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Abstract. Computing graph separators is an important step in many graph algorithms. A
popular technique for finding separators involves spectral methods. However, there has not been much
prior analysis of the quality of the separators produced by this technique; instead it is usually claimed
that spectral methods “work well in practice.” We present an initial attempt at such analysis. In
particular, we consider two popular spectral separator algorithms, and provide counterexamples that
show these algorithms perform poorly on certain graphs. We also consider a generalized definition
of spectral methods that allows the use of some specified number of the eigenvectors corresponding
to the smallest eigenvalues of the Laplacian matrix of a graph, and show that if such algorithms use
a constant number of eigenvectors, then there are graphs for which they do no better than using
only the second smallest eigenvector. Further, using the second smallest eigenvector of these graphs
produces partitions that are poor with respect to bounds on the gap between the isoperimetric
number and the cut quotient of the spectral separator. Even if a generalized spectral algorithm uses
nε for 0 < ε <

1

4
eigenvectors, there exist graphs for which the algorithm fails to find a separator

with a cut quotient within n
1

4
−ε

− 1 of the isoperimetric number. We also introduce some facts
about the structure of eigenvectors of certain types of Laplacian and symmetric matrices; these facts
provide the basis for the analysis of the counterexamples. Finally, we discuss some developments in
spectral partitioning that have occurred since these results first appeared.
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1. Introduction. Spectral methods (i.e., methods that use the eigenvalues and
eigenvectors of a matrix representation of a graph) are widely used to compute graph
separators. Typically, the Laplacian matrix is used; the Laplacian B of a graph G on
n vertices is the n × n matrix with the degrees of the vertices of G on the diagonal,
and entry bij = −1 if G has the edge (vi, vj) and 0 otherwise. The eigenvector
u2 corresponding to λ2 (the second-smallest eigenvalue of B) is computed, and the
vertices of the graph are partitioned according to the values of their corresponding
entries in u2 [23, 18]. The goal is to compute a small separator; that is, as few edges
or vertices as possible should be deleted from the graph to achieve the partition.
Additionally, the sizes of the resulting components should be roughly comparable.

Although spectral methods are popular, there has been little previous analysis
of the quality of the separators they produce. Instead, it is often claimed that such
methods “work well in practice,” and tables of results for specific examples are often
included in papers (see e.g. [23]). Thus there is little guidance for someone wishing
to compute separators as to whether or not this technique is appropriate. Ideally,
practitioners should have a characterization of classes of graphs for which spectral
separator techniques work well; this characterization might be in terms of how far
the computed separators can be from optimal. This paper represents a first step
in this direction. We consider two spectral separation algorithms that partition the
vertices on the basis of the values of their corresponding entries in u2, and provide
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counterexamples from classes of practical interest for which each of the algorithms
produces poor separators. We further consider a generalized definition of spectral
methods that allows the use of more than one of the eigenvectors corresponding to
the smallest non-zero eigenvalues, and show that there are graphs for which any such
algorithm does poorly.

The first algorithm bisects a graph by partitioning the vertices into two equal-sized
sets based on each vertex’s entry in the eigenvector u2. The class of bounded-degree
planar counterexamples for this method consists of graphs that look like ladders with
the top 1/2 of their rungs kicked out; a straightforward spectral bisection algorithm
cuts the remaining rungs, whereas the optimal bisection is made by cutting across the
ladder above the remaining rungs. The counterexample graphs have Θ(1) bisectors;
the spectral bisection algorithm produces a Θ(n) bisection, which is as far from the
optimum as possible (to within a constant).

The spectral bisection algorithm can be modified to generate a better separator for
the bisection counterexample. Some modifications are presented in [18]; they still use
a partition based on u2. We consider a simple spectral separator algorithm, the “best
threshold cut” algorithm, based on the most general of these suggested modifications.
(In such an algorithm, “best” is measured in terms of the cut quotient, the ratio
between the number of edges cut and the size of the smaller set in the vertex partition;
the smallest cut quotient over all separators is called the isoperimetric number.)
We present a class of graphs that defeats this algorithm in that the ratio of the
spectral cut’s cut quotient to the isoperimetric number is as bad as possible (to within
a constant) with respect to bounds on these quantities.

We also consider a more general definition of purely spectral separator algo-
rithms that subsumes the two preceding algorithms. This definition allows the use
of some specified number of eigenvectors corresponding to the smallest eigenvalues of
the Laplacian. For any such algorithm that uses a fixed number of eigenvectors we
show there are graphs for which it does no better than using the “best threshold cut”
algorithm. Further, the separator produced when the “best threshold cut” algorithm
is applied to these graphs is as bad as possible (to within a constant) with respect to
bounds on the size of the separators produced. We also show that if a purely spectral
algorithm uses up to nε eigenvectors for 0 < ε < 1

4 , there exist graphs for which the

algorithm fails to find a separator with a cut quotient within a factor of n
1

4
−ε − 1

times the isoperimetric number.

Finally, we provide a summary of some important subsequent results by Spielman
and Teng [27], and relate our results to them.

This paper makes an additional contribution: While the counterexamples have
simple structures and intuitively might be expected to cause problems for spectral sep-
arator algorithms, the challenge is to provide good bounds on λ2 for these graphs. For
this purpose we have developed theorems about the spectra of graphs with particular
symmetries (i.e., automorphisms of order 2) that exist in the counterexamples.

Specifics are given in the text that follows: Section 2 gives a brief history of
spectral methods and the details of the algorithms discussed in this paper. Graph
and matrix terminology and notation are presented in Section 3, which also presents
some useful facts about Laplacians. Results about the eigenvalues and eigenvectors
of Laplacians of graphs with automorphisms of order 2 are in Section 4. Section 5
gives the counterexample for the spectral bisection algorithm; Section 6 gives the
counterexample for the “best threshold cut” algorithm. Section 7 discusses the gener-
alized definition of spectral separator algorithms, and shows that there are graphs for
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which any such algorithm performs poorly. Section 8 discusses Spielman and Teng’s
results.

