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Abstract

We show that testing reachability in a planar DAG
can be performed in parallel in O(lognlog” n) time
(O(logn) time using randomization) using O(n) pro-
cessors. In general we give a paradigm for contracting
a planar DAG to a point and then expanding it back.
This paradigm is developed from a property of planar di-
rected graphs we refer to as the Poincaré index formula.
Using this new paradigm we then “overlay” our appli-
cation in a fashion similar to parallel tree contraction
[MR85, MR89]. We also discuss some of the changes
needed to extend the reduction procedure to work for
general planar digraphs. Using the strongly-connected
components algorithm of Kao [Kao91] we can compute
multiple-source reachability for general planar digraphs
in O(log® n) time using O(n) processors. This improves
the results of Kao and Klein [KK90] who showed that
this problem could be performed in O(log® ) time using
O(n) processors. This work represents initial results of
an effort to develop efficient algorithms for certain prob-
lems encountered in parallel compilation.

1 Introduction

Testing if there exists a path from a vertex z to a vertex
y in a directed graph is known as the reachability prob-
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lem. Many graph algorithms either implicitly or explic-
itly solve this problem. For sequential algorithm design
the two classic paradigms for solving this problem are
BFS and DFS. They only require time at most propor-
tional to the size of the graph. Parallel polylogarithmic
time algorithms for the problem now use approximately
O(M (n)) processors, where M(n) is the number of pro-
cessors needed to multiply two n x n matrices together
in parallel. Ullman and Yannakakis give a probabilis-
tic algorithm which that works in O(y/n) time using n
processors for sparse graphs [UY90]. This blow-up in
the amount of work for parallel algorithms makes work
with general directed graphs on fine-grain parallel ma-
chines virtually impossible. One possible way around
this dilemma is to find useful classes of graphs for which
the problem can be solved efficiently. In pioneering
papers Kao and Shannon [KS89] and Kao and Klein
[KK90] showed that the reachability problem and many
related problem could be solved in polylogarithmic time
using only a linear number of processors. Their meth-
ods require one to solve each of many related problems
by reducing one problem to another. Each reduction in-
troduces more logarithmic factors to the running time.
In the end they used O(log5) time to solve the planar
reachability problem for multiple start vertices.

In this paper we give a general paradigm for contract-
ing planar directed acyclic graphs (DAGs) to a point.
We will show that after O(logn) rounds of contraction
an n-node directed planar DAG will be reduced to a
point. There have been several contraction rules pro-
posed for undirected planar graphs [Phi89, Gaz91] but
this is the first set for a class of directed planar graphs.
After we present the rules for contraction it will be a
relatively simple matter to “overlay” rules necessary to
compute multiple-source reachability.

These results are part of a larger effort to develop a set
of reduction rules for arbitrary planar directed graphs
(i.e., those with cycles as well as DAGs). The algorithm
for the general case is more complicated and is not pre-
sented here, though we discuss changes involved in ex-



tending the reduction procedure to the general case. We
feel that the class of directed planar graphs are impor-
tant for at least two reasons. First, the class includes
several important classes including tree and series paral-
lel graphs. Second, the flow graph for many structured
programming languages without function calls is planar.
Our goal is to develop the basic algorithmic foundation
for a class of planar graphs so that a theory of planar
flow graphs could be based on it.

In the interest of simplicity we only present the de-
tails of the DAG case here. On the other hand, we feel
that our algorithm for planar DAGs is interesting in its
own right. First, ignoring our algorithm for the general
case, we can improve the computation of many-source
reachability by a factor of log” n time by simply using
the strong connectivity of Kao [Kao91]. Our algorithm
for general planar digraphs removes one further logn
factor. Second, it uses new topological techniques, in
particular, the Poincaré index formula. This should be
of interest in parallel algorithm design for digraphs.

Throughout the paper we will assume that the graph
G = (V,A) is a directed embedded planar graph. If
an an embedding is not given we can construct one
in O(logn) time using n processors using the work of
Gazit [Gaz91] and Ramachandran and Reif [RR89]. We
assume that the embedding is given in some nice com-
binatorial way such as the cyclic ordering of the arcs
radiating out of each vertex.

