
	

1	

Introduction to Python 3 for People Who Know Many Languages.
By Dan Hyde, July 27, 2011

Python is a free, interpreted language available on multi-platforms including Windows, Mac and Linux.
Python has support for multiple programming paradigms including functional, imperative and object-
oriented programming.

Follow the “Getting Started with Python 3 on Linux” handout to edit, and run Python 3 programs.
Available at
http://www.eg.bucknell.edu/~hyde/Python3/Python3GettingStarted.pdf	

Read the following modified six-page introduction to Python by Tim Love at
http://www.eg.bucknell.edu/~hyde/Python3/TimLove.pdf

Notice that Tim originally used Python 2 and Dan has updated the notes for Python 3.

The following notes are written to supplement Tim’s web introduction.

Ken Lambert has a web page of the important differences between Python 2 and Python 3 (at
introductory CS course level) at the following:
http://home.wlu.edu/~lambertk/python/cs12python/index.html

1. Program Structure

Typically, one imports modules at the top of the program, follows with def statements to define
functions and then statements.

Python uses indention to show structure. The number of spaces indented is enforced within a structure.
When Python detects an outdent, the structure is complete. This enforcing of indents may seem strange
at first but it eliminates a lot of Java-style curly braces and makes student programs more readable!

In this case, the first executable line is the assignment to v_list.

Since Python is dynamically typed, one doesn’t declare the types of variables. One just uses them.

Simple Python program to show program structure
import random # import a module

def pick_verb(verbs): # function definition. Note ':' at line's end

 verb = random.choice(verbs) # Python uses indention to show
 # structure. Amount of indent
 # is enforced within a structure.
 return verb

v_list = ['ran', 'jumped', 'walked']
a_verb = pick_verb(v_list)
print(a_verb)

Since Python is dynamically typed, we can call pick_verb with any sequence.
a = [1, 2, 3, 4, 5]
b = pick_verb(a)
print(b)

	

2	

2. Data

Python’s elemental types include numbers (123, 3.1415, 3+4j, and others), strings, Booleans, and others.
Composite data types include lists, dictionaries, tuples, and sets. There is support for files and threads.
Some simple examples:

Strings: 'Hello!' "can’t" """multiple
 line
 string"""

Lists: [1,[2, 'three'],4] [x**2 for x in a if x > 3] # list comprehension

Dictionaries: {'food': 'pizza', 'taste': 'yum'} # Note placement of ':'s and ','s.

Tuples: (1, 'spam', 4, 'U') # Note use of parentheses.

Sets: set(‘abc’) {a, b, c} # Note use of braces.

A sequence in Python is a positionally ordered collection of other objects. Built-in sequences include
strings, lists, dictionaries and tuples and they all follow a consistent set of operations:

>>> S = 'Spam'
>>> len(S) # Length
4
>>> S[0] # The first item in S, indexing by zero-based position
'S'
>>> S[-1] # The last item from the end of S
'm'
>>> S[1:3] # Slice of S from offsets 1 through 2 (not 3)
'pa'
>>> S[1:] # Everything past the first, i.e., S(1:len(S))
'pam'
>>> S[:3] # Same as S[0:3]
'Spa'

Every object in Python is classified as either immutable (unchangeable) or not. For core types, numbers,
strings, tuples, and sets are immutable; lists and dictionaries are not, i.e., they can be changed in-place
freely.

Files: Files are fully supported. Here is an example:

""" Python program to demo files. By Dan Hyde, May 13, 2011
 It reads a text file a line at a time, strips off trailing
 white space then converts the line of "words" to a list. After
 reversing the list, it converts the list to a string then prints it. """

file_id = open("text1.txt")
line = file_id.readline()

while line:
 line = line.rstrip() #Strips trailing whitespace
 first_line = list(line) #Convert "words" to a list
 first_line.reverse() #Reverse the list
 print("".join(first_line)) #Convert the list to a string
 line = file_id.readline()

file_id.close()

	

3	

3. Sample Program Using User Input, Exception Handling, and Formatted Output

The below sample.py file demos reading user input, simple exception handling, and formatted
output. The top and interspersed strings are docstrings and are discussed in a later section.

