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Abstract

Algorithms for ground vehicle classification using acoustic measurements often use features
based on the relative amplitudes of harmonic components. The average power measured at
each harmonic frequency fluctuates due to scattering of the acoustic waves during propagation
and additive noise at the sensor. In this paper, we use propagation models for frequency-
dependent scattering of acoustic signals to study the performance and limitations of ground
vehicle classifiers that use harmonic amplitudes as the features. The harmonic amplitudes for
a given vehicle may vary due to other factors besides scattering, such as engine load and speed
(revving) and the orientation of the source with respect to the sensor (aspect angle). Information
about vehicle speed and aspect angle are available from localization and tracking algorithms in
a networked sensor system. We evaluate the potential for improved classification accuracy
when additional features are used from the localization and tracking algorithm. Examples from
measured data are included to illustrate the results.

1 Introduction

Networks of aeroacoustic and seismic sensors are used to collect data for the purposes of localizing
the positions of ground vehicles, tracking the vehicles as they move, and identifying the vehicle
types [1]. The localization, tracking, and identification algorithms often operate in parallel and
with minimal sharing of information. The performance of all three algorithms can be improved
with additional information sharing and signal processing. Examples of information sharing include
predicted source locations (from the tracking algorithm to aid the localization algorithm), differen-
tial Doppler (from the sensor nodes to aid data association in the tracking algorithm), and source
aspect angle/range/velocity (from the tracking algorithm to aid identification based on features
from nodes).

Our focus in this paper is on the problem of identifying (or classifying) the type of vehicle from
its acoustic signature. The objective is to broadly classify the vehicle into tracked and wheeled
categories, and to further identify the vehicle type within these categories. Most classification
algorithms that have been developed for this problem use the relative amplitudes of harmonic com-
ponents in the acoustic signal as features to distinguish between vehicle types [2]–[9]. However,



the harmonic amplitudes for a given source may vary significantly due to several factors. For ex-
ample, the target range, land topography, and meteorological conditions determine the extent of
signal fluctuations caused by frequency-dependent scattering of the acoustic waves as they propa-
gate through the air. The harmonic amplitudes also vary due to engine speed (revving) and the
orientation of the source with respect to the sensor (aspect angle).

We study the limitations on classification accuracy caused by scattering during propagation
using models developed in [10, 11, 12, 13]. The models are developed in detail in Section 2, but an
overview is as follows. Consider the acoustic signal measured at one sensor when a vehicle is in close
range. The measured signal is modeled as a sum of L harmonics with fundamental frequency f0

Hz observed in additive, white, Gaussian noise. The harmonic amplitudes measured at the sensor
include the effects of propagation (deterministic power loss and random scattering), source aspect
angle, and Doppler. We consider a simple and commonly used processing strategy in which the
received average signal power is estimated in L narrow frequency bands centered at the harmonics
f0, 2f0, . . . , Lf0. Let us define the following for each band, l = 1, . . . , L:

Pl =average power of the measured signal at the sensor,
including the effects of scattering and noise

Sl =average signal power when there is no noise

2σ2
n =average noise power (same for each band)

Ωl =“saturation” parameter characterizing the amount of scattering, with 0 ≤ Ωl ≤ 1 and
0 = no scattering (an entirely deterministic signal), and
1 = complete scattering (an entirely random signal).

The “signature” of harmonic powers, S1, S2, . . . , SL, is commonly used for source classification. The
measurable quantities are the received signal powers P1, P2, . . . , PL, so the classification performance
depends on the variation of Pl with respect to the unscattered Sl.

In this paper, we investigate methods for improved classification accuracy by performing addi-
tional averaging to reduce the harmonic signature fluctuations due to scattering. We also investigate
the feasibility of simple methods to incorporate range, speed, and aspect angle information from
the tracking algorithm to improve the classification performance. Our recommendation based on
the propagation model and measured data is to characterize each source of interest with three
signatures: one at the closest point of approach (CPA), the second at aspect angles in which the
front of the vehicle is observed, and the third at aspect angles in which the rear of the vehicle is
observed. The multiple aspects of the vehicle may be obtained from a single sensor over time as the
vehicle moves, or from multiple sensors that observe the vehicle at the same time. Moving vehicles
are observed many times at the front and rear aspects, so the harmonic signatures may be averaged
at these aspects to reduce the fluctuations due to scattering. Classification is then performed using
the signature at CPA and the average signatures at the front and rear aspects.