This paper is divided into seven sections. The sec-
ond gives the main definitions necessary to define and
analyze the directed graph contraction algorithm. The
third gives the contraction algorithm for special case of
of a planar DAG. The theorems in Sections 4 and 5 show
that the reduction algorithm for planar DAGs works
in a logarithmic number of reduction steps. The sixth
section explains how the reduction procedure can be
applied to the many-sources reachability problem and
calculates the running time. Finally, in Section 7 we
discuss work in progress, including some of the steps
necessary to extend this result to the case of general
planar digraphs.

2 Preliminaries

2.1 Planar Directed Graphs

We will assume that the reader is familiar with basic
definitions and results from graph theory that apply to
undirected graphs (see, for example, textbooks such as
the one by Bondy and Murty [BM76]).

A directed graph (digraph) G(V,A4) is a set of
vertices V and a set of arcs A. Each arc a € A is
an ordered pair drawn from V x V. We say that arc
a = (u,v) is directed from u to v; u is the tail and v

is the head of the arc. We say that an arc is out of
its tail and into its head. An arc a is incident to a
vertex v if v is the head or the tail of a. The degree
of a vertex v is the number of arcs incident to it; we
represent this number as degree(v). The in-degree of
a vertex v is the number of arcs that have v as their
head; the out-degree of v is the number of arcs with v
as their tail.

For any directed graph G we can define an undirected
graph G’ on the same set of vertices in the following way:
for each arc (u,v) in G we include an edge (u,v) in G'.
We refer to G as the underlying graph of G. In this
paper we will distinguish between edges and arcs: edges
are undirected and lie in the underlying graph, while
arcs are directed. When we refer to arcs in G as edges,
we are actually referring to the associated edges in G'.

A directed path is a sequence of vertices
(vo, v1,...,vx) such that the v;’s are distinct (with the
exception that we might have vy = w;) and for all
0 < i < k we have the arc (v;_1,v;) in A. A directed
cycle is a directed path such that vy = vg. A digraph
that contains no directed cycles is called a directed
acyclic graph (DAG).

A planar directed graph is a directed graph that
can be drawn in the plane in such a way that its arcs
intersect only at vertices. A specification of some par-
ticular way in which such a graph can be drawn in the
plane is called a planar embedding of the digraph. In
an embedded planar digraph we define parallel arcs as
two arcs (up,v1) and (ug,vs) such that either u; = g
and vy = vy or u; = vy and v; = us, and the arcs are
consecutive in the cyclic order at both u; and v;. Par-
allel edges in the underlying graph are edges associated
with parallel arcs in the graph.

If the points corresponding to the arcs in an embed-
ded planar digraph are deleted, the plane is divided into
a number of connected regions. These regions are called
faces. The boundary of a face is the set of arcs that are
adjacent to that face. We denote the set of faces by F.
Euler’s formula, which holds for embedded connected
planar graphs, relates the numbers of arcs, vertices, and
faces:

V= IE[+[F| = 2. (1)

If the graph also has 3 or more vertices, no self-loops,
and no parallel edges, then each face will have at least
three edges in its boundary, and it is easy to prove the
following inequality:

|E]<3-[V]-6. (2)

The formula corresponding to (1) (with |A| substituted
for |F|) holds for embedded planar digraphs that have
a connected underlying graph since the orientations of



the arcs do not affect the quantities involved. The in-
equality corresponding to (2) (with |A| substituted for
|E|) holds for an embedded planar digraph G if G’s un-
derlying graph G’ is connected and has no self-loops or
parallel edges.

2.2 The Poincaré Index Formula

Let G(V, A) be a connected embedded planar digraph
with faces F.  We say that a vertex of G is a
source(sink) if its in-degree(out-degree) is zero. The
alternation number of a vertex is the number of di-
rection changes (i.e., from in to out or vice versa) as we
cyclically examine the arcs radiating from a vertex. Ob-
serve that the alternation number is always even. Thus,
a source or a sink has alternation number zero. A vertex
is said to be a flow vertex if the alternation number is
two. It is a saddle vertex if the alternation number is 4
or more. Vertex alternations are indicated by asterisks
in Figure 1.

saddl e vertex

source flow vertex

Figure 1

The alternation number of a face can be defined in a
similar way. Here we count the number of times the arcs
on the boundary of the face change direction as we tra-
verse its boundary. Thus, a cycle face has alternation
number zero, a low face has alternation number two,
and a saddle face has an alternation number greater
than two. Face alternations are indicated by asterisks
in Figure 2 below.
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Figure 2

We denote the alternation number of vertex v by a(v),
and the alternation number of face f by a(f) (it will be
clear from the context whether « refers to a vertex or a
face).

