PHYSICS 331 ADVANCED CLASSICAL MECHANICS Problem Set 23

Task 1

Consider a two particle system under the influence of a conservative central force. Let the masses of the two particles be m_1 and m_2 , located at distance $\overline{r_1}$ and $\overline{r_2}$ relative to some origin, O.

- (a) Show that of the force is conservative, the potential energy U can be written as $U(\overrightarrow{r_1} \overrightarrow{r_2})$.
- (b) Show that because the force is central, then $U(\overrightarrow{r_1} \overrightarrow{r_2}) = U(r)$ where $\overrightarrow{r} = \overrightarrow{r_1} \overrightarrow{r_2}$.
- (c) Choose the generalised coordinates of relative position (\overrightarrow{r}) and centre-of-mass position (\overrightarrow{R}) :

$$\overrightarrow{r} = \overrightarrow{r_1} - \overrightarrow{r_2}$$
 and $\overrightarrow{R} = \frac{\sum_i m_i \overrightarrow{r_i}}{\sum_i m_i}$

show that

$$\overrightarrow{r_1} = \overrightarrow{R} + \left(\frac{m_2}{M}\right) \overrightarrow{r}$$
 and $\overrightarrow{r_2} = \overrightarrow{R} - \left(\frac{m_1}{M}\right) \overrightarrow{r}$

where $M = m_1 + m_2$, the total mass.

(d) Now, the Lagrangian of the motion can be written as

$$\mathcal{L} = \frac{1}{2}m_1\overrightarrow{r_1}^2 + \frac{1}{2}m_2\overrightarrow{r_2}^2 + U(r).$$

Show that, using the generalised coordinates, the Lagrangian transforms to

$$\mathcal{L} = \frac{1}{2} M \overrightarrow{\dot{R}}^2 + \frac{1}{2} \mu \overrightarrow{\dot{r}}^2 + U(r).$$

where $\mu = \frac{m_1 m_2}{m_1 + m_2}$ is the reduced mass.

The Lagrangian was now be expressed as

$$\mathcal{L} = \mathcal{L}_{cm} + \mathcal{L}_{rel}.$$

(e) Explain the value of transforming to the centre-of-mass frame.

Task 2

Central forces and angular momentum.

- (a) Show that the angular momentum (L) is conserved for a two-body system under the influence of a central force.
- (b) Show that

$$\overrightarrow{L} = \overrightarrow{r_1} \times \overrightarrow{p_1} + \overrightarrow{r_2} \times \overrightarrow{p_2}$$

reduces to

$$\overrightarrow{L} = \overrightarrow{r} \times u \overrightarrow{\dot{r}}.$$

i.e., the total angular momentum can be thought of as similar to a single particle of reduced mass (μ) and position \overrightarrow{r} .

(c) Explain why the position vector \overrightarrow{r} lies in a plane and this may be treated as a 2-dimensional vector.

Task 3

Using the Lagrangian in part (d) of Task 1, extract the equations of motion from both the R and r equations.

- (a) Show that the R equation yields conservation of momentum.
- (b) Show that the r equation yields $\mu \overrightarrow{r} = -\overrightarrow{\nabla} U(r)$.

Now, express the relative coordinate \overrightarrow{r} in terms of polar coordinates: r and ϕ .

(c) Show that the Lagrangian, \mathcal{L}_{rel} can be written as

$$\mathcal{L} = \frac{1}{2}\mu(\dot{r}^2 + r^2\dot{\phi}^2) - U(r).$$

(d) Extract the equations of motion for both r and ϕ showing that

$$\mu r \dot{\phi}^2 - \frac{\partial U}{\partial r} = \mu \ddot{r}$$
 and $\dot{\phi} = \frac{\ell}{\mu r^2}$

where ℓ is the angular momentum of the system as measured in the centre-of-mass frame.

Task 4

(a) Show that if we write $U_{cfg} = \frac{\ell^2}{2\mu r^2}$, then the r equation in Task 3 can be expressed as

$$\mu \ddot{r} = -\frac{dU_{eff}}{dr}$$
, where $U_{eff} = U(r) + U_{cfg}$.

(b) Show that if we write $E = \frac{1}{2}\mu\dot{r}^2 + U_{eff}$, then

$$\dot{r} = \pm \sqrt{\frac{2}{\mu}(E - U(r)) - \frac{\ell^2}{\mu^2 r^2}}$$

(c) Beginning with the first equation of motion in part (d) of Task 3, make the change of variable $u = \frac{1}{r}$ and show that the equation can be expressed as

$$\frac{d^2u}{d\phi^2} = -u - \frac{\mu}{\ell^2 u^2} F,$$

where $F = -\frac{\partial U}{\partial r}$.

Other Things

You will find that re-reading sections 8.1–8.5 may be helpful in performing these exercises.