2. Spectral Methods for Computing Separators. The roots of spectral
partitioning go back to Hoffmann and Donath [9], who proved a lower bound on
the size of the minimum bisection of a graph, and Fiedler [11][12], who explored the
properties of λ2 and its associated eigenvector for the Laplacian. There has been much
subsequent work, including Barnes’s partitioning algorithm [5], Boppana’s work that
included a stronger lower bound on the minimum bisection size [6], work by Rendl,
Wolkowicz, and others using optimization approaches [24, 10], and the particular
bisection and graph partitioning methods considered in this paper [18] [23] [25]. Since
our work first appeared [17], Spielman and Teng [27] have extended the latter methods
to include recursion. (It is worth noting that spectral methods have not been limited to
graph partitioning; work has been done using the spectrum of the adjacency matrix
in graph coloring [4] and using the Laplacian spectrum to prove theorems about
expander graph and superconcentrator properties [3] [1] [2]. The work on expanders
has explored the relationship of λ2 to the isoperimetric number; Mohar has given
an upper bound on the isoperimetric number using a strong discrete version of the
Cheeger inequality [22]. Reference [8] is a book-length treatment of graph spectra,
and it predates many of the results cited above.)

A basic way of computing a graph bisection using spectral information is presented
in [23]. We refer to this algorithm as spectral bisection. Spectral bisection works
as follows:

• Represent G by its Laplacian B, and compute u2, the eigenvector correspond-
ing to λ2 of B.

• Assign each vertex the value of its corresponding entry in u2. This is the
characteristic valuation of G.

• Compute the median of the elements of u2. Partition the vertices of G as
follows: the vertices whose values are less than or equal to the median form
one part; the rest of the vertices form the other part. The set of edges between
the two parts forms an edge separator.

• If a vertex separator is desired, it is computed from the edge separator using
standard techniques described in the next section.

Since the graph bisection problem is NP-complete [13], spectral bisection may not
give an optimum result. That is, spectral bisection is a heuristic method. A number of
modifications have been proposed that may improve its performance. These modified
heuristics may give splits other than bisections. In such cases, one can use the cut
quotient to judge the quality of the split. Computing a separator with a cut quotient
equal to the isoperimetric number is NP-hard [14]. The following modifications, all
of which use the characteristic valuation, are presented in [18]:

• Partition the vertices based on the signs of their values;
• Look for a large gap in the sorted list of eigenvector components, and partition

the vertices according to whether their values are above or below the gap; and
• Sort the vertices according to value. For each index 1 ≤ i ≤ n − 1, consider

the ratio for the separator produced by splitting the vertices into those with
sorted index ≤ i and those with sorted index > i. Choose the split that
provides the best cut quotient.

Note that the last idea subsumes the first two. We consider a variant of this algorithm
below. Since this algorithm does not specify what to do when multiple vertices have
the same value, we restrict it to consider only splits between vertices with different
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values (such cuts are called threshold cuts). This restricted version is the “best

threshold cut” algorithm; the slight change from the definition above does not
alter its performance with respect to the counterexamples below (other than slightly
simplifying the analysis).

Also note that the idea of cutting at an arbitrary point along the sorted order can
be extended to choosing two split points, where the corresponding partitions are the
vertices with values between the split points, and those with values above the upper
or below the lower split point. Again, the pair yielding the best ratio is chosen.

The algorithms mentioned so far have only used the eigenvector u2. Another
possibility is to look at partitions generated by the set of eigenvectors for some number
of smallest eigenvalues: for each vertex, a value is assigned by computing a function
of that vertex’s eigenvector components. Partitions are then generated in the same
way as they are for u2 in the various algorithms given above.

Given the variety of heuristics cited above, it would be nice to know which ones
work well for which classes of graphs. It would be particularly useful if it were pos-
sible to state reasonable bounds on the performance of these heuristics for classes
of graphs commonly used in practice (e.g., planar graphs, planar graphs of bounded
degree, three-dimensional finite element meshes, etc.). Unfortunately, this is not the
case. We start by proving that spectral bisection may produce a bad separator for a
bounded-degree planar graph in Section 5; first, however, we need to introduce some
terminology and background results.

3. Terminology, Notation, and Background Results. We assume that the
reader is familiar with the basic definitions of graph theory (in particular, for undi-
rected graphs), and with the basic definitions and results of matrix theory. A graph
consists of a set of vertices V and a set of edges E; we denote the vertices (respectively
edges) of a particular graph G as V (G) (respectively E(G)) if there is any ambigu-
ity about which graph is referred to. The notation |G| is sometimes be used as a
shorthand for |V (G)|. When it is clear which graph is referred to, we use n to denote
|V |.

Capital letters represent matrices and bold lower-case letters represent vectors.
For a matrix A, aij or [A]ij represents the element in row i and column j; for the
vector x, xi or [x]i represents the ith entry in the vector. The notation x = 0 indicates
that all entries of the vector x are zero; ~1 indicates the vector that has 1 for every
entry. For ease of reference, the eigenvalues of an n × n matrix are indexed in non-
decreasing order. λ1 represents the smallest eigenvalue, and λn the largest. For
1 < i < n, λi−1 ≤ λi ≤ λi+1. The notation λi(A) (respectively λi(G)) indicates the
ith eigenvalue of matrix A (respectively of the Laplacian of graph G) if there is any
ambiguity about which matrix (respectively graph) the eigenvalue belongs to. We use
ui to represent the eigenvector corresponding to λi.

A path graph is a tree with exactly two vertices of degree one.
The crossproduct of two graphs G and H (denoted G × H) is a graph on the

vertex set {(u, v) | u ∈ V (G), v ∈ V (H)}, with ((u, v), (u′, v′)) in the edge set if and
only if either u = u′ and (v, v′) ∈ E(H) or v = v′ and (u, u′) ∈ E(G). It is easy to
see that G×H and H ×G are isomorphic. One way to think of a graph crossproduct
is as follows: Replace every vertex in G with a copy of H . Each edge e in G is then
replaced by |H | edges, one between each pair of corresponding vertices in the copies
of H that have replaced the endpoints of e. An example is shown in Figure 3.1.

For a connected graph G, an edge separator is a set S of edges that, if removed,
breaks the graph into two (not necessarily connected) components G1 and G2 that
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G x H

G H

Fig. 3.1. A Graph Crossproduct Example

have no edges between them. (An edge separator is by definition minimal with respect
to G1 and G2.) A vertex separator is a set S of vertices such that if these vertices
and all incident edges are removed, the graph is broken into two components G1 and
G2 that have no edges between them (again, a separator is a minimal such set). The
goal in finding separators is to find a small separator that breaks the graph into two
fairly large pieces; often this notion is expressed as a balance restriction that requires
the number of vertices in each of G1 and G2 to be at least some specified fraction of
the number of vertices in G. For edge separators, this goal is stated more generally in
terms of minimizing some measure relating the size of the separator to the size of the
resulting components. One such measure that we use is the isoperimetric number

i(G), defined as:

min
S

( |S|
min (|G1|, |G2|)

)

.