The paper is organized as follows. The statistical model for the sensor data is presented in
Section 2. This model is applied to classification performance in Section 3. The harmonic signature
variations with range, speed, and aspect angle are evaluated in Section 4 using measured data, and
Section 5 contains concluding remarks.



2 Model for Sensor Data with Scattering

In this section, we include a detailed review of the models developed in [10, 11, 12, 13], leading to
the result that Pl is described by a noncentral chi-squared distribution. Then in Section 2.2 we
review a model from [13] that relates the saturation Ωl to the target range (r) and the frequency
(lf0). Classification performance based on these propagation models is considered in Section 3.

2.1 Scattering model

We begin by modeling the received signal at the fundamental frequency f0 of the source. The
extension to the higher harmonics will follow similarly. The measured signal x(t) at the sensor is
modeled as

x(t) = s(t) + n(t) (1)

where s(t) is the signal component caused by the acoustic source and n(t) is a zero-mean, wide-
sense stationary (WSS), additive white Gaussian noise (AWGN) process with power spectral density
(PSD) Gn(f) = N0/2. The signal component is modeled as [10, 11, 12, 13]

s(t) =
√

(1 − Ω)S cos(2πf0t + θ) + v(t), (2)

where v(t) is a zero-mean, WSS, narrowband Gaussian random process with support in a frequency
band of B Hz centered at f0. That is, v(t) has support in the frequency band f0 − B/2 ≤ |f | ≤
f0 + B/2, and the average power of v(t) is

E{v(t)2} = 2
∫ f0+B/2

f0−B/2
Gv(f) df =

ΩS

2
. (3)

The signal component s(t) in (2) is therefore a bandpass Gaussian random process with nonzero
mean,

E{s(t)} =
√

(1 − Ω)S cos(2πf0t + θ) (4)

Var{s(t)} = E{v(t)2} =
ΩS

2
, (5)

where the phase θ is a deterministic parameter. The average power (or mean-square value) of s(t)
is

Average signal power = lim
T→∞

1
T

∫ T/2

−T/2
s(t)2 dt (6)

= lim
T→∞

1
T

∫ T/2

−T/2
(1 − Ω)S cos(2πf0t + θ)2 dt + E{v(t)2} (7)

=
(1 − Ω)S

2
+

ΩS

2
=

S

2
(8)

where in (7) we use the ergodicity of v(t) to convert the time average to ensemble average. Thus the
average power of the signal s(t) is S/2, and the scattering model in (2) may be interpreted as follows.
The saturation parameter Ω ∈ [0, 1] controls the allocation of power between the deterministic mean
component, (1 − Ω)S/2, and the random (scattered) component, ΩS/2. If Ω = 0, then s(t) is a
deterministic sinusoid. If Ω = 1, then s(t) = v(t) is zero-mean, narrowband Gaussian noise. The
case 0 < Ω < 1 is a combination, with some power in the sinusoidal component at f0 Hz and the



remaining power scattered in a narrow band of width B Hz around f0. For the measured signal
model for x(t) in (1), the scattered process v(t) and the AWGN process n(t) are assumed to be
independent.

It is desirable to process x(t) in the band of width B Hz around f0 in order to collect all of
the scattered signal energy. The scattered signal energy is useful for detecting the presence of
sources as well as for direction finding, since the scattered components measured at distinct sensor
locations are correlated with each other and may be used for time-difference-of-arrival processing.
The deterministic mean component of s(t) is also useful for source detection and direction finding.
The structure shown in Figure 1 is commonly used to obtain the in-phase (I) and quadrature (Q)
components of x(t), which we denote by xi(t) and xq(t), respectively. Spectral estimates such as
the spectrogram and FFT are often used to implement the processing in Figure 1, particularly
when it is necessary to estimate the I and Q components at multiple frequencies. The lowpass filter
in Figure 1 passes frequencies in the band [−B/2, B/2] Hz, and the I and Q components have the
form

xi(t) =
√

(1 − Ω)S cos(θ) + vi(t) + ni(t) (9)

xq(t) =
√

(1 − Ω)S sin(θ) + vq(t) + nq(t), (10)

where vi(t), ni(t), vq(t), nq(t) are the I and Q components of the scattered signal v(t) and the AWGN
n(t). The I and Q noise components have the properties