"""Python program sample.py to demo user input, exception handling, and
 formatted output. By Dan Hyde, May 13, 2011"""

def input_int(prompt):
 """ input_int function: prompts the user and converts
 the user's input to a positive integer.
 in: a string for prompt
 out: user input as an integer"""

 while True:
 str_value = input(prompt) #Input as string
 try: #int may raise an exception
 value = int(str_value) #Convert string to integer
 return value
 except Exception: #Catch any user application exception
 print(str_value + ' is not an integer. Please retype!')

def convert_quarters(n):
 """convert_quarters function: converts quarters to dollars.
 in: n the number of quarters
 out: value of quarters in dollars"""

 return 25 * n / 100

quarters = input_int('Enter number of quarters: ')
money = convert_quarters(quarters)
print('Amount of money is $%.2f' % (money)) # The second % is string
 # formatting op

4. Functional Programming Features

In Python, functions are first class objects and can be passed as arguments. But functional programming
is more than programming with functions. The key characteristic of a program developed in a
functional programming style is that it creates new values by a transformation. Usually these values are
presented as lists or as dictionaries, i.e., a collection of key:value pairs. Python has flexible
implementation of lists and dictionaries to support the functional programming style.

By emphasizing transformation, rather than modification, functional programs work on a larger scale.
Transformations are often more uniform and much simpler to write and debug. Errors, when they do
occur, tend to be large and thus easier to find and eliminate.

The three most common varieties of transformation are mapping, filtering and reduction. Python has a
built-in function for each.

A mapping is a one-to-one transformation. Each element in the source is converted into a new value.
For example, Python’s map function contains the transformation in the first argument and a sequence,
such as a list, in the second. We need the list because in Python 3 map is a value generator.

>>> print(list(map(abs, [-5,-42, 20, -1])))
[5, 42, 20, 1]

	

4	

A filtering is the process of testing each value in a list with a function and retaining only those for which
the function is true. The filter function requires an argument that is a predicate, i.e., a one argument
function that returns a Boolean. In Python 3, the function filter returns a value generator which we
gather together by list.

def even(x):
 return x % 2 == 0

>>> a = [1, 2, 3, 4, 5]
>>> print(list(filter(even, a)))
[2, 4]

A reduction is the process of applying a binary function (operation) to each member of a list in a
cumulative fashion. Reducing [1, 2, 3, 4] on addition would be the result of (((1+2)+3)+4) or 10.

def add2(x, y)
 return x + y

>>> import functools # need to import special module to use reduce
>>> a = [1, 2, 3, 4]
>>> print(functools.reduce(add2, a))
10

If the function is simple, Python has a mechanism called lambda to define a nameless function as an
expression. Redoing the previous reduction using lambda, we have the following:

>>> a = [1, 2, 3, 4]
>>> print(functools.reduce(lambda x, y : x + y, a))
10

Python has list comprehensions that are easier to read and understand than combinations of map and
filter in part because they do not require an explicit lambda function. A list comprehension is a
way to create a list by a process that includes a test to filter values.

The list expression [expr1 for var in list if expr2] means “Create a list using
expression expr1 for all var in source list if expr2 is true.” A list comprehension combines
aspects of map and filter without the need for a lambda function. The if part is optional.

>>> list1 = [1, 2, 3, 4, 5]
>>> print([x*2 for x in list1 if x < 4])
[2, 4, 6]

The list comprehension [x*2 for x in list1 if x < 4] means to create a list using x*2 for all x in
list1 if x < 4.

List comprehensions are often used as the body of a function. The function definition provides a
convenient syntax and a way to provide names to arguments. The list comprehension is an easy-to-
understand way to write the body of the function:

def listOfSquares(a):
 return [x*x for x in a]
>>> listOfSquares([1, 2, 3])
[1, 4, 9]

	

5	

A recursive insertion sort in Python.

""" Python program that uses functional programming style
 for an insertion sort. From page 132 in "Exploring Python"
 by Timothy A. Budd. Coded by Dan Hyde, May 13, 2011 """

def insertion(aList, x):
 " insert x in proper place in list aList"

 if not aList: # that is, if aList is empty
 return [x]
 elif x < aList[0]:
 return [x] + aList
 else:
 return aList[0:1] + insertion(aList[1:], x)

def insertionSort(aList):
 """ If aList has values, call recursively.
 An insertion sort of empty list is empty list."""

 if aList: # if aList has values
 return insertion(insertionSort(aList[1:]), aList[0])
 else:
 return []

p = [11, 3, 6, 2, 7, 12]
q = insertionSort(p)
print(q)

A quicksort program that uses list comprehensions.

""" A quicksort program that uses list comprehensions.
 From page 134 in "Exploring Python" by Timothy A. Budd.
 Coded by Dan Hyde, May 13, 2011."""

def quicksort(aList):
 """ We chose the middle element for the pivot. """

 if aList: # i.e., not an empty list
 pivot = aList[len(aList)//2] # In Python 3, // is integer divide.
 return (quicksort([x for x in aList if x < pivot]) +
 [x for x in aList if x == pivot] +
 quicksort([x for x in aList if x > pivot]))
 else:
 return []

p = [3, 5, 6 , 7 , 1, 12, 9]
q = quicksort(p)
print(q)

	

6	

5. Object-oriented Features

If one has written classes in Java, writing classes in Python is straight forward.