We refer to the quantity |S|/ min (|G1|, |G2|) as the cut quotient for the edge separa-
tor S. As noted Section 2, finding a cut with a cut quotient equal to the isoperimetric
number is NP-hard. It is well known that an edge separator S can be converted into
a vertex separator S ′ by considering the bipartite graph induced by S and setting S ′

to be a minimum vertex cover for that graph.

Given a vertex numbering, graphs can be represented by matrices. For exam-
ple, the adjacency matrix A of a graph G is defined as aij = 1 if and only if
(vi, vj) ∈ E(G); aij = 0 otherwise. A common matrix representation of graphs is
the Laplacian. Let D be the matrix with dii = degree(vi) for vi ∈ V (G), and all
off-diagonal entries equal to zero. Let A be the adjacency matrix for G. Then the
Laplacian of G is the matrix B = D − A.

The following are useful facts about the Laplacian matrix:

• The Laplacian is symmetric positive semidefinite (see e.g. [21]).
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• A graph G is connected if and only if 0 is a simple eigenvalue of its Laplacian
(see e.g. [21]). The eigenvector for 0 is ~1.

• The following characterization of λ2 holds (see e.g. [11]):

λ2 = min
x⊥~1

xT Bx

xT x
.

• If G is a crossproduct of two graphs G and H , then the eigenvalues of the
Laplacian of G are all pairwise sums of the eigenvalues of G and H (see
e.g. [21]).

• For any vector x and Laplacian B of graph G, the following holds (see
e.g. [18]):

xT Bx =
∑

(vi,vj)∈E(G)

(xi − xj)
2(3.1)

• For a graph G that is not one of K1, K2, or K3 (the complete graphs on 1, 2,
and 3 vertices respectively), let λ2 be the smallest nonzero eigenvalue of its
Laplacian. G’s isoperimetric number can be bounded as follows [22]:

λ2

2
≤ i(G) ≤

√

λ2(2∆ − λ2),(3.2)

where ∆ is the maximum degree of any vertex in G.
The proof of the upper bound in (3.2) has interesting implications about the

threshold cuts based on the second eigenvector. For any connected graph G, consider
the characteristic valuation. The vertices of G receive k ≤ n distinct values; let
t1 > t2 > . . . > tk be these values. For each threshold ti, i < k, divide the vertices
into those with values greater than ti, and those with values less than or equal to ti.
Compute the cut quotient qi for each such cut, and let qmin be the minimum over
all qi’s. The following theorem can be derived from the proof of Theorem 4.2 in [22]
(a similar argument leading to similar result for the Laplace operator associated with
the transition matrix of a reversible Markov chain can be found in [26]):

Theorem 3.1. Let G be a connected graph with maximal vertex degree ∆ and
second smallest eigenvalue λ2. If G is not any of K1, K2, or K3, then

λ2

2
≤ qmin ≤

√

λ2(2∆ − λ2).

A weighted graph is a graph for which a real value wi is associated with each
vertex vi, and a real, nonzero weight wij is associated with each edge (vi, vj) (a
zero edge weight indicates the lack of an edge). Fiedler extended the notion of the
Laplacian to graphs with positive edge weights [12]; he referred to this representation
as the generalized Laplacian. Our results require a representation for graphs with
vertex weights and negative edge weights. Hence we define the standard matrix

representation B of a weighted graph G as follows: B has bii = wi; for i 6= j and
(vi, vj) ∈ E(G), bij = −wij , and bij = 0 otherwise. Note that the standard matrix
representation of any weighted graph is a real symmetric matrix, and that any such
matrix can be represented as a specific weighted graph. Note also that the Laplacian
matrix of a graph is also the standard matrix representation of the graph with vertex
weights equal to the vertex degrees, and all edge weights set to 1.
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4. Automorphisms of Order 2 and Eigenvector Structure. The theorems
and lemmas presented in this section are useful in proving results about the eigen-
vectors of the families of graphs presented in later sections. The details of the proofs
are not necessary to understanding the rest of the paper; a reader interested only in
understanding the counterexamples and their implications can look at the theorem
statements and skip the proofs.

The first set of results concerns eigenvalues of Laplacians of graphs with automor-
phisms of order 2. A graph automorphism is a permutation φ on the vertices of
the graph G such that (vi, vj) ∈ E(G) if and only if (vφ(i), vφ(j)) ∈ E(G). The order

of a graph automorphism is the order of the permutation φ, the minimum number of
times φ must be applied to yield the identity mapping.

For weighted graphs, there are two additional conditions: the weights of vertices
vi and vφ(i) must be equal for all i, and the weights of edges (vi, vj) and (vφ(i), vφ(j))
must be equal.

The next two theorems concern the structure of eigenvectors with respect to
automorphisms of order 2. They hold both for Laplacians of graphs under the stan-
dard definition of automorphism, and for standard matrix representations of weighted
graphs under the definition of automorphisms for weighted graphs.

Let G be a graph with an automorphism φ of order 2 and Laplacian B. A vector
x that has xi = xφ(i) for all i in the range 1 ≤ i ≤ n is an even vector with respect
to the automorphism φ; an odd vector y has yi = −yφ(i) for all i. It is easy to show
that for any even vector x and odd vector y (both with respect to φ), x and y are
orthogonal.

Theorem 4.1. Let B be the Laplacian of a graph G that has an automorphism φ
of order 2. Then there exists a complete set U of orthogonal eigenvectors of B such
that any eigenvector u ∈ U is either even or odd with respect to φ. This also holds if
G is a weighted graph, B the standard matrix representation of G, and φ a weighted
graph automorphism of order 2.

Proof. Let P be the permutation matrix that corresponds to the automorphism
φ. Then P T BP = B. Let u be an eigenvector of B with eigenvalue λ. We have

(

P T BP
)

u = Bu = λu.(4.1)

Since the automorphism is of order 2, PP = I and P T = P−1 = P . Therefore,
multiplying the left and right sides of (4.1) by P gives

B (Pu) = P (λu) = λ (Pu) .

Thus, Pu is also an eigenvector with eigenvalue λ.
Note that for an even vector x, Px = x; for an odd vector y, Py = −y.
P allows us to decompose any vector x uniquely into an odd component xodd and

an even component xeven as follows:

xodd =
x− Px

2
, and xeven =

x + Px

2
.