E{vi(t)2} = E{vq(t)2} =
∫ B/2

−B/2
Gvi(f) df =

∫ B/2

−B/2
Gvq(f) df

=
ΩS

2
�
= σ2

s (11)

Gni(f) = Gnq(f) = N0 (12)

E{ni(t)2} = E{nq(t)2} =
∫ B/2

−B/2
Gni(f) df =

∫ B/2

−B/2
Gnq(f) df

= N0 · B �
= σ2

n, (13)

where we have defined σ2
s and σ2

n in (11) and (13), respectively. The xi(t) and xq(t) processes in
(9) and (10) are WSS, independent, and Gaussian with nonzero means. We can form the complex
envelope

x̃(t) = xi(t) + jxq(t) (14)
= s̃(t) + ñ(t) (15)

s̃(t) =
√

(1 − Ω)S ejθ + ṽ(t), (16)

where s̃(t), ṽ(t), and ñ(t) are complex envelope processes that are defined analogously to (14). The
complex envelope x̃(t) is a WSS, complex, circular (the I and Q components are independent),
Gaussian random process. We note the following relations:

E |s̃(t)|2 = |E{s̃(t)}|2 + Var{s̃(t)} (17)

= (1 − Ω)S + E |ṽ(t)|2 (18)

= (1 − Ω)S + 2σ2
s = (1 − Ω)S + ΩS = S. (19)
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Figure 1: Processing to obtain in-phase and quadrature components, xi(t) and xq(t).

Therefore S is the average power (mean-square) of the signal component in the complex envelope
representation. Note from (11) and (19) that the saturation is

Ω =
2σ2

s

S
=

Average scattered signal power
Average received signal power

, (20)

and this is, in fact, the basic definition of saturation [10, 11, 12, 13]. The AWGN complex envelope
has variance

Var{ñ(t)} = E |ñ(t)|2 = 2N0B
�
= 2σ2

n. (21)

We can characterize the probability distributions of xi(t) and xq(t) as independent, real-valued
Gaussian pdfs,

xi(t) ∼ N
(√

(1 − Ω)S cos θ, σ2
s + σ2

n

)
(22)

xq(t) ∼ N
(√

(1 − Ω)S sin θ, σ2
s + σ2

n

)
. (23)

Equivalently, the complex envelope has a circular, complex Gaussian pdf,

x̃(t) ∼ CN
(√

(1 − Ω)S ejθ, 2σ2
s + 2σ2

n

)
(24)

∼ CN
(√

(1 − Ω)S ejθ, ΩS + 2σ2
n

)
, (25)

which has the form

f(x̃) =
1

2π(ΩS + 2σ2
n)/2

exp

−1
2

∣∣∣x̃ −√(1 − Ω)S ejθ
∣∣∣2

(ΩS + 2σ2
n)/2

 . (26)

The complex envelope process x̃(t) is lowpass with bandwidth B Hz, so its samples are indepen-
dent only when they are spaced by > 1/B sec. Consider M samples x̃(t1), . . . , x̃(tM ) with sample
spacing > 1/B sec so that the samples are modeled as statistically independent. The phase may
vary from sample to sample, so the pdfs are

x̃(tm) ∼ CN
(√

(1 − Ω)S ejθm, ΩS + 2σ2
n

)
, m = 1, . . . ,M. (27)



We consider coherent and incoherent combining of the M samples, as in [10, 11, 12, 13].
Coherent combining: For coherent combining, the phases θ1, . . . , θM must be known (or

assumed to be equal, since we are interested only in the average power PC in (29)). The M samples
are coherently combined to form

x̃C =
1
M

M∑
m=1

x̃(tm) e−jθm ∼ CN
(√

(1 − Ω)S,
ΩS + 2σ2

n

M

)
, (28)

and the average power of the measured signal for coherent combining is

PC = |x̃C |2 = x2
C,i + x2

C,q. (29)