A concept related to alternation number is index.
The index of a vertex v (denoted index(v)) is defined
as index(v) = a(v)/2 — 1. The corresponding defini-
tion holds for the index of a face. Once again we do

not distinguish between the notation used in these two
cases.

Our approach depends on combinatorial arguments
based on the following simple but fundamental theorem
which we refer to as the Poincaré index formula.

Theorem 2.1 For every embedded connected planar di-
graph, the following formula holds:

Z index(v) + Z index(f) = —2.

veV fer

A proof of this result is given in the Technical Re-
port [GM92]. The proof applies the Euler formula along
with the observation that if at each vertex we cycle
through its incident arcs in order according to the em-
bedding, each transition from one arc to the next results
in exactly one alternation either for the vertex or for the
face for which the two arcs lie on the boundary (see Fig-
ure 3); each alternation is adjacent in this way to exactly
one vertex.

face alternations
at a vertex

vertex alternations
at a vertex

Figure 3

This formula is important because it tells us a great
deal about the structure of a planar digraph embedding.
For example, the observations above about alternation
number tell us the following about the contributions of
various types of faces and vertices in this formula:

e Sinks, sources, and cycle faces each have index —1.
These are the only elements that make negative
contributions to the sums in the formula; since the
sums must come to —2, it is clear that every em-
bedded planar digraph must have at least two such
elements. For example, a strongly connected pla-
nar digraph cannot have any sinks or sources, so it
must have two cycle faces.

o Flow faces and flow vertices have index 0 and con-
tribute 0 to the sum. There can be an arbitrary
number of such elements.

e Saddle vertices and saddle faces have positive (inte-
ger) indices that depend on their alternation num-
bers. Since the sum must always be —2, the em-
bedded graph must contain a sink, source, or cycle
face for every pair of alternations beyond the first
on each saddle.



We will use the formula below to develop invariants and
to help us count (for example, we use it to count par-
ticular types of arcs).

2.3 Models of Parallel Computation

The reduction algorithm is specified for the Parallel
Random-Access Machine (PRAM) model of com-
putation. We discuss the algorithm for this model in the
cases where memory accesses are allowed to be concur-
rent read, concurrent write (CRCW). We also assume
the ARBITRARY model for concurrent writes (i.e., an
arbitrary one of the values being written to a memory
location during a concurrent write will end up in that
location).

We have also considered this algorithm in terms of
the exclusive read, exclusive write (EREW) model plus
unit-time SCANS (see Section 7). This model is based
on Blelloch’s parallel vector models [Ble90].

3 Graph Reduction

In this section we introduce a collection of reduction
rules and an associated data structure for planar DAGs.
The reduction rules allow us to convert a graph into a
smaller graph such that we can recursively solve the
problem on which we’re working. Once the problem
is solved for the reduced graph, we can expand the
graph out in reverse order and generate a solution for
the original graph. In Sections 4 and 5 we show that
at each stage the reduction process removes a constant
proportion of the arcs; thus, the rules could be imple-
mented as an O(log|A|)-step reduction procedure for
planar DAGs. Inequality 2 in Section 2.1 thus implies
that the reduction procedure is O(log n) (where n = |V|
in the original graph). The rules listed below represent
an abstraction of the reduction procedure that can be
applied with slight variations to implement different al-
gorithms. These variations would be algorithm-specific
actions that would be performed for each rule; we will
specify such actions in the algorithm description in Sec-
tion 6.

We will assume that the input to the algorithm is a
connected, embedded planar DAG G that has no par-
allel arcs (and hence no parallel edges). We preprocess
the graph such that the following are true of G (these
properties will remain true throughout the algorithm):

1. G has only flow faces. This can be accomplished by
putting a source in each saddle face, and putting an
arc from this source to every vertex that is a local
source with respect to the saddle face boundary
(Figure 4). Tt is straightforward to show that the
number of edges and hence the number of vertices

increases by at most a constant.
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Figure 4

2. No vertex has both in-degree and out-degree of 1
(i.e., there are no degree-2 flow vertices). Such ver-
tices are considered to be internal vertices of topo-
logical arcs; such arcs are treated as single arcs
with respect to the algorithm, though operations on
these arcs may require the internal vertices to per-
form operations such as splicing connectivity point-
ers. For topological arcs we define the leader as the
first arc from the original graph in the topological
arc (i.e., the arc into the first internal vertex of the
topological arc). The rank of the vertices will be
maintained on each topological arc.