For any non-zero x, at least one of the even or odd parts must also be non-zero.
Let U ′ be any complete set of eigenvectors of B. For an eigenvector u ∈ U ′, it

is easy to see that a non-zero even or odd component is an eigenvector for the same
eigenvalue. Since uodd+ueven = u, the set of odd and even eigenvectors resulting from
decomposing all the eigenvectors in U ′ spans the same space as U ′. The subspaces
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spanned by all odd and by all even components respectively are orthogonal. Since B
is real and symmetric, we can subdivide these subspaces into smaller orthogonal sub-
spaces spanned by the odd (respectively even) eigenvectors for particular eigenvalues.
We can form an orthogonal basis for each of these smaller subspaces; the union of all
these bases is the desired set U of orthogonal odd and even eigenvectors. This implies
the claimed result.

The proof clearly holds whether B is a Laplacian or a standard matrix represen-
tation.

Corollary 4.2. Let B be the standard matrix representation of a weighted
graph G that has one or more automorphisms of order 2. Then the eigenvector for
any simple eigenvalue is either even or odd with respect to every such automorphism.

Proof. Let u be the eigenvector for some simple eigenvalue λ. Consider the
decomposition of u into odd and even parts with respect to some automorphism φ
with order 2. If both parts were non-zero, they would be orthogonal and eigenvectors
for λ. Therefore either the odd part or the even part must be zero.

Since Laplacians can be considered to be standard matrix representations given
the right weight assignments, the preceding result also holds for Laplacians.

Let B be a standard matrix representation of a weighted graph with an automor-
phism φ of order 2. It is possible to decompose B into two smaller matrices Bodd and
Beven such that the eigenvalues of Bodd and Beven are the odd and even eigenvalues
of B respectively, and further, that a full set of odd and even eigenvectors of B can
be constructed in a simple way from the eigenvectors of Bodd and Beven respectively.
We demonstrate this through a similarity transform based on φ. First, however, we
need to introduce some notation.

The vertices of G can be divided into two disjoint sets on the basis of how φ
operates on them. Let Vf be the set of vertices vi such that φ(i) = i (i.e., the vertices
fixed by φ), and let Vm be the set of vertices vj such that φ(j) 6= j (i.e., the vertices
moved by φ). Vm consists of vertices in orbits of length 2. We call a subset of Vm

that consists of exactly one vertex from each such orbit a representative set and
denote it Vr. In the rest of this presentation we assume that a particular Vr has been
arbitrarily specified. We use nf , nm, and nr respectively to denote the number of
vertices in each of these sets.

Without loss of generality, number the vertices in the following way: the vertices
in Vf are numbered 1 through nf ; the vertices in Vr are numbered from nf + 1 to
nf + nr. Renumber the vertices in Vm \ Vr such that if vi ∈ Vr, then φ(i) = i + nr;
that is, the vertices in Vm \Vr are numbered nf +nr +1 to n in the same order as the
vertices in Vr with which they share orbits. Using this ordering and the definition of
the automorphism, B can be written in the following block form:

B =





F Efr Efr

ET
fr R Erφ(r)

ET
fr Erφ(r) R



 ,

where
• F is an nf × nf submatrix containing the diagonal entries for the vertices in

Vf and the entries for edges between pairs of vertices in Vf ;
• R is an nr × nr submatrix containing the diagonal entries for the vertices in

Vr and the entries for edges between pairs of vertices in Vr;
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• Efr is the entries of B for edges between vertices in Vf and Vr; and
• Erφ(r) is the entries of B for edges between vertices in Vr and Vf \ Vr (note

that the conditions specified above imply Erφ(r) = ET
rφ(r).

We now define the orthogonal matrix T used to transform B:

T =







Inf
0 0

0 1√
(2)

Inr

1√
(2)

Inr

0 1√
(2)

Inr

−1√
(2)

Inr






,

where the I ’s are identity matrices with the dimension specified in the subscript. B
is transformed as follows:

B′ = T T BT =





F
√

2Efr 0√
2ET

fr R + Erφ(r) 0

0 0 R − Erφ(r)



 .

Note that the resulting matrix is reducible. That is, when viewed as a weighted graph,
that graph has two components. We show that the blocks of this matrix correspond
to Beven and Bodd as follows:

Beven =

[

F
√

2Efr√
2ET

fr R + Erφ(r)

]

and Bodd = R − Erφ(r).

Let B, T , B′, Bodd, and Beven be as defined above.

Theorem 4.3. The eigenvalues of Bodd are odd eigenvalues of B, and a complete
set of odd eigenvectors of B can be constructed from the eigenvectors of Bodd in a
straightforward way. Likewise, the eigenvalues of Beven are even eigenvalues of B,
and a complete set of even eigenvectors of B can be constructed from the eigenvectors
of Beven in a straightforward way.

Proof. Because B′ is reducible, every eigenvalue of Bodd is an eigenvalue of B′;
likewise every eigenvalue of Beven is an eigenvalue of B′. By similarity, they are also
eigenvalues of B.

Now consider an eigenvector u of Beven. Define v as follows: for 1 ≤ i ≤ nf + nr

let vi = ui; let vi = 0 otherwise. v is obviously an eigenvector of B ′. Multiplication
by the matrix T transforms v into an eigenvector w of B:

w = Tv =







vf
1√
(2)

vr

1√
(2)

vr







By the vertex numbering, it is easy to see this is an even vector. Since u, v, and w

all have the same eigenvalue λ, the claim about eigenvalues of Beven corresponding to
even eigenvalues of B holds. It is easy to show that if two eigenvectors u1 and u2 of
Beven are orthogonal, then the corresponding eigenvectors w1 and w2 are also orthog-
onal. Since Beven has nf + nr orthogonal eigenvectors, we have nf + nr orthogonal
even eigenvectors of B.

Now consider an eigenvector u of Bodd. As before, one can construct an eigenvec-
tor v of B′: for nf + nr + 1 ≤ i ≤ n let vi = ui; let vi = 0 otherwise. Multiplication
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by the matrix T again transforms v into an eigenvector w of B:

w = Tv =







0
1√
(2)

vφ(r)

−1√
(2)

vφ(r)







This is clearly an odd vector. Since u, v, and w all have the same eigenvalue λ,
the claim about eigenvalues of Bodd corresponding to odd eigenvalues of B holds.
It is easy to show that if two eigenvectors u1 and u2 of Bodd are orthogonal, then
the corresponding eigenvectors w1 and w2 are also orthogonal. Since Bodd has nr

orthogonal eigenvectors, we have nr orthogonal odd eigenvectors of B.
Note that if all eigenvectors of Beven and Bodd are transformed in this way the

result is n orthogonal eigenvectors of B (i.e., a full set).

