
PHYSICS 331 Advanced Classical Mechanics

Problem Set 34

The Double Pendulum

Task 1 Using the Lagrangian to obtain the equations of motion.

Consider a double pendulum, comprising a mass m1 suspended by a massless rod of length ℓ1 from
a fixed pivot point, and a second mass m2 suspended by a massless rod of ℓ2 from m1, as shown in
the figure below.
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Taking the zero of potential energy to be at the equilibrium position, show that the potential energy
of the system to be

U = (m1 + m2) g ℓ1(1 − cos θ1) + m2 g ℓ2 cos θ2.

Task 2

Show that the total kinetic energy of the system is given by
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Task 3

Making the small angle approximation, show that the kinetic energy of the system reduces to
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and the potential energy of the system reduces to
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Task 4

Using the Lagrangian, show that the Lagrange equation for the generalised coordinate θ1 is
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+ m2 ℓ1 ℓ2 θ̈2 = − (m1 + m2) g ℓ1 θ1

and the Lagrange equation for the generalised coordinate θ2 is

m2 ℓ1 ℓ2 θ̈1 + m2 ℓ2

2
θ̈2 = − m2 g ℓ2 θ2.

Task 5

Re-write the two equations for θ1 and θ2 as a single matrix equation of the form

Mθ̈ = −Kθ
1



where we introduce the column of generalised coordinates
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Show that the two matrices are
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Task 6 Examining the symmetric case.

Solving for the normal modes of the double pendulum in general is algebraically messy and not
particularly illuminating. As such, we will examine the symmetric case where m1 = m2 = m and
ℓ1 = ℓ2 = ℓ.

To search for normal modes of oscillation, we will look for solutions of the form θ̈ = −ω2θ. In
matrix form, show that this translates to: det(K−ω2M) = 0 and the two possible solutions yields
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where ωo =
√

g/ℓ is the frequency of a single pendulum of length ℓ, again for small angles.

Task 7

Now, the general solution for θ1(t) and θ2(t) can be written as a linear combination of the two
normal modes, η1(t) and η2(t).

In general, we can write

θ1(t) = a11 cos(ω1t − δ1) + a12 cos(ω2t − δ2) = a11 η1(t) + a12 η2(t)

θ2(t) = a21 cos(ω1t − δ1) + a22 cos(ω2t − δ2) = a21 η1(t) + a22 η2(t).

or
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To obtain the normal modes, we are interested in the case where each coordinate oscillates at only
one of the two modes, with constant amplitude.

To find the first normal mode (ω1), we are looking for the case where

θ1(t) = a11 cos(ω1t − δ1) and θ2(t) = a21 cos(ω1t − δ1)

or
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=
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Substitute the normal mode frequency ω1 into the matrix equation (K− ω2M)θ = 0 to show that
a21 =

√

2a11. Also, show that for the second normal mode, ω2, a22 = −

√

2a12.

Task 8

Combining the information about the two normal modes, show that the first mode corresponds to
the two pendula moving exactly in phase with the amplitude of the lower pendulum being

√

2 times
that of the upper pendulum. Obtain the conditions for the normal mode oscillations for the second
mode, showing that the pendula oscillate exactly out-of-phase, again with the lower pendulum’s
amplitude being

√

2 of the upper one.

Problem 2

Thornton and Marion: Chapter 12, Problem 17.