It’s not hard to see that any connected, embedded
planar DAG can be transformed in O(log n) time so that
these conditions are true without changing the reacha-
bility with respect to the vertices in the original graph.

3.1 Terminology

In order to simplify the presentation of the reduction
rules, we first introduce some concepts and terminology.

Let f be a flow face; then the arcs on its boundary
decompose into two paths, a left and a right (we refer
to any arc that is both on the left and the right path
as an internal arc). There is also a unique top and a
unique bottom vertex on f. Thus the left path starts at
the top vertex and in a counter-clockwise fashion (with
respect to the face) goes to the bottom vertex, and the
right goes from top to bottom in a clockwise fashion®.
A top(bottom) arc of f is any arc out of(into) the
top(bottom) vertex. An arc may be both a top and
a bottom arc for the same face. An arc is referred to
simply as top(bottom) if it is the top(bottom) arc for
some flow face. We will mark top arcs with “T” and
bottom arcs with “B.”

In applying the rules we may modify the connectivity
of the graph. Therefore we associate a data structure

IClockwise and counterclockwise with respect to a face can
be understood in terms of the dual graph; the clockwise order
of edges on the boundary of a face is the same as the order of
the corresponding edges in the clockwise cyclic order at the dual
vertex corresponding to the face.



with flow faces that will allow us to maintain connectiv-
ity information. For each vertex on a flow face that
is neither a top or bottom vertex we have a cross-
pointer, pointing from left to right or right to left.
Initially each cross-pointer is set to the bottom vertex.
Intuitively, the connectivity on f as determined by its
cross-pointers and boundary arcs should be the same as
obtained using using arcs and vertices on the bound-
ary of f or those removed from the interior of f by the
reduction rules. For each vertex other than top and
bottom on a flow face we will also keep the highest and
lowest vertex on the opposite side of the face that point
to this vertex (initially the high point in will be set to
bottom and the low point in will be set to top).

For both the left and right path of each flow face,
the top arc will serve as the leader of the path (if the
top arc is internal it will serve as leader for both sides).
Each arc will know the two faces common to it. Using
concurrent reads, a leader for each face and topological
arc, and the ranking of vertices internal to topological
edges, the vertices can now coordinate their actions. For
example, pointers can now be tested in constant time
to see if they are forward pointers: simply test if the
head and tail are on the same side of the face. (The
coordination actions we will use take constant time in

the CRCW model.)

We will refer to saddle vertices by their indices. For
example, “saddle vertices with index 1”7 represents the
set of saddle vertices with fewest alternations.

Some reduction rules depend on knowing whether an
arc is the unique arc into some vertex or the unique
arc out of some vertex. We will refer to such arcs as
unique-in unique-out arcs. Note that it is possible
for an arc to be both unique-in and unique-out. In some
cases an arc a might not be unique-in, but at the head
of a the next arcs in both the clockwise and counter-
clockwise cyclic ordering may be out-arcs. In that case
we say that a is locally unique-in; a symmetric defi-
nition holds for locally unique-out. Note that we will
always use “locally” to imply that there is at least one
other edge into(out of) the head(tail), though that edge
is not adjacent in the cyclic order.

The existence of topological arcs and the introduc-
tion of reachability pointers as described above leads
to complications in the application of reduction rules.
In particular, we need to distinguish certain unique-in
and locally unique-in arcs out of a source. We call such
an arc a clean if it has the following properties: (1)
a has no internal vertices, and (2) for each face f that
has a on its boundary, there are no pointers across f
into the head of a. Clean unique-out and clean locally
unique-out arcs into sinks are defined similarly, with the
exception that the second condition prohibits pointers
across adjacent faces out of the tail of the arc.

We define the operation of arc contraction as fol-
lows: the contracted arc is removed from the graph, and
the head and tail vertices are combined into a single ver-
tex. The cyclic order of the arcs at this new vertex is the
cyclic order at the tail with the arcs at the head vertex
inserted (in their original order) where the contracted
edge was.

3.2 Reduction Rules

We are now ready to list the reduction rules:

[TB Rule] If an arc a is marked both T and B then
remove a. If a is topological, any pointers through in-
ternal vertices of a must be adjusted by setting any
cross-pointer into a vertex internal to a to point to the
vertex pointed to by the cross-pointer out of a on its
opposite side. The remaining pointers are unchanged.
Information on the structure of the face must be up-
dated (e.g., the left and right leaders), and any new or
changed topological arcs must be updated. Pointer up-
dating is shown in Figure 5 (the lighter arrows indicate
pointers, the darker ones arcs).