It is possible to express this decomposition in terms of graphs: The graph G is
decomposed into the components Godd and Geven. Rules for the graphical decompo-
sition can be derived from the structure of Bodd and Beven, and are presented in the
technical report version of this paper [16].

The following technical lemmas about the eigenvalues and eigenvectors of weighted
path graphs are useful in subsequent results.

Lemma 4.4. Let B be the standard matrix representation of a weighted path graph
G on n vertices. For any vector x such that Bx = λx for some real λ, xn = 0 implies
x = 0. Likewise, x1 = 0 implies x = 0. If there are two consecutive elements xi and
xi+1 that are both zero, then x = 0.

Proof. The first result is proved by induction. The base case is for a 2× 2 matrix
with diagonal entries b11 and b22, and off-diagonal entries b12 = b21 = −c. Let x

and λ be as specified by the lemma statement, and assume that x2 = 0. The second
element of the vector resulting from multiplying Bx = λx is −c ·x1 = λx2 = 0. Since
c 6= 0 by definition (G is a weighted path graph), it must be the case x1 = 0, which
implies that x = 0.

For the induction step, assume that the result holds for all i ≤ k, and consider the
standard matrix representation of a weighted path graph on k + 1 vertices. Let the
weight of edge (vk, vk+1) be c. Let x and λ be as stated, and assume that xk+1 = 0.
Then [Bx]k+1 = −c · xk = λxk+1 = 0. Thus xk = 0. Let x′ be the subvector of x

consisting of the first k entries. Note that with xk+1 = 0 it is the case that x′ and λ
meet the lemma conditions for the principle leading minor Bk of B, and that x′

k = 0.
But Bk is the standard matrix representation for the weighted path graph derived
from G by deleting the last edge and vertex. Thus, by the induction hypothesis x′

must be 0; because xk+1 = 0 this implies that x = 0.

A symmetric argument implies the result for x1 = 0.
Again let B be the standard matrix representation of a weighted path graph G.

Let x be a vector meeting the lemma conditions for λ, and assume that x has two
consecutive zero elements xi and xi+1. If either i = 1 or i + 1 = n, x = 0 by the
previous argument. Otherwise, xi+1 = 0 implies that the first i elements of x and
λ meet the lemma conditions for the leading principle minor Bi of B. Note that Bi

is the standard matrix representation for some weighted path graph. Thus by the
previous result the first i entries of x are zero. By a symmetric argument for the
trailing principle minor, the last n − i entries must also be zero, which gives x = 0.
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This lemma implies that for eigenvectors of the standard matrix representation
of any weighted path graph, neither the first nor the last entry is zero. Likewise, such
an eigenvector cannot have two consecutive zero entries. These facts can be used to
give a simple proof of the following lemma (for a different proof, see e.g. pp. 910-911
of [28]).

Lemma 4.5. All eigenvalues of the standard matrix representation B of a weighted
path graph G on n vertices are simple (i.e., have multiplicity one).

Proof. Let u and u′ be any two eigenvectors of B for the eigenvalue λ. By
Lemma 4.4, un 6= 0 and u′

n 6= 0. Let α be u′
n/un; α is non-zero and real. Then

B (αu − u′) = λ (αu − u′). But the nth element of (αu − u′) is 0, so by Lemma 4.4,
it must be the case that αu = u′, so u must be a scalar multiple of u′; it is not a
distinct eigenvector.

A path graph on n vertices has exactly one automorphism of order two: φ(i) =
n− i+1. Thus one can talk about odd and even eigenvectors of a path graph without
ambiguity; they are always with respect to this automorphism.

Lemma 4.6. Let G be an unweighted path graph on n vertices with Laplacian B.
The eigenvector u2 corresponding to λ2(B) is odd.

Proof. By Lemma 4.5, u2 is simple, so by Corollary 4.2, u2 must be either even
or odd. Assume that it is even. We show this leads to a contradiction.

There are two cases to keep track of: n is odd, and n is even. If n is odd, there
is a single center vertex vd n

2
e (index the vertices along the path from 1 to n). If n is

even, there are two center vertices with indices n
2 and n

2 +1; since u2 is assumed to be
even, their entries in u2 are equal. Thus, by Lemma 4.4, if n is even the eigenvector
entries corresponding to the center vertices are non-zero. If n is odd, u2 is even, and
the eigenvector entry for the center vertex is 0, then it is easy to check that changing
the signs of all eigenvector entries with index less than the center index gives an odd
eigenvector with eigenvalue λ2, which contradicts the simplicity of λ2. Thus, the
assumption that u2 is even implies that the eigenvector entries corresponding to the
center vertex or vertices must be non-zero. Let this value be c.

Now consider the vector x = (−c) · ~1 + u2. Recall that u2 is orthogonal to ~1. It
is easy to see that x is even, and since c 6= 0,

xT Bx

xT x
=

uT
2 Bu2

c2n + uT
2 u2

<
uT

2 Bu2

uT
2 u2

= λ2.

However, the entries of x corresponding to the center vertex or vertices are 0, so

as above, one can create an odd vector y such that y
T By

yT y
= x

T Bx

xT x
as follows: set

yi = xi, i < n
2 and yi = −xi, i > n

2 . Recall the characterization λ2 = min
x⊥~1

x
T Bx

xT x
;

y is orthogonal to ~1, so it meets the criteria for the characterization of λ2, so the
assumption that u2 is even gives λ2 < λ2, a contradiction.

The reader can easily verify that this theorem also holds for generalized Laplacians
(i.e., Fiedler’s matrix representation of graphs with positive edge weights) where the
automorphism φ exists. However, extensions to the standard matrix representation
case is not possible because of vertex weights and negative edge weights.

5. A Bad Family of Bounded-Degree Planar Graphs for Spectral Bi-

section. In this section we present a family of bounded-degree planar graphs that
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have constant-size separators. However, the separators produced by spectral bisection
have size Θ(n) for both edge and vertex separators.

The family of graphs is parameterized on the positive integers. Gk consists of
two path graphs, each on 2k vertices, with a set of edges between the two paths as
follows: label the vertices of one path from 1 to 2k in order (the upper path), and
label the other path from 2k + 1 to 4k in order (the lower path). For 1 ≤ i ≤ k
there is an edge between vertices k + i and 3k + i. An example for k = 5 is shown in
Figure 5.1. It is obvious that Gk is planar for any k, and that the maximum degree
of any vertex is 3.

vv vk v

v v v v

k+1 2k

2k+1 3k 3k+1 4k

1

Fig. 5.1. The Roach Graph for k = 5

Note that the graph has the approximate shape of a cockroach, with the section
containing edges between the upper and lower paths being the body, and the other
sections of the paths being antennae. This terminology allows easy references to parts
of the graph.

