¢ is the vertex at distance ¢
from the boundary. The maximum index is k. Mass m;
is assigned to v; as specified in Section 4.3 to account
for paths that start off the critical path, but intersect
with it.



Because we are dealing with the critical path plus
a zero boundary, we can express the value z; as follows:
Let 6; = ©; — ;1. then z; = Z;’:l 6;. This allows us
to rewrite some of the quantities from Inequality (5.5)
as follows:

1 1 1
(5.6) == : =
Tmax )iy E]’:i mj o )i imy
and
xT Lx Yk 82
5.7 — =1 "¢
(5.7) Tx

Ef:l m; (Zj’:l 6]')2

We specify x by setting §; = i"%. For k= 1itis
clear that the quantities on the right-hand sides of (5.6)
and (5.7) are equal and the theorem holds. For £ > 1,

we have
k k

Sa=yi

i=1 i=1

= O(logk).

Thus if we show that the quantities in the denominators
of the right-hand sides of (5.6) and (5.7) are within a
constant factor, then the theorem holds. Note that the
two denominators can be thought of as expressions in
the m;’s. If we show for each 7 that the corresponding
coefficients for each m; are within a constant of each
other, that will suffice. Thus, we want to show that

m;. For

1 = 1 these both reduce to m;. Fori > 1, the summation
can be bounded using integration techniques; in this
case the sum lies between iz and 2. Thus the square
of the sum lies between 7 and 4¢, which gives the desired
result. O

It is possible to find examples for which this gap
is tight. Consider a tree consisting of a path graph
connecting the center vertices of a series of stars. In
particular, let the path have k 4+ 1 vertices numbered
from 0 to k. Vertex ¢ (0 < 7 < k) on the path is the
center of a star with [k?/i?] — 1 leaves. For simplicity
of reference, we refer to this tree as the bad tree for
parameter k.

We show that the gap for the bad tree is tight by
showing a set of priorities that give a lower bound within
a constant of the upper bound constructed as per the
proof of Theorem 4.3. Let T be a bad tree with £ > 1;
let L be the Laplacian of T. The path connecting the
stars 1s obviously the critical path. We assume that the
path vertices are numbered as in the definition of the
bad tree. Path edges are numbered by the larger of the
endpoint indices: i.e., edge ¢ is from v;_; to v;.

THEOREM 5.2. Let vy be the zero boundary vertex
for bad tree T with parameter k > 1. Let ﬁ be the

. 2
1m; 1s within a constant factor of (2321 j~ %)

unit priority lower bound estimate on X of L given that

boundary. Then A = O <lﬂg—k)

Tmax

Proof. We again use the “path with masses” model.

It is clear that vertex ¢ along the path has mass H—ﬂ

We note that the quantity ]:—22 is always greater than
or equal to 1 in the allowed range, so the ceilings of
these quantities are bigger by no more than a factor of
2. Because we are interested in bounds, and because
of the forms of the particular functions we are working
with, it is easy to verify that dropping the ceilings does
not change the results by more than a constant factor.

As in the proof of Theorem 4.3, we can construct
a vector x with zp = 0 and, for ¢ > 0, x; = 7 2.
Values at vertices off the critical path are set as per
X LX As

The

Section 4.3. Consider the Rayleigh quotient
in the previous proof, the numerator is @(log lc)
denominator is

i ) .
xTx:Emi i:éj :Zmi Zj_%
=1 ji=1 ;

As noted in the proof to Theorem 4.3, Ej-:l j_% is Vi
to within a constant factor, so, to within a constant
factor the denominator is

E k2 k2
szZ:Zz—zzz = 0(k?log k)

i=1 i=1 i=1

(note that £ > 1 by assumption). Thus the upper bound
is O(75).

For the unit priority lower bound, it is obvious
that the critical path runs from the boundary to vertex
vg. As noted previously, we can write the formula for
Tmax as follows (once again we drop the ceilings without
changing the result by more than a constant factor):

]{72
rmax - § Zml § Z

Thus the upper and lower bounds differ by a log k factor,
the value of the Rayleigh quotient numerator.

We can get a better lower bound and close the
gap by assigning priorities to paths. The relative sizes
of the priorities determine the relative shares of the
conductance that the paths get. In the current problem,
the resistance of the critical path is high because it gets
very small shares of the conductances of the edges close

o

O(k*log k).

to the boundary. By increasing the shares of longer
paths, we can offset this problem; because the number
of shorter paths using edge ¢ grows fast as the boundary
is approached, the number of paths getting an increased



share of conductance is relatively small and doesn’t
increase the resistance of these shorter paths too much.