Figure 5

[Degree-1 Rule] If a source or a sink is of degree 1
then remove it and its arc. The leaders on the left and
right boundaries of the face are reset if necessary.

[Unique-in(Unique-out) Arc Contraction Rule] If
@ is a unique-in arc out of a source and a is clean, con-
tract a. The leaders on the left and right boundaries of
the face are reset if necessary. The corresponding rule
holds for unique-out arcs into sinks.

[Adjacent Degree-2 Sources and Sinks Rule] If
a degree-2 source and a degree-2 sink incident to clean
arcs are in the configuration shown in Figure 6, remove
the source and sink and their arcs as shown (ins this
and subsequent figures straight arrows represent arcs
and curved arrow represent segments of face boundaries
that may be longer than a single arc).



Figure 6

[Source-Sink-Source (s-t-s)/Sink-Source-Sink (t-
s-t) Rule] Let s be a degree-2 or degree-3 source hav-
ing only clean locally unique-in arcs out. If at two of
the saddle vertices adjacent to s there are clean locally
unique-out arcs out of distinct sinks adjacent in the
cyclic order to the arcs from s, take the following ac-
tions:

e If s has degree 2, remove the source and its arcs,
and combine the two sinks into a single sink (see
Figure 7a - since all faces are flow faces, each sink
will be at the bottom of one of the two faces on the
boundaries of which s lies).

o If s has degree 3, remove the arc out of s common
to the two faces on the boundaries of which the two
sinks lie, then combine the two sinks into a single

sink (Figures 7b and 7c).

A corresponding rule applies for sinks and adjacent
sources. If a large number of vertices are combined into
a single vertex, a processor must be selected to represent
that vertex. Although this could take time O(logn),
this computation can be done in parallel with the rest
of the algorithm without affecting the running time.

Figure 7a
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[Consecutive Rule] Let s be a source with a clean
locally unique-in arc out. If at the head of the locally
unique-in arc there are clean locally unique-out arcs into
sinks adjacent in the cyclic order in both the clockwise
and counterclockwise directions, do the following: re-
move the locally unique-in arc from the source, com-
bine the two sinks into a single sink, and combine the
two locally unique-out arcs into a single arc (see Figure
8). A corresponding rule applies for a sink and adjacent
sources.

S
t
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Figure 8

[Index 1 Saddle Rule] If a source has a clean arc
to a saddle vertex of index 1 and if the only other arc
into the saddle is a clean arc from another source, then
contract one or both of the in-arcs (see Figure 9a). A
corresponding rule holds if there are exactly two clean
out-arcs to sinks (Fig. 9b). As for the s-t-s and t-s-t
Rules, if a large number of vertices are combined into a

single high-degree vertex, a processor must be selected
to represent that vertex.

Figure 9a
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Figure 9b

In the CRCW model it is easy to determine in con-
stant time if the conditions for rule application are met.
These conditions can be checked locally in the graph.
Ignoring the time to do conflict resolution for now, rule
applications can be done in constant time.

3.3 Cleaning Up the Graph

Many of the rules above require that the arcs involved be
clean. These arcs will not necessarily be clean, however.
Therefore we introduce a parallel algorithm for cleaning
up arcs out of sources(into sinks) that runs in constant
time in the CRCW model. The cleanup algorithm will
be run as a subroutine in the reduction algorithm. It
will also be run with respect to an invariant relative to
the particular problem to which the reduction algorithm
is applied (e.g., in the case of many-source reachability
the essence of the invariant is that the vertices in the
current graph that are reachable from one of the starting
vertices are either marked as reachable or have a path
consisting of pointers and edges from some vertex that
is marked). Applying cleanup with respect to the in-
variant will add computation to the cleanup algorithm;
in general, we try to choose an invariant in such a way
that it doesn’t increase the asymptotic running time of
the basic cleanup algorithm.

We do not clean up all sources and sinks. To insure
that cleanup doesn’t take too long, only sources and
sinks of degree less than or equal to a constant d (to be
specified later) and incident only to unique-in or locally
unique-in(unique-out or locally unique-out) arcs will be
cleaned up (note that such sources and sinks have no
parallel arcs out or in). Not all of these conditions are
necessary to insure limited running time; some are re-
lated to the proofs in Section 4.

