
An Undergraduate Distributed Computing Course

Dr. Daniel C. Hyde
Department of Computer Science

Bucknell University
Lewisburg, PA 17837 USA

hyde@bucknell.edu

Abstract - This paper proposes an
undergraduate distributed computing course that
focuses on the fundamental principles common to
multimedia, client-server, parallel, web and
collaborative computing. This computer science
course should actively engage the students in
exploring the concepts of distributed computing.
Several extended projects using the language Java
are described.

Keywords: distributed computing,
computer science undergraduate education,
Java, Constructivism, projects

1 Introduction

Like many universities and colleges, the
Computer Science Department at Bucknell
University teaches an undergraduate
parallel computing course. However,
parallel computing is currently out of
vogue. There are several reasons for this.
First, the promises of parallel computing
have not been fulfilled. Second, many
major parallel computing vendors have
gone bankrupt or merged with other
companies. Third, the computing industry
and researchers have awakened to the fact
that less than 1% of the market is the
traditional high performance scientific
computing market – the main target for
parallel computing courses. The action is in
the commercial and multimedia markets.
We have learned that the market place
rules!

Undergraduate parallel computing
courses are outdated and need to be re-
evaluated. These courses no longer serve

the needs of our students. Times have
changed; the students really need a
distributed computing course rather than a
parallel computing course. Our computer
science students need to understand new
concepts and principles in order to design
and program multimedia, client–server,
web-based, and collaborative systems as
well as parallel systems. A major activity
our graduates do today is develop
middleware, e. g., using distributed objects-
based software, such as CORBA, to
interface databases, centralized services and
legacy software systems. Therefore, the
author proposes to replace the
undergraduate parallel computing course
with a new “Distributed Computing” course
that retains many of the fundamental
principles covered in the parallel computing
course.

2 What is Distributed Computing?

“Distributed computing” is an ill-defined
term. In the past, the term could mean (1)
distributed operating systems [3]; (2)
distributed data processing as used in many
data processing departments to replace their
old mainframes with client-server systems;
or even, (3) parallel computing on
distributed memory parallel machines. We
propose a much broader definition of the
phrase. Distributed computing means
designing and implementing programs that
run on two or more interconnected
computer systems.

For this level of course, we are assuming
students will design and implement
distributive programs for a fully functioning
internet with its associated networking
hardware and protocol software. The intent
is to use a network; not study or design
networks. The network community would
call these “network applications.”[2]

In this new proposed undergraduate
course, distributed computing includes
multimedia systems; client-server systems;
parallel computing; web programming; and
collaborative systems, i. e., mobile agents.
What are the key characteristics of each of
these distributed computing systems? What
common fundamental principles do they
possess that will serve our students’ needs
for the next five or ten years?

2.1 Multimedia Systems

Many of our computer science students
will be involved in the design and
construction of multimedia systems as
stand-alone systems or on the Web. To be
successful, they need to understand such
topics as creation of graphics and
animations; generation of sound;
concurrency; event handling; real time
demands of sound and video; importance of
standards; abstraction of data
representations as in MPEG4; data
compression; networking; performance
measurements; and software engineering
techniques and tools.

2.2 Client-Server Systems

The main characteristics of client-server
systems that our students need to
understand are networking; designing
communication protocols; concurrency;
graphical user interfaces (GUIs); fault
tolerance; exception handling; abstractions,
such as distributed objects used in

middleware, e. g., CORBA; security;
interacting with databases, centralized
services (e. g., name server) and legacy
software systems; performance
measurements; dealing with low bandwidth
situations; and software engineering
techniques and tools.

2.3 Parallel Computing

Parallelism is subtly different from
concurrency. Parallelism is the performing
of actions at the same time, e. g., a
program running on multiple CPUs. For
some researchers, concurrency is the
illusion of a program running in parallel.
For example, several Java threads may
appear to run at the same time, but in
reality the threads are interleaved in time
on one CPU. The Java Virtual Machine
(JVM) performs instructions for one
thread, then switches to perform
instructions for another thread. I call this
virtual parallelism. I reserve the word
concurrency to mean capable of being
performed in parallel in the abstract. An
underlying implementation for this
abstraction may be either physical
parallelism, e. g., running on multiple
CPUs, or virtual parallelism, e. g., time
slicing on one CPU.