Gk has one automorphism of order 2 that maps the vertices of the upper path to
the vertices of the lower path and vice versa. For the rest of this section, the terms
“odd vector” and “even vector” are used with respect to this automorphism. Thus,
an even vector x has xi = x2k+i for all i in the range 1 ≤ i ≤ 2k; an odd vector y has
yi = −y2k+i for all i, 1 ≤ i ≤ 2k.

We can now discuss the structure of the eigenvectors of Bk, the Laplacian of Gk:

Lemma 5.1. Any eigenvector ui with eigenvalue λi of Bk can be expressed as a
linear combination of:

• an even eigenvector of Bk in which the values associated with the upper path
are the same as for the eigenvector with eigenvalue λi (if it exists) of a path
graph on 2k vertices, and

• an odd eigenvector of Bk in which the values associated with the upper path are
the same as for the eigenvector with eigenvalue λi (if it exists) of a weighted
graph that consists of a path graph on 2k vertices for which the vertex weights
of vk+1 through v2k have been increased by 2.

Proof. The fact that we can express any eigenvector of Bk as a sum of odd and
even eigenvectors follows by Theorem 4.1 applied with respect to the automorphism
of order 2.

The claim about the specific structure of the odd and even eigenvectors of Bk

follows from an application of the even-odd decomposition proved in Theorem 4.3,
with the odd and even matrix components described in graph form.

It is obvious that Gk has a bisector of constant size: cut the edges connecting
the antennae to the body. The following theorem shows that spectral bisection gives
much larger bisectors for the family of graphs Gk:



ON THE QUALITY OF SPECTRAL SEPARATORS 13

Theorem 5.2. Spectral bisection produces Θ(n) edge and vertex separators for
Gk for any k.

Proof. The first step is to show that u2 is odd. Intuitively, this implies that the
spectral method splits the graph into the upper path and the lower path.

Recall that λ2 = min
x⊥~1

x
T Bkx

xT x
. We construct an odd vector x such that the

quotient x
T Bkx

xT x
is less than y

T Bky

yT y
for any even eigenvector y orthogonal to ~1 (~1 is the

smallest even eigenvector). This requires a proof that x
T Bkx

xT x
is less than the second

smallest even eigenvalue. From Lemma 5.1 above, the second smallest even eigenvalue
of Bk is the same as the second smallest eigenvalue µ2 of the Laplacian B of a path
graph G on 2k vertices; it is well-known that µ2 = 4 sin2( π

4k
) (see for example [21]).

Let z be the eigenvector of B corresponding to µ2. Construct x as follows:

xi =







zi 1 ≤ i ≤ k,
z4k−i+1 2k + 1 ≤ i ≤ 3k, and
0 otherwise.

That is, assign the first k values from the path G to the upper antenna of the roach,
working in the direction towards the body, and assign the last k entries from G to the
lower antenna, working from the body outward. Since z and x have the same set of
non-zero entries, xT x = zT z. Likewise, since z is orthogonal to the “all-ones” vector,
so is x.

To see that xT Bkx < zT Bz, recall (3.1) from Section 3: for Laplacian B and
vector y,

yT By =
∑

(vi,vj)∈E

(yi − yj)
2.

For every edge in G except one, there is an edge in Gk that contributes the same
value to this sum. The one exception is the edge (vk, vk+1) in G. Since z is an odd
vector by Lemma 4.6, and since z has an even number of entries, zk = −zk+1. By
Lemma 4.4, it is not possible for both zk and zk+1 to be zero, so zk is equal to some
non-zero value c, and this edge contributes 4c2 to the value of zT Bz. On the other
hand, there are two edges in Gk that contribute non-zero values and that do not have
corresponding edges in G: (vk, vk+1) and (v3k, v3k+1). Each of these edges contributes
c2 to xT Bkx. Thus

xT Bkx = zT Bz − 4c2 + 2c2 < zT Bz.

Since xT x = zT z,

λ2(Gk) ≤ xT Bkx

xT x
<

zT Bz

zT z
= 4 sin2(

π

4k
).

That is, the second smallest eigenvalue of Bk is less than any non-zero even eigenvalue,
and is thus odd by Theorem 4.1.

We still need to show that there are not too many zero entries in u2 (spectral
bisection as defined in this paper does not separate vertices with the same value). Since
u2 is an odd vector and since the odd component of Gk is a weighted path graph,
Lemmas 4.4 and 5.1 imply that u2 cannot have consecutive zeros, and the values
corresponding to vertices 2k and 4k are non-zero. Thus the edge separator generated
by spectral bisection must cut at least half the edges between the upper and lower
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paths; since none of these edges share an endpoint, the cover used in generating the
vertex separator must include at least this number of vertices.

Recently Spielman and Teng have presented an algorithm that recursively applies
a spectral separator method to give bisections of planar graphs guaranteed to be
O(

√

(n)); their technique applied to the roach graph gives a bisection of constant
size. See Section 8 for details.

6. A Bad Family of Graphs for the “Best Threshold Cut” Algorithm.

While the roach graph defeats spectral bisection, the second smallest eigenvector can
still be used to find a small separator using the “best threshold cut” algorithm. In
particular, Theorem 3.1 implies that considering all threshold cuts induced by u2

produces a constant-size cut: If qmin is the minimum cut quotient for these cuts, then

qmin ≤
√

λ2(2∆ − λ2) ≤
√

6π

4k
,

which implies qmin is O( 1
n
). Since the denominator of qmin is less than or equal to n

2 ,
the number of edges in this cut must be bounded by a constant.

In this section we show that there is a family of graphs for which the “best thresh-
old cut” algorithm does poorly. The graphs in this family consist of crossproducts of
path graphs and double trees. A double tree is two complete binary trees of k levels
for some k > 0 connected by an edge between their respective roots.

The following two bounds are proved in [16]:

Lemma 6.1. For a complete balanced binary tree on k ≥ 3 levels and n = 2k − 1
vertices, 1

n
< λ2 < 2

n
.

For double trees where each of the component trees has k levels, n = 2k+1 − 2.
The following bound applies:

Lemma 6.2. For a double tree on n ≥ 14 vertices, 1
n

< λ2 < 4
n
.