""" A BankAccount class in Python.
 By Dan Hyde, May 13, 2011 """

class BankAccount(object): # Create a new class with object being parent class.
 " A class to model a simple bank account. "

 def __init__(self): # A constructor uses built-in name __init__
 self.balance = 0.0 # You need to assign a value
 # to each instance variable.

 def deposit(self, amount): # In a method "self" is first parameter.
 self.balance = self.balance + amount # Must use "self" on each
 # occurrence of instance variable.

 def withdraw(self, amount):
 self.balance = self.balance - amount

 def getBalance(self):
 return self.balance

 def __str__(self): # Uses built-in name __str__
 """ Method used if object appears in a print function.
 Similar to "toString" method in Java. """

 return 'Balance on account: $' + str(self.balance)

myAccount = BankAccount() # Make instance of BankAccount
sallyAccount = BankAccount() # Second instance
print("Sally's " + str(sallyAccount)) # The "str" function used to convert
 # number to string.

myAccount.deposit(200) # Called with ONE argument because the receiver for
 # the message is implicitly passed to the first
 # argument, i.e., self.
myAccount.withdraw(50)
print("Dan's " + str(myAccount))

Output of bank account program:

Sally's Balance on account: $0.0
Dan's Balance on account: $150.0

Python allows multiple inheritance. Also, one can overload operators like “+” by using special built-in
names, in this case, __add__.

	

7	

6. Program Documentation

In addition to comments, Python supports a javadoc-like mechanism for providing documentation on
functions, classes, methods and modules. Syntactically, a docstring is simply a string that appears
immediately after the line containing the def in a function or method , or the keyword class in a class
description, or at the beginning of a file for a module. Note a docstring may be a multi-line string.

"""Python program sample.py to demo user input, exception handling, and
 formatted output. By Dan Hyde, May 13, 2011"""

def input_int(prompt):
 """ input_int function: prompts the user and converts
 the user's input to a positive integer.
 in: a string for prompt
 out: user input as an integer"""

 while True:
 str_value = input(prompt) #Input as string
 try: #int may raise an exception
 value = int(str_value) #Convert string to integer
 return value
 except Exception: #Catch any user application exception
 print(str_value + ' is not an integer. Please retype!')

def convert_quarters(n):
 """convert_quarters function: converts quarters to dollars.
 in: n the number of quarters
 out: value of quauters in dollars"""

 return 25 * n / 100

quarters = input_int('Enter number of quarters: ')
money = convert_quarters(quarters)
print('Amount of money is $%.2f' % (money)) # The second % is string
 # formatting op

Docstrings are great for student documentation. We will want to formulate a CSCI 203/204 standard.
To see all the docstrings in a program, we use the built-in help() function as follows:

>>> import sample
Enter number of quarters: 6
Amount of money is $1.50
>>> help(sample)
Help on module sample:

NAME
 sample

FILE

/nfs/unixspace/linux/accounts/facultystaff/h/hyde/Python/SummerInstitute/sample.py

DESCRIPTION
 Python Program to demo user input, exception handling, and
 formatted output. By Dan Hyde, May 13, 2011

FUNCTIONS
 convert_quarters(n)
 convert_quarters function: converts quarters to dollars.

	

8	

 in: n the number of quarters
 out: value of quarters in dollars

 input_int(prompt)
 input_int function: prompts the user and converts
 the user's input to a positive integer.
 in: a string for prompt
 out: user input as an integer

DATA
 money = 1.5
 quarters = 6

One advantage of docstrings is that they are recognized by the Python interpreter and stored along with
the objects as an attribute named __doc__. This attribute can be read at run-time:

>>> import sample
>>> print(sample.__doc__)
 Python Program to demo user input, exception handling, and
 formatted output. By Dan Hyde, May 13, 2011
>>> print(sample.input_int.__doc__)
 input_int function: prompts the user and converts
 the user's input to a positive integer.
 in: a string for prompt
 out: user input as an integer

The developers of Python try to include readable docstrings in all their modules, classes, method and
functions. For example, try the following:

>>> import random
>>> print(random.__doc__)

When you use the Python help() feature, it reads and formats the docstrings as well structural
information, e.g., function call patterns, found in a module, class, method or function. Also the tool
PyDoc can read the docstrings and structural information to create and format nice looking html web
pages.

For document on Python, visit URL: http://www.python.org/doc/