We now specify a set of priorities that gives us a
lower bound that matches the upper bound. Each path
that either starts at v; on the critical path, or that has
v; as its connection point, gets priority p; = Vi. With
this change, the congestion of edge ¢ is equal to

For all 7 greater than 1, we use integration techniques
to get the bounds

(5.8) kzZﬂ‘%Z Q wlﬁ)

and

(5.9  k? Z i~ < (\/%—%)

For i = 1 the upper bound is replaced by 2 k2 (2 - ﬁ),

the lower bound remains unchanged.
Recall that in the case where path v has priority p,
we compute the path resistance as follows:

r(3) = =3 cong(e).

eey

Plugging in the upper and lower bounds on edge con-
gestion in (5.8) and (5.9) above gives upper and lower
bounds on the path resistance for a path 5; starting
at v;. We start with the lower bound; the third line
below follows from an application of standard integral
techniques for bounding sums:
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With some straightforward calculations, the reader can
verify that the term in parentheses in the last line is
greater than % for all j and & such that &£ > j.

The calculation for the upper bound is similar:

- Z cong(e

eEW i=11

92 k2 T 1 1
: ﬁ(z_ﬁ+;< z’—l_ﬁ>)

92 k2 i1
- W( ALY

a2 2+2v/j—1 J
(22T )

The sum in parentheses 1s easily shown to be less than
3 for all allowed values of j and & (i.e., k > j).

The combination of these bounds implies that, for
every path in the embedding that starts at a vertex v;,
the path resistance is ©(k?). Note that for any path
starting at one of the leaves this value is increased by at
most 1; thus any path in the embedding has resistance
proportional to k2. Therefore the lower bound on A is
@(;—2), which is within a constant of the upper bound. O

We now show how to combine the star embedding
lower bounds for paths with masses to get a lower bound
on the uniform priority path resistance lower bound for
trees. Consider what happens when we pick any point
along critical path of the clique embedding and set it to
zero. The zero point splits the path in two, and we get
two lower bounds, one for each component.

To minimize subscript conflicts, we introduce the
notation r* to stand for rp.x.. We have three r*’s
to consider: one from the clique embedding in the
original graph, which we denote as r, and the two zero-
boundary bounds with respect to our split point. Since
we are working with a path, we can think of the path
laid out with vertices in increasing order from left to
right; we therefore denote the two path resistances used
in the bounds as 7} for the left side and r; for the right.

Recall that the lower bound for the clique embed-
ding is %; we can relate it to the boundary case as

follows: For tree T with a clique embedding and uni-
form priorities, let P be the critical path with vertices
indexed from 1 to k+1 and let r§ be the path resistance
of P. Let 1 < s < k+ 1 be the index of a split point.
Removing v, separates T into subgraphs; let 7 and T}
be the subtrees containing s plus the vertices of P with
indices less than s and greater than s respectively. Let
r{ and r} be the maximum path resistances for the star
embeddings of 7] and 7} respectively when v, 1s a zero
boundary point and uniform priorities are used (if either
of these trees is empty, its maximum path resistance is
7€ro).
LEMMA 5.1. For the situation described above,

1 n

<
* * *
ot Tk



Proof. The critical path has k edges and k£ + 1
vertices, with edge ¢ between vertices ¢ and 74+ 1. Since
all of the terms involved are positive, we work with the
reciprocals of the quantities in the lemma statement.
The reciprocal of the left term can be written as follows:

) ko k41
RSP MRS ) S
i=1j=1 i=s j=i+1

We can write the reciprocal of the right expression as

) k+1
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i=1 \j=1 j=i+1
s—1 g k+1
Z E]’:i+1 m;
. - n
i=1 \j=1
k g . k+1
EJ—1 m;
+ E : E m;
i=s j=i+1
s—1 1 k k+1
< m; + E E m;
i=1j=1 i=s j=t+1

To see the final inequality, recall that n = Zfill m;.

This proves the lemma. O

We can use this to show how to assemble a vector
that gives a Rayleigh quotient for the original Laplacian
that is within a log diam(7T") factor of A5. This is shown
in the next theorem:

THEOREM 5.3. The uniform pTiority path resis-
tance method produces a lower bound & < Aoy for the

Laplacian of any unweighted tree T that zs off by a factor
that is at most O(logdiam(T)).