The random variables xC,i and xC,q are Gaussian with pdfs

xC,i ∼ N
(√

(1 − Ω)S,
ΩS + 2σ2

n

2M

)
(30)

xC,q ∼ N
(

0,
ΩS + 2σ2

n

2M

)
, (31)

so PC in (29) is a noncentral chi-squared random variable with 2 degrees of freedom. We can
express PC in terms of the standard noncentral chi-squared pdf by defining the normalized random
variables

x′
C,i =

xC,i√
(ΩS + 2σ2

n)/(2M)
∼ N

(√
(1 − Ω)S

(ΩS + 2σ2
n)/(2M)

, 1

)
(32)

x′
C,q =

xC,q√
(ΩS + 2σ2

n)/(2M)
∼ N (0, 1) . (33)

Then

PC = P ′
C · ΩS + 2σ2

n

2M
(34)

where

P ′
C =

(
x′

C,i

)2 +
(
x′

C,q

)2 (35)

∼ χ2 (2, δ) (36)

δ =
(1 − Ω)S

(ΩS + 2σ2
n)/(2M)

(37)

and χ2 (2, δ) denotes a standard noncentral chi-squared pdf with 2 degrees of freedom and noncen-
trality parameter δ. The pdf for PC in (29) can be expressed as1

fPC
(p) =

1
(ΩS + 2σ2

n)/M
exp

(
− p + (1 − Ω)S

(ΩS + 2σ2
n)/M

)
I0

(
2
√

p(1 − Ω)S
(ΩS + 2σ2

n)/M

)
H(p), (38)

where I0(·) is the modified Bessel function of the first kind with order 0, and H(p) is the unit step
function with H(p) = 0 for p < 0 and H(p) = 1 for p ≥ 0.

1The random variable
√

PC has a Rician distribution, which is commonly used to model fading communication
channels with a “direct path.” The direct path corresponds to the nonzero mean in (30).



The mean and variance of PC are developed as follows. In general, if P ′ ∼ χ2 (D, δ), i.e., P ′ is
a standard noncentral χ2 random variable with D degrees of freedom and parameter δ, then [17]

P ′ ∼ χ2 (D, δ) (39)
E{P ′} = D + δ (40)

Var{P ′} = 2(D + 2δ). (41)

Applying these to PC using (34)-(37) yields

E{PC} = (1 − Ω)S +
ΩS + 2σ2

n

M
(42)

Var{PC} =
ΩS + 2σ2

n

M

[
ΩS + 2σ2

n

M
+ 2(1 − Ω)S

]
. (43)

Note from (42) that PC is a biased estimate of S, which is not surprising. For large M , E{PC} →
(1−Ω)S, which corresponds to the average power of the unscattered component of the source signal.
The variance expression (43) shows the benefit of coherently averaging M samples.

Incoherent combining: Incoherent combining of the M independent complex envelope sam-
ples with pdfs in (27) yields the average power of the measured signal as

PI =
1
M

M∑
m=1

|x̃(tm)|2 =
1
M

M∑
m=1

[
xi(tm)2 + xq(tm)2

]
. (44)

Normalizing the random variables analogously to (32)-(34), it follows that PI is a noncentral chi-
squared random variable with 2M degrees of freedom:

P ′
I =

PI

(ΩS + 2σ2
n)/(2M)

(45)

∼ χ2 (2M, δ) (46)

δ =
(1 − Ω)S

(ΩS + 2σ2
n)/(2M)

. (47)

Note that the noncentrality parameter δ is identical in (37) and (47) for coherent and incoherent
combining. The only difference between the coherent and incoherent cases is the number of degrees
of freedom in the chi-squared random variable: 2 degrees of freedom in (36) for coherent combining,
and 2M degrees of freedom in (46) for incoherent combining. The pdf for PI in (44) can be expressed
as

fPI
(p) =

1
(ΩS + 2σ2

n)/M

(
p

(1 − Ω)S

)(M−1)/2

exp
(
− p + (1 − Ω)S

(ΩS + 2σ2
n)/M

)
·

IM−1

(
2
√

p(1 − Ω)S
(ΩS + 2σ2

n)/M

)
H(p), (48)

where IM−1(·) is the modified Bessel function of the first kind with order M − 1. The mean and



variance of PI are

E{PI} = S + 2σ2
n (independent of M) (49)