Details of the cleanup algorithm are presented in the
Technical Report.

3.4 Overview of the General Reduction
Process

The general algorithm for reducing an embedded planar
DAG can now be stated:

1. Preprocess the graph to make it consistent with our
invariants.

2. Main Reduction Loop: While there are arcs left in
the graph, repeat the following sequence of steps:

e Perform any application-specific actions.
e Clean up the current graph.

e Apply the reduction rules in the order they’re
listed in Section 3.2. Application-specific pro-
cessing may be required as each rule is applied.

3. Perform any application-specific processing needed
prior to the expansion phase.

4. Reconstruct the graph by reversing the steps in the
reduction process (note that this requires that we
have stored, in order, all changes made during the
reduction process).

4 Operability Lemmas

In the next two sections we prove that the reduction
procedure given above works in O(log nlog" n) time us-
ing O(n) processors. We start by showing that at each
step of the algorithm a constant proportion of the arcs
are candidates for removal.

Definition 4.1 An arc is operable if one of the rules
would remove it.

Lemma 4.2 [Operability Lemma] In any connecied,
embedded planar DAG consistent with our invariants a
constant proportion of the arcs are operable.

Proof: The lemma follows immediately from Lem-
mas 4.3 and 4.5 below, which prove the result for two
cases that depend on the ratio of sources and sinks to
the number of vertices in the graph. a

Lemma 4.3 In any connected, embedded planar DAG
consistent with our invariants and in which the number
of sources and sinks is less than n/14, 1/16 of the arcs
are operable.

In the interest of brevity, we will only outline the
proofs of this lemma and Lemma 4.5. Full proofs are
given in the Technical Report. To prove this lemma we
show that in graphs meeting the conditions stated there
are many arcs that either are operable by the Degree-1
Rule, or are operable by the TB Rule. The following
lemma is a useful tool in the latter case:

Lemma 4.4 [Flow Face Operability] An arc be-
tween two flow faces is operable if it 1s neither unique-in,
locally unique-in, unique-out, nor locally unique-out.



Proof: Because the arc is neither globally nor locally
unique-out, there must be an adjacent out-arc in the
cyclic ordering at its tail vertex, which thus must be
the top vertex of one of the flow faces. Therefore the
arc is a T arc. A symmetrical argument shows that the
arc is also a B arc. Thus, the arc is operable by the TB
rule. a

The proof of Lemma 4.3 proceeds by showing that
there are many arcs that either unique-in or unique-out
and incident to degree-1 sources and sinks, or that are
neither unique-in nor unique-out. This follows from the
fact that our graphs have no degree-2 flow vertices and
that the graph induced by the unique-in and unique-
out arcs is a forest. This isn’t quite enough to prove
the lemma, however; we must then show that most of
the non-unique-in and non-unique-out arcs are neither
locally unique-in nor locally unique-out. This follows
from the Poincaré Index Formula and the conditions of
the lemma.

We use a counting argument to prove the second half
of Lemma 4.2:

Lemma 4.5 In any embedded planar DAG consistent
with our invariants in which the number of sources and
sinks is greater than n/14, a constant proportion of the
arcs are operable.

As above, see the Technical Report for a full proof.
An outline of the proof follows: First we show that a
high degree source or sink v (i.e., degree(v) > d = 1176)
either is incident to a TB arc or is uncommon in the
sense that the number of such sources and sinks is less
than a constant proportion of the number of sources
and sinks in the graph given the conditions in the lemma
statement. Next we show that at least 1/7 of the sources
and sinks with degree < d are incident to an opera-
ble arc. Such vertices will be processed in the cleanup
phase, so any source(sink) incident to an arc that is not
locally unique-in (locally unique-out) has an operable
arc out(in). In the remaining cases all incident arcs are
locally unique-in or locally unique-out; by a counting ar-
gument based on the Poincaré Index Formula we show
that at least 1/7 must be incident to an operable arc.
The lemma follows from there.

5 Conflict Resolution

In the previous section we showed that in any embed-
ded connected planar DAG meeting certain invariants a
constant proportion of the arcs are operable. However,
applying the reduction rules to these operable arcs leads
to two types of conflicts we must deal with. The first
sort of conflict arises when we try to apply a single rule
to all arcs that are operable by that rule. Doing so leads

to cases in which either our invariants aren’t maintained
or in which the rule applications cannot be completed
in the time available. An example in which invariants
aren’t maintained include removing both B arcs from
a flow face when these arcs are the only arcs into the
bottom vertex; an example of a potential time problem
is where removal of many TB arcs causes arbitrarily
many pointers to be spliced together. The second con-
flict arises when applications of a particular rule make
arcs that were formerly operable by another rule in-
operable. This conflict affects our counting argument
aimed at showing a constant proportion of the arcs are
removed in each pass through the main loop.