The field of parallel computation’s
primary focus is in the use of parallelism to
achieve higher performance, i. e., a program
that runs faster or a program that handles a
larger problem in the same amount of time.
For parallel programming, students need to
understand message passing; bandwidth;
network latency; load balancing; task
scheduling; concurrency; problem
partitioning – both domain and functional
[8]; communication structures; algorithmic
synchronization due to data dependencies;
performance measurements; and parallel
algorithms.

2.4 Web Programming

Web programming is the design and
construction of a program, e. g., an applet,
to perform a task on a web page. For this
activity, students need to understand GUIs;
concurrency; event handling; graphics;
network communication; and software
engineering techniques and tools.

2.5 Collaborative Systems

Collaborative systems or mobile agents
are autonomous programs that may move
around a network as well as collaborate
with other agents to perform a task. To
design mobile agents, students need to
understand concurrency; network
communication; security; importance of
standards; the power of abstraction, e. g.,
mobile agents; fault tolerance/reliability;
serialization of objects which allows a
system to send executable code, program
state and other data to another system which
can reconstruct the agent; and persistent
objects.

3 Common Fundamental Principles

Reading the above descriptions of these
five types of distributed computing systems,
one immediately recognizes commonalities.
Objects and their associated concepts such
as distributed objects, serialization, and
persistence, are fundamental principles.
Concurrency and control of threads and
processes are fundamental. “Concurrency
control is at the heart of system design.”1

Network communication and designing
communication protocols are fundamental.

1 Jean Bacon, “Defining our scope: the Computer
Society’s ‘systems’ magazine,” IEEE Concurrency,
Vol. 7, No. 1, Jan-Mar 1999, page 2.

GUIs and concern for user interactions are
fundamental. Software techniques and tools
are common. But most important is the
ability for the student to create new
abstractions as well as understand
established ones. These common
fundamental areas form the basis for a new
course in distributive computing.

Clearly, not all the material in the five
types of distributed computing deemed
“important” by faculty members will fit into
one course. Also, most universities,
especially the smaller ones, cannot afford to
teach an undergraduate course for each one.
Therefore, the real trick is how to package
the material into one course which not only
covers a significant number of the
fundamental principles, but also can be fun
and educational for the students.

4 The Distributed Computing
Course

Several years ago such a course would
not have been possible. However, today the
objected–oriented programming language
Java makes the course possible. Java has
many features suitable for teaching
distributed computing, including built-in
threads and its extensive Application
Programming Interface (API) with support
for GUIs; networking (sockets and
streams); remote method invocation (Java
RMI); security model; serialization; and
interfaces to CORBA and databases using
SQL. Java is a golden opportunity to
improve the undergraduate curriculum in
the area of distributed computing.

We propose that the course be taught as a
new elective course targeted primarily to
junior and senior computer science majors.
We assume the typical student has
completed the CS1 and CS2 sequence using
Java or C++, covering topics in object-
oriented programming, data structures, and

software engineering. Knowledge of
operating systems would be useful but is
not required. Variations of the distributed
computing course could be taught with or
without the prerequisite of an operating
system course, depending on the local
circumstances.

If the students do not know Java but have
extensive C++ experience, I suggest the
Java textbook by Deitel and Deitel [4].
This text covers the basics of Java and
contains good introductory chapters with
working Java programs on GUIs, exception
handling, multithreading, multimedia, and
networking (sockets and streams). For
more experienced students with
introductory knowledge of Java, I
recommend the pair of books by David
Flanagan [6, 7].2 His second book, Java
Examples in a Nutshell, contains many
valuable examples on GUIs, networking,
multithreading, Remote Method Invocation
(RMI), database access, and security.

The second text will depend on the
emphasis of the course. For an emphasis on
client-server systems and distributed
objects, I suggest the book Java Distributed
Computing by Jim Farley [5], which
provides an excellent coverage on
distributed objects (Java RMI and
CORBA), threads and security. It also
contains a small chapter on collaborative
systems. To provide an in-depth coverage
on concurrency, I suggest the text
Concurrent Programming: The Java
Programming Language by Stephen
Hartley [10]. Hartley’s text has a chapter
on parallel computing. If the emphasis is
on distributed systems, I highly recommend
[3], which covers networking and
traditional topics in distributed operating
systems, such as remote procedure calls and

2 His two books together cost less than many Java
texts.

logical clocks. The instructor will want to
supplement the texts with articles. For a
good article on Java-based collaborative
computing see [16].