Var{PI} =
ΩS + 2σ2

n

M

[
(ΩS + 2σ2

n) + 2(1 − Ω)S
]

(50)

=
1
M

[
E{PI}2 − (1 − Ω)2 S2

]
(51)

=
1
M

[
SNR−1

(
2 + SNR−1

)
+ Ω (2 − Ω)

]
S2 (52)

→ 1
M

Ω (2 − Ω)S2 for large SNR, (53)

where SNR
�
= S/(2σ2

n). For the large SNR case, one standard deviation above and below the mean
of PI can be expressed as follows, in dB:

10 log10

(
S +

√
Var{PI}

)
= 10 log10 S + 10 log10

[
1 +

√
Ω(2 − Ω)/M

]
(54)

10 log10

(
S −

√
Var{PI}

)
= 10 log10 S + 10 log10

[
1 −

√
Ω(2 − Ω)/M

]
. (55)

Thus in dB, the size of the ±1 standard deviation “error bars” for PI are independent of the signal
strength, S. An example is presented in Section 3 that evaluates (54) and (55) for a scenario with
a harmonic signal.

Comparing the variance expressions in (43) and (50) for coherent and incoherent combining,
Var{PC} ≤ Var{PI}, as expected. Next let us compare the mean expressions in (42) and (49) for
large M in a scattering medium with 0 < Ω < 1. Then

|S − E{PC}| ≈ ΩS (56)

|S − E{PI}| = 2σ2
n. (57)

If the SNR = S/(2σ2
n) is large, then the incoherent PI may have smaller bias with respect to S

than the coherent PC , but PC has smaller variance than PI . The incoherent combining tends to
collect all of the signal power (unscattered and scattered). The coherent combining collects the
unscattered signal power while reducing the scattered signal power and noise by averaging.

For M = 1 sample, PC and PI are identical. Figure 2(a) shows plots of the pdf of 10 log10(P )

for M = 1, S = 1, and SNR
�
= 1/(2σ2

n) = 103 = 30 dB. Note that a small deviation in the
saturation Ω from 0 causes a significant spread in the distribution of received power P around
the unscattered signal power, S = 1 (0 dB). This variation in P will limit the performance of
classification algorithms that use P as a feature.

Model for multiple harmonics: For each harmonic frequency lf0, with l = 1, . . . , L, process-
ing structures as in Figure 1 may be used to obtain the complex envelopes, x̃1(t), . . . , x̃L(t). For
the lth harmonic, the sinusoids in Figure 1 are changed to cos(2πlf0t), sin(2πlf0t). Each harmonic,
l, is characterized by average signal power Sl, saturation Ωl, and average noise power 2σ2

n, so that
M samples of the complex envelope at each harmonic are modeled as in (27):

x̃l(tm) ∼ CN
(√

(1 − Ωl)Sl e
jθl,m, ΩlSl + 2σ2

n

)
, l = 1, . . . , L, m = 1, . . . ,M. (58)

If the time samples t1, . . . , tM are spaced by > 1/B sec, then it is reasonable to model x̃l(t1),
. . . , x̃l(tM ) as independent for a fixed l. We will also model the scattered signals at different frequen-
cies, x̃1(tm), . . . , x̃L(tm), as independent. Cross-frequency coherence has been studied theoretically



and experimentally, with [14, 15] presenting experimental studies in the atmosphere. However,
models for cross-frequency coherence in the atmosphere are at a very preliminary stage. It may
be possible to revise our assumption of independent scattering at different harmonic frequencies as
better models become available.

In summary, we model all of the random variables in (58) as independent, and the samples at
each harmonic may be combined coherently or incoherently, with distributions

Coherent: Pl =

∣∣∣∣∣ 1
M

M∑
m=1

x̃l(tm) e−jθl,m

∣∣∣∣∣
2

, l = 1, . . . , L (59)

∼ ΩlSl + 2σ2
n

2M
· χ2

(
2,

(1 − Ωl)Sl

(ΩlSl + 2σ2
n)/(2M)

)
(60)

Incoherent: Pl =
1
M

M∑
m=1

|x̃l(tm)|2 , l = 1, . . . , L (61)

∼ ΩlSl + 2σ2
n

2M
· χ2

(
2M,

(1 − Ωl)Sl

(ΩlSl + 2σ2
n)/(2M)

)
. (62)

Our assumptions imply that P1, . . . , PL are independent.