The tree-cross-path graph consists of the crossproduct of a double tree on p1

vertices and a path graph on p2 vertices. We show that there are tree-cross-path
graphs that defeat the “best threshold cut” algorithm.

We formally state the result for this section as follows:

Theorem 6.3. There exists a graph G for which the “best threshold cut” algo-
rithm finds a separator S such that the cut quotient for S is bigger than i(G) by a
factor as large (to within a constant) as allowed by the bounds from Theorem 3.1.

Proof. Let G be the tree-cross-path graph that is the crossproduct of a double
tree of size p and a path of length cp

1

2 for some c in the range 3.5 ≤ c < 4. To insure
that the double tree and the path have integer sizes, restrict p to integers of the form
2k − 2 for k ≥ 4. Then choose c in the range specified such that cp

1

2 is an integer (the
choice of p insures there is an integer in this range).

Recall that the eigenvalues of a graph crossproduct are all pairwise sums of
the eigenvalues from the graphs used in the crossproduct operation. Let ν2 be the
second smallest eigenvalue of the double tree on p vertices, and let µ2 be the sec-
ond smallest eigenvalue for the path on cp

1

2 vertices. If µ2 < ν2, then λ2 for the
crossproduct is µ2 (i.e., µ2 added to the zero eigenvalue of the double tree). Since

µ2 = 4 sin2

(

π

2cp
1

2

)

and ν2 ≥ 1
p

(by Lemma 6.2 and the choice of p), it is necessary to

show that 4 sin2

(

π

2cp
1

2

)

< 1
p
. Reorganizing, simplifying, and noting that sin(θ) < θ
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for 0 < θ ≤ π
2 , it is sufficient to show that π < c. Clearly by the choice of c this

inequality holds.
Note that the tree-cross-path graph can be thought of as cp

1

2 copies of the double
tree, each corresponding to one vertex of the path graph. Each vertex in the ith copy
of the double tree is connected by an edge to the corresponding vertex in copies i− 1
and i + 1. This description allows one to construct the eigenvector for the second
smallest tree-cross-path eigenvalue as follows: Assign each vertex in double tree copy
i the value for vertex i in the path graph eigenvector for µ2. Note that this is the
only possible eigenvector since path graph eigenvalues are simple by Lemma 4.5.

Now consider any copy of the double tree: every vertex in that copy gets the same
value in the characteristic valuation. Thus the cut S made by the “best threshold
cut” algorithm must separate at least two copies of the double tree, and thus must
cut at least p edges. There is a bisection S∗ of size cp

1

2 (cut the edge between the
roots in each double tree); because this cut is a bisection, the ratio between the cut
quotient q for S and i(G) is at least as large as the ratio between the sizes of these
cuts:

q

i(G)
≥ |S|

|S∗| ≥
p

cp
1

2

= Ω
(

p
1

2

)

.

From Theorem 3.1,

λ2

2
≤ i(G) ≤ q ≤

√

λ2(2∆ − λ2).

This plus the fact that the tree-cross-path graph has bounded degree (∆ = 5) implies
that

q

i(G)
≤ 2

√

λ2(2∆ − λ2)

λ2
= O

(

1√
λ2

)

= O
(

p
1

2

)

.

These two bounds imply that, to within a constant factor, the ratio is as large as
possible, and the theorem holds.

7. A Bad Family of Graphs for Generalized Spectral Algorithms.

7.1. Purely Spectral Algorithms. In Section 2 we noted that many variations
of spectral partitioning have been suggested. In this section we extend the results of
the previous section to cover those variations and many other possibilities, including
algorithms that use some number k (where k might depend on n) of the eigenvec-
tors corresponding to the k smallest non-zero eigenvalues. In particular, consider
algorithms that meet the following restrictions:

• The algorithm computes a value for each vertex using only the eigenvector
components for that vertex from k eigenvectors corresponding to the smallest
non-zero eigenvalues (for convenience, We refer to these as the k smallest

eigenvectors). The function computed can be arbitrary as long as its output
depends only on these inputs.

• The algorithm partitions the graph by choosing some threshold t and then
putting all vertices with values greater than t on one side of the partition,
and the rest of the vertices on the other side.

• The algorithm is free to compute the break point t in any way; e.g., checking
the cut quotient for all possible breaks and choosing the best one is allowed.

We call such an algorithm purely spectral.
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7.2. Purely Spectral Algorithms that Use a Constant Number of Eigen-

vectors. The following theorem gives a bound on how well such algorithms do when
the number of eigenvectors used is a constant:

Theorem 7.1. Consider the purely spectral algorithms that use the k smallest
eigenvectors for k a fixed constant. Then there exists a family of graphs G such that
G ∈ G has a bisection S∗ with |S∗| ≥ (k2n)

1

3 , and such that any purely spectral
algorithm using the k smallest eigenvectors produces a separator S for G such that

|S| ≥
(

|S∗|
πk+1

)2

.

Proof. We show that G is the set of tree-cross-path graphs that are the crossprod-
ucts of double trees of size p (where p is an integer of the form 2j − 2 for some j ≥ 4)

and paths of length cp
1

2 , where c is a constant chosen such that πk < c ≤ πk + 1 and
cp

1

2 is an integer.
Using slight modifications of arguments from Theorem 6.3, one can show the

following: For graphs in G, the k smallest positive path eigenvalues are less than
the smallest positive eigenvalue of the double tree. This implies that every vertex
in a particular copy of the double tree receives the same set of values from the k
eigenvectors. Thus the purely spectral algorithm assigns the same value to each
vertex in that copy. This implies that S, the separator produced, must separate at
least two copies of the double tree, and thus must cut at least p edges.

There is a bisection S∗ of size cp
1

2 (it cuts the edge between the roots in each

double tree); because n = cp
3

2 and c > k, it is the case that |S∗| > k
2

3 n
1

3 . It is obvious
that

|S| ≥
( |S∗|

c

)2

;

since c ≤ πk + 1, the theorem holds.

Note that for the case in which k is constant, the following results apply for the
family of graphs described in the preceding theorem:

• the cut quotient qS is no better than the best cut quotient qmin produced by
considering all threshold cuts for u2, and

• the gap between i(G) and qmin is as large as possible (within a constant
factor) with respect to Theorem 3.1. The bound on |S∗| implies that the

spectral separator is bigger by a factor of at least a constant times n
1

3 .
These results can be shown using techniques from the previous section. Thus, for such
graphs, using k eigenvectors does not improve the performance of the “best threshold
cut” algorithm.