5.1 Conflict Resolution for a Single Rule

We will deal with conflicts between applications of a
single rule by building a conflict graph that relates
the conflicting arcs?. The graph consists of a vertex
for each arc operable by the rule in question, and an
edge between each pair of vertices if the removal of the
corresponding arcs would cause a problem with respect
to our invariants or the running time of the removal
step. The edges are undirected because the conflicts are
symmetrical here.

The conflict graphs for our rules with one exception
have bounded degree (see the Technical Report for de-
tails); they are not necessarily planar, however. They
are easily constructed in constant time in the CRCW
model.

It is obvious that a maximal independent set (MIS)
of vertices from a conflict graph represents a set of ver-
tices that can be removed in parallel without problems;
it is also obvious that a MIS in a bounded-degree graph
contains a constant proportion of the vertices. There-
fore we can use the techniques developed by Goldberg,
Plotkin, and Shannon [GPS87] to resolve conflicts in
O(log" n) time. Introducing randomness into the model
of computation allows us to find an independent set that
includes a constant proportion of the vertices in the con-
flict graph in constant time.

5.2 Conflict Resolution Between Rules

We deal with the second type of conflict by proving the
following lemma:

Lemma 5.1 In applying any reduction rule in the or-
der specified in the algorithm description at a particular
source or sink, the number of arcs operable by subsequent

2The case for the TB Rule is actually somewhat more com-
plicated. We divide the arcs operable by the TB Rule into three
classes and build a different conflict graph for each class in turn.
See the Technical Report for details.



rules (excluding those removed by this rule application)
1s reduced by at most a constant number.

The proof is by examination of all cases.

5.3 Proof of Main Lemma

The only step left in proving that the reduction algo-
rithm runs in a logarithmic number of iterations of the
main loop is to show that applying the conflict reso-
lution scheme above will allow the reduction algorithm
to remove a constant proportion of the operable arcs in
each pass through the main loop.

Lemma 5.2 [Main Lemma)] For any embedded con-
nected planar DAG consistent with our invariants, the
generalized reduction algorithm will work in O(logn) it-
erations of the main loop using O(n) processors.

Proof: The result follows from Lemma 5.3 below
and Lemma 4.3 if the number of sources and sinks is
less than n/14. It follows from Lemma 5.4 below and
Lemma 4.5 otherwise. 0O

Lemma 5.3 When applied to any embedded connected
planar DAG consistent with our invariants, the gener-
alized reduction algorithm will remove a constant pro-
portion of the TB arcs on each pass through the main
loop.

The proof of this lemma is based on showing that for
each TB arc removed at most a constant number of
other TB arcs are not removed because of conflicts. This
implies that a constant proportion of the TB arcs are
removed.

Lemma 5.4 When applied to any embedded connected
planar DAG consistent with our invariants, the gener-
alized reduction algorithm will remove a constant pro-
portion of the operable arcs.

Proof: For each arc removed, consider the number of
operable arcs with which it conflicts. By Lemma 5.1 and
the fact that the conflict graph for each rule is bounded,
this number is bounded by a constant. Since every oper-
able arc is either removed or is subject to a conflict with
an arc that is removed, at least a constant proportion
of the operable arcs are removed. a

6 Applications

In this subsection we present an application that uses
the abstract reduction procedure presented above. We
also present the running time and number of processors
needed to run this application.

6.1 Planar DAG Many-Source Reacha-
bility

The abstract reduction procedure can be used to solve
the many-source reachability problem for planar DAGs.
The problem can be stated as follows: given a planar
DAG and a set of vertices in that DAG as the input,
compute the set of vertices that are reachable via di-
rected paths from the input set of vertices. To do this,
we must come up with a set of application-specific ac-
tions to take at various points in the reduction algo-
rithm plus an invariant that will allow us to prove that
the result is correctly computed.