For a 13-week semester, I suggest the
following break down of topics:

(1) one week on introduction to distributed
computing

(2) two weeks on GUIs, event handling,
exceptions, manipulating images, and
animations

(3) two weeks on client-server systems,
including networking with sockets and
streams

(4) three weeks on concurrency, including
multithreading

(5) three weeks on parallel computing,
including domain and functional
partitioning, message passing and
performance measurements

(6) two weeks on collaborative systems,
i. e., mobile agents, including security
and reliability models.

The author is a student of the
constructivist theory of learning [9, 1].
From the constructivist point of view,
knowledge is constructed, not transmitted.
Learning is an active process in which
learners construct new concepts based on
their prior knowledge. Therefore, I suggest
the course be driven by a series of extended
projects which actively engage the students
in exploring the concepts. With this
approach the lectures and reading
assignments provide the background and
the conceptual frameworks for the projects.

The weekly laboratory exercises3 provide
practice on individual concepts and
introduce needed skills. While the
laboratory exercises may support the
projects, the projects are envisioned to be
performed by the students outside of class.

4.1 Racetrack Project

The first project is proposed for the first
six weeks of the course and consists of
multiple assignments to create an
interactive racetrack program.

Phase 1: Using a tool such as xpaint, the
student creates a GIF image, 50 by 50
pixels, of a racecar viewed from the top.
The student then creates 16 versions of the
image rotated around its center. The
student writes a Java applet to create a
simple animation, say to spin the racecar.
[Concepts – beginning Java, generating
images, simple animation]

Phase 2: In the second part, the student
creates a Java application for a racetrack in
which he or she can change the speed and
direction of the racecar by pressing the
arrow keys. The project switches to Java
applications at this point since many web
browsers do not support the Java 1.1 event
model of listeners. [Concepts – Java
application, event handling, model-view-
controller (MVC) design pattern [15]]

Phase 3: The third part is to allow two
racecars to run on the track using two sets
of four keys to control the speed and
direction of the cars. Students add sounds.
[Concepts – limit detection for collisions
and driving off track, generation of sounds]

3 At Bucknell University, we organize our
programming-oriented courses with three lectures
and a two-hour structured laboratory a week.

Phase 4: The fourth part is to create a
server and two clients which will allow the
two cars to be controlled and viewed on two
workstations. [Concepts – client-server,
sockets and streams, design of message
protocol, threads and concurrency,
protecting shared variables]

Phase 5: The fifth part is to improve part
four by packing (marshalling arguments)
and unpacking messages to speed up the
performance and to use double buffering to
reduce flicker in the screens. [Concepts –
double buffering, painting model in Java,
marshalling arguments]

Phase 6: The sixth part is to use threads to
allow the server to handle many racetracks
with pairs of racecars. [Concepts – threads
and server robustness]

The project has been carefully selected to
be fun, leave lots of room for creativity and
not be too gender specific -- no shoot ’em
up and blast them away interactions -- as
well as to cover a wide variety of concepts
in GUIs, multimedia, animations, client-
servers and threads.

4.2 Stock Market Game

We suggest the second project span three
weeks. The student creates a fast-paced on-
line interactive game of stock market,
which has many of the characteristics of
electronic commerce. The student designs a
server (the stock exchange) to update the
prices of stocks once a minute depending on
interactions with a collection of clients
(both human and computer) on different
workstations who are buying and selling
from the stock exchange. The prices of the
stocks change dynamically based on the law
of supply and demand. The server design
must have several threads to handle the

clients and the small database. Random
good and bad events (e. g., good quarter
sales at a company boost the price of its
stock) are introduced to make the game
more interesting.