These results also hold for certain variants of the definition of “purely spectral”.
For example, Chan, Gilbert, and Teng have proposed using the entries of eigenvec-
tors 2 through d + 1 of the Laplacian as spatial coordinates for the corresponding
vertices of a graph [7]. The graph is then partitioned using a geometric separator al-
gorithm [20],[15]. If this technique is applied (using a fixed d) to the counterexample
graph used in the proof above, all vertices in a particular copy of the double tree end
up with the same coordinates; the geometric algorithm then cuts between copies of
the double tree, yielding the same bad cuts as in the proof.

7.3. Purely Spectral Algorithms that Use More than a Constant Num-

ber of Eigenvectors. There are still a number of open questions about the perfor-
mance of purely spectral algorithms that use more than a constant number of eigenvec-
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tors (in particular, how well can such algorithms do if they use all the eigenvectors?).
However, just using more than a constant number of eigenvectors is not sufficient to
guarantee good separators. In particular, the counterexamples and arguments in the
previous sections can be extended to prove the following theorem:

Theorem 7.2. For sufficiently large n and 0 < ε < 1
4 , there exists a bounded-

degree graph G on n vertices such that any purely spectral algorithm using the nε

smallest eigenvectors produces a separator S for G with a cut quotient greater than

i(G) by at least a factor of n( 1

4
−ε) − 1.

Proof. Once again, let G be the tree-cross-path graph. As in the previous two
proofs, choose p1 (the double-tree size) and p2 (the path size) such that the smallest
nε eigenvalues of the crossproduct are the same as the smallest nε eigenvalues of the
path graph. Once again, a purely spectral algorithm separates two adjacent double
trees, while the edges between the roots of the double trees form a better separator.
It remains to choose p1 and p2 such that the claim about the smallest eigenvalues of
the crossproduct holds, and to show that the resulting cut is bad.

Set p1 to some arbitrary positive integer p, subject to the conditions presented

below to insure that p is sufficiently large. Then set p2 =
⌈

p( 1

2
+2ε)

⌉

. Note that p can

be chosen sufficiently large such that

p > p( 1

2
+2ε) + 1 > p2.

This implies that p > n
1

2 , where n = p1 p2. Note that this allows one to show easily
that nε < p2ε < p2 (i.e., since the algorithm uses nε eigenvectors, this argument
requires the path graph to have at least that many eigenvalues, and thus be at least

that long). Also note that even for fairly small p, p2 < 2p( 1

2
+2ε), which implies that

n < 2p( 3

2
+2ε).(7.1)

Now consider the ratio of the size of the cut produced by cutting the double-
tree edges to the size of the cut produced by a purely spectral method under the
assumption that the nε smallest eigenvalues are the same as for the path graph. As
in previous proofs, this ratio is at least as large as the ratio between the number of
edges cut. Thus, for sufficiently large p, the ratio is at least

p
⌈

p( 1

2
+2ε)

⌉ > p( 1

2
−2ε) − 1 > n( 1

4
−ε) − 1.

All that is left to prove is the assumption about the smallest eigenvalues. If
α = 1

2 − 2ε, then α > 0 and inequality (7.1) above can be written as

n < 2p(2−α).(7.2)

Recall that the eigenvalues of a path graph on k vertices are 4 sin2( πi
2k

) for 0 ≤ i < k,
and that λ2 for a double tree on p ≥ 14 vertices is greater than or equal to 1

p
. It

remains to show that for p sufficiently large,

4 sin2





πnε

2
⌈

p( 1

2
+2ε)

⌉



 <
1

p
.
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Reorganizing, simplifying, noting that sin(θ) < θ for 0 < θ ≤ π
2 , and applying in-

equality (7.2) above, it is sufficient to show that there is a sufficiently large p such
that

π
(

2p(2−α)
)ε

2p( 1

2
+2ε)

<
1

2p
1

2

, or π2ε < pαε.

Clearly this inequality holds for sufficiently large p.

8. A Note on More Recent Developments. Subsequent to the initial ap-
pearance of these results [17], Spielman and Teng published a paper on the perfor-
mance of spectral partitioning algorithms [27]. Their work has several parts, including:

• A proof that for any bounded-degree planar graph, λ2 = O(n−1), and that

for well-shaped meshes in d dimensions, λ2 = O(n− 2

d ).
• A new proof of a theorem credited to Mihail that extends bounds on quotient

cuts to all vectors with small Rayleigh quotients.
• A recursive spectral bisection algorithm. The algorithm produces O(n

1

2 ) bi-

sectors for planar graphs and O(n1− 1

d ) bisectors for well-shaped d-dimensional
meshes.

• A new bounded-degree planar counterexample graph for which “best thresh-
old cut” gives a poorly-balanced separator.

It is interesting to consider how those results relate to the results in this paper.

We have shown that there are bounded-degree planar graphs for which spectral
bisection based on u2 alone gives a cut of size Θ(n). Spielman and Teng’s recur-
sive spectral bisection algorithm, however, produces constant size bisections for our
counterexamples. Thus their algorithm gives a greatly improved, if somewhat more
expensive, result. Their bounded-degree counterexample graph is an interesting ad-
vance over the roach graph in that it gives a bounded-degree planar graph with both
a bad bisection and a poorly-balanced “best threshold cut”.

As for the tree-cross-path examples, the two papers illustrate the difference be-
tween guarantees on the size of a balanced cut versus its optimality. If on the first cut,
the recursive algorithm produces a bisection that is large relative to the best bisection,
the recursion will not improve the bisection. (This is the case for the tree-cross-path
graph.) Examples exist for well-shaped meshes. The following graph was suggested
by John Gilbert: let a double grid be a pair of k × k square grids that share a single
common corner. As shown in [19], λ2 of the double grid is Θ( 1

k2 log k
). The double-

grid-cross-path graph is a crossproduct between a double grid graph and a path graph.
Note that for a suitable constant c, if the path has length ck

√
log k, the path graph

contributes the second smallest eigenvalue of the double-grid-cross-path. Following
an analysis similar to that in Theorem 6.3, one can show that the “best threshold
cut” for such a double-grid-cross-path is a bisection of size Θ(k2) that splits the graph
between two copies of the double grid. It is easy to check that the recursive algorithm
also returns this cut, and thus does not improve the quality of the single spectral cut.
However, this example has a bisection of size Θ(k

√
log k) (separate the grids at their

common points). The larger bisection meets the guarantee for three-dimensional grids
(n here is ck3

√
log k), but is not optimum.
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