We introduce two flags at each vertex: a flag indi-
cating whether or not the vertex has been marked as
reachable from one of the initial vertices, and an “ac-
tive mark” flag that we will use to determine where to
propagate marks during the reduction phase. The algo-
rithm starts with the input set of vertices having both
their “active mark” and “reachable” flags set. Marks
are propagated as follows:

e At the start of each iteration of the main loop, each
vertex reachable either via a connectivity pointer or
a directed arc from a vertex with an active mark
sets both of its flags. Any with an active mark
unsets its “active mark” flag.

o At the start of each cleanup phase, each active mark
at an internal vertex of a topological arc out of
a source of degree less than or equal to the de-
gree limit d is propagated across its crosspointers a
number of times equal to the degree of the source.
Then all active marks at such sources and at ver-
tices internal to topological arcs out of such sources
are propagated to the heads of the arcs out of the
source. A symmetrical procedure is done at sinks.

e When applying each reduction rule, one or two
propagation steps are done for the arcs removed.
See the Technical Report for details.

In addition, sinks are never marked during the reduction
phase.

Between the contraction and expansion phases, any
topological arc removed during contraction that has a
mark at the tail or an internal vertex propagates the
mark down the arc. This can be done using list ranking
techniques.

During the expansion phase, as topological arcs are
added back to the graph their internal vertices may need
to be marked. This involves checking the lowest cross-
pointer that can reach each internal vertex to see if its
tail vertex is marked. Also during expansion any ver-
tices that became sinks or were merged with sinks are
marked as necessary as they revert from being a sink.



Sinks are marked at the end of the expansion phase if
they have a marked neighbor.

To prove that this process correctly marks the reach-
able vertices we use the following invariants, one for the
contraction phase and one for the expansion phase. The
term active set refers to vertices in the current graph
that are not sources, sinks, or vertices that represent the
combination of two or more vertices from the original
graph. The contraction invariant is as follows:

Lemma 6.1 During the contraction phase a vertex v in
the active set that is reachable in the original graph from
one of the input set vertices if and only if it is either
marked as reachable or there exists an active mark at
some vertex u in the active set and a directed path of
arcs and crosspointers from u to v that includes only
vertices from the active set.

The expansion invariant is as follows:

Lemma 6.2 During the expansion phase all vertices in
the active set are correctly marked.

These invariants are sufficient to prove that at the
completion of the algorithm the graph is correctly
marked. See the Technical Report for details.

6.2 Running Time and Processor Count

The running time is determined by observing that the
main loop is executed O(logn) times in the reduction
and expansion phases. The running time of the main
loop is dominated by the O(log™ n) time it can take to
resolve conflicts for some of the reduction rules. Pre-
processing time is dominated by the time for the main
loop, so the running time is O(log nlog" n) (this can be
reduced to O(logn) through the use of randomization
as noted above). The algorithm can be run using one
processor per face, vertex, and arc, which is linear in
the size of the input graph. When combined with Kao’s
strongly connected components algorithm [Kao91] the
running time becomes O(log® n).

7 Work in Progress

We are currently working on extensions to other models
and to planar digraphs that include cycles.

7.1 Extensions to Other Models

We are in the process of writing up an extension of this
work to the exclusive read, exclusive write (EREW) plus
unit-time SCANS PRAM model. We expect that the
reduction algorithm will run in time O(log n) using ran-
domization and a number of processors linear in the

graph size. Making conflict resolution deterministic by
using the techniques of Goldberg, Plotkin, and Shannon
will add an additional factor of log* n to the time.

7.2 Reducing Planar Digraphs with Cy-
cles

The techniques above can be expanded to work with pla-
nar graphs that have cycles. This is particularly useful
in that we can then compute strongly connected compo-
nents, and thus we can compute many-source reachabil-
ity for any planar digraph (by first computing strongly
connected components and then contracting them, then
computing many-source reachability, then expanding
back out the strongly connected components).

The reduction algorithm for the cyclic case is more
complicated, as are the proofs of its correctness. We
summarize some of the differences below:

e We must introduce two new rules (an arc contrac-
tion rule and an arc removal rule) for cycle faces.
The invariant changes to allow cycle faces as well
as flow faces.

¢ In addition to crosspointers on flow faces we must
keep backpointers to the highest point reachable on
the same side of the face.

e Cleanup is more complex because of the backpoint-
ers. We must now clean up two levels of arcs
from sources or sinks. In addition, we must spend
O(log n) time determining the connectivity implied
by the backpointers during cleanup.

e The operability proofs must be modified to take
into account the existence of cycle faces in the
graph.
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