Proof. Let L be the Laplacian of T. We consider
splitting the critical path at various points. Since r{
and r} depend on the split point s, we make that clear
by writing them as r(s) and r}(s) respectively in this
proof. Note that as s increases, r{ (s) increases and r;(s)
decreases. We also have that rf(1) = r}(k+ 1) = 0.

Let B(s) = :::Ez; This ratio is unbounded when
s = 1 and decreases as s increases, reaching 0 when
s =k + 1. We consider two cases: when there exists an
s such that 2 > 3(s) > 3, and when there is no such s.

In the first case, Lemma 5.1 gives us the following:

.
HOEEIO

Theorem 5.1 gives a way to construct the vectors
x; and x; so that the respective Rayleigh quotients

for the left and right sides are O (%) and
1

n
=<

(5.10)
Tk

max(log(k+1—s),1
0 (m=teh

vectors are positive.

) respectively. Recall that these
The left Rayleigh quotient has

value .
RO, = Zizt (Fi — zit)”
Sici it
the right has value
k
P iz (i = Zig1)®

RQx = k41 2
Zz s+1 mlm

We construct a vector x for the whole tree as
follows: assign the values from x; and the negatives
of the values of x, to the corresponding vertices on
the critical path, with z; = 0. Extend the vector to
the rest of the tree by assigning vertices off the critical
path the values of their connection points as described
in Section 4.3. To use the Rayleigh quotient for x as an
upper bound on Ay, its entries must sum to 0. However,
this can be done by scaling one of the vectors x; or
xr; this scaling does not affect the respective Rayleigh
quotients R@); and R@);. By construction, we have the
following (remember that z, = 0):

KT Lx 3 (e — @ie)? + i (@i —
xTx iz fmlm + Ef+51+1 m;x

This 1s the sum of the numerators of R); and RQ:
divided by the sum of their denominators. It is well
known that, for positive values a, b, ¢, and d,

fﬁz’+1)2

a-+c

btd— max(b d)

Thus we have that

(5.11) A2 < max(RQy, RQ:, ).

By (5.10), (5.11), and the condition on 3(s), the desired
result holds for this case.

Now assume that there is no s such that 2 > g(s) >
2. Then there is some s such that 8(s) > 2 and
Bs + 1) < 3
W
Az. The second of these plus the condltlon on §(s) imply
that m < e this follows since the condition on

B(s + 1) implies that 7] (5 + 1) > 2rf(s+1). A similar
argument shows that is also a lower bound.

By Lemma 5.1, both m and

n

are lower bounds on e and hence on

3r¥(s

We construct a Vectro(r)x to demonstrate an upper
bound. The construction is slightly different this time;
we construct x; with respect to the boundary being at
vertex s+ 1, and x, with respect to the boundary being
at vertex s. Corresponding values are mapped into x as
in the previous case. Once again, we can scale one side
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as necessary to insure that the values in x sum to zero
without affecting the left or right Rayleigh quotients.
Note that if it were the case that
xT Lx _ num(RQ) + num(RQ,)
xTx ~ denom(RQ@)) + denom(RQ.)’

the argument as in the previous case would show
that max(R@;, RQ:) would be an upper bound on As.
This, combined with the lower bounds for this case
demonstrated above, would be sufficient to prove that
the theorem statement holds for this case. However,
there is no zero point in this case, and the equality does
not hold. To solve this problem, we will show that in
fact the Rayleigh quotient is no more than a factor of
two larger than the right hand side of the inequality.

To see this, note that the denominator of the
actual Rayleigh quotient is the same as in the preceding
expression. The numerator has the following changes:
we lose two edges from the ends of x; and x, to presumed
zero points; this decreases the numerator by z? and
z?,,. We replace these edges by an edge between v,
and v,y that contributes (z, — z,41)? < 222 + 227 ,.
Hence

xTILx

xTx

- 2 (num(RQ@)) + num(RQ;))
denom(R@) + denom(RQ:)
< 2 max(RQ, RQ:),

and there are upper and lower bounds within a log factor
of the diameter.

This proves that there is a constant such that the
theorem holds for the second case, which implies that
the theorem holds for both cases using the larger of the
two constants from the cases. O

6 Open Questions

A number of interesting questions remain open. How
good in general is the bound based on uniform prior-
ities? Is there an easy way to set path priorities that
works well in general? There is also the question of
whether there is an easy way to calculate priorities for
trees in both the Dirichlet case and the case without
boundary conditions that improves the lower bounds.
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