Phase 1: In the first part, the students
submit a design of their game. This
includes a design of the human client’s
screen including the human interactions.
An important aspect of the game is effective
presentation of the stocks and effective
interaction mechanisms to allow the player
to make quick and meaningful decisions.
[Concepts – GUI design, client-server
design, human interface design]

Phase 2: The second part of the project is to
implement a simple server (Java
application) and one human client (Java
applet suitable for web browser). [Concepts
– client-server, communication message
design, multithreads, simple database,
concurrent reads and writes, persistent
objects]

Phase 3: In the third part, the students
implement the full server which allows
many clients to register and unregister for
service during the course of the game. The
server sends the stock updates to all
registered clients every minute. The
students design and implement a computer
client which analyzes the current stocks and
buys and sells to make a gain. A parameter
is passed to each computer client on start up
to characterize its behavior in the range
from very bearish to very bullish. The
computer clients provide variety and
fluctuations in the market and, therefore,
more interest to the game. [Concepts –
threads, server design and server
robustness]

The stock market game provides
opportunities to introduce topics in class
which are not specified in the project. For
example, the class could discuss security,
reliability and scalability issues.

4.3 Matrix Multiply

The third project spans three weeks and
explores parallel computing.

Phase 1: The student uses the Message
Passing Interface (MPI) [14] standard and
Java4 to write parallel computing programs
to perform a matrix multiply of matrices
using several different domain partitions.
[Concepts – parallelism, message passing,
processes, communication structures,
domain partitioning, load balancing]

Phase 2: In the second part, the student
measures timings of the parallel programs
to construct a simple performance model of
the time to communicate between two
workstations (network latency) and the
computational time to compute an inner
product. [Concepts – performance
measurements, network latency, speedup,
Amdahl’s law]

5 Conclusions

The author has described an undergraduate
computer science course in distributed
computing that covers the fundamental
principles common to multimedia, client-
server, web, parallel and collaborative
computing. We suggest three extended
projects written in Java that actively engage
the student in exploring the concepts of
distributed computing.

4 The instructor may wish to use C or C++ with
MPI to explore parallel computing.

6 References

[1] Ben-Ari, Mordechai. “Constructivism
in Computer Science Education,”
SIGCSE Bulletin, Vol. 30, No. 1, Mar
1998, pages 257-261.

[2] Comer, Douglas E. Computer Networks
and Internets, Prentice Hall, second
edition, 1999.

[3] Coulouris, George, Jean Dollimore and
Tim Kindberg. Distributed Systems:
Concepts and Design, Addison-
Wesley, second edition, 1994.

[4] Deitel, H. D. and P. J. Deitel. Java:
How to Program, Prentice Hall, second
edition, 1998.

[5] Farley, Jim. Java: Distributed
Computing, O'Reilly and Associates,
1998.

[6] Flanagan, David. Java in a Nutshell,
O'Reilly and Associates, second
edition, 1997.

[7] Flanagan, David. Java Examples in a
Nutshell, O'Reilly and Associates,
1997.

[8] Foster, Ian. Designing and Building
Parallel Programs, Addison-Wesley,
1995.

[9] Hadjerrouit, Said. “A Constructivist
Framework for Integrating the Java
Paradigm into the Undergraduate
Curriculum,” SIGSCE Bulletin, Vol.
30, No. 3, Sept 1998, pages 105-107.

[10] Hartley, Stephen J. Concurrent
Programming: The Java Programming
Language, Oxford University Press,
1998.

[11] Holub, Allen. “Programming
Threads”, series of articles in on-line
magazine JavaWorld,
http://www.javaworld.com

[12] Lea, Doug. Concurrent Programming
in Java: Design Principles and
Patterns, Addison-Wesley, 1997. New
edition due Dec. 1998.

[13] Oaks, Scott and Henry Wong. Java
Threads, O'Reilly and Associates,
1997.

[14] Pacheco, Peter S. Parallel
Programming with MPI, Morgan
Kaufmann, 1997.

[15] Rumbaugh, James. "Modeling Models
and Viewing Views - A Look at the
Model-View-Controller Framework",
Journal of Object-Oriented
Programming, Vol. 7, No. 2, May
1994, pages 14.

 [16] Wong, David, Noemi Paciorek and
Dana Moore. “Java-based Mobile
Agents,” CACM, Vol. 42, No. 3, March
1999, pages 92-102.