2.2 Saturation model

In [13], Wilson presents models for the saturation parameter as a function of meteorological param-
eters. Using the reasoning in Appendix A, we obtain from [13] the following approximate model
for the saturation under “mostly sunny, calm” conditions:

Ω = 1 − exp
(−2 × 10−7 · f2 · r) (63)

where f is the frequency (in Hz) and r is the range from the source to the sensor (in m). We
note that the model in (63) accounts only for scattering due to turbulence in the air, and ground
reflections are ignored. To our knowledge, convenient models are not currently available that
incorporate ground reflections.

Equation (63) is evaluated and plotted in Figures 2(b)–2(d) to show the variation in saturation
Ω with frequency and source range under sunny, calm conditions. Figure 2 indicates that harmonic
energy estimates fluctuate by ± several dB for frequencies above 100 Hz and ranges greater than
about 40 m.

3 Classification Performance Based on Propagation Models

The models in the previous section describe the distribution of measured power (Pl) as a function
of saturation (Ωl) at the harmonic frequencies lf0, l = 1, . . . , L, as well as the variation of Ωl with
frequency (lf0) and range. The models can be used to study classification performance based on the
measured harmonic signature, P = [P1, . . . , PL], when the “ideal” source signature S = [S1, . . . , SL]
is known in the absence of scattering and sensor noise. Several approaches may be used to study
classification performance. For example, suppose a set of C signatures, S1, . . . ,SC , are known
that characterize C ground vehicles. Then the probability of classification error can be evaluated
analytically. Alternatively, we can study the Cramér-Rao lower bound on the variance of unbiased
estimation of S based on the statistical model for P.
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Figure 2: (a) Probability density function (pdf) of average power 10 log10(P ) measured at the sensor
for M = 1 sample of a signal with S = 1 (0 dB), SNR = 1/2σ2

n = 103 = 30 dB, and various values
of the saturation, Ω. (b) Variation of saturation Ω with frequency f and range r. The saturation is
evaluated at harmonic frequencies corresponding to fundamental frequency f0 = 10 Hz in (c) and
f0 = 15 Hz in (d).
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Figure 3: (a) Ideal harmonic signature. (b) Error bars for ± one standard deviation caused by
scattering.

We present an example in this section to illustrate the variability in harmonic signatures as the
range to the target increases. Consider a harmonic source with fundamental frequency f0 = 15 Hz,
and suppose the signature for classification uses harmonics 3, 6, 9, and 12. We use (54) and (55)
to evaluate the ± one standard deviation error bars on the harmonic energy fluctuations under
“mostly sunny, calm” meteorological conditions. High SNR is assumed, so the variations are due
to scattering during propagation, and we take M = 1, i.e., no time averaging. Figure 3(a) shows
the “ideal” harmonic signature, and Figure 3(b) shows the error bars for ranges 5, 10, 20, 40, 80,
160 m. At ranges of 80 m and larger, the harmonic components display significant variations, and
rank ordering of the harmonic amplitudes would exhibit variations also. Thus classification based
on relative harmonic amplitudes would degrade in performance at these ranges.

4 Results from Measured Data

In this section, we examine measured data from ground vehicles in the ACIDS2 data set provided
by the Army Research Laboratory. In particular, we investigate ways to mitigate the harmonic
signature fluctuations caused by scattering, and we examine the signature variations with speed and
aspect angle. The ACIDS data is recorded at three microphones as a target travels along a straight
line, as shown in Figure 4(a). We process the data recorded at microphone 1 in segments of length
1 second. We use a harmonic line association (HLA) algorithm [2] to estimate the fundamental
frequency, then we use a Welch power spectral density (PSD) to estimate the energy in narrow
bands around the first 12 harmonic frequencies. We normalize the harmonic energy estimates by
dividing by the total received energy. This normalization tends to remove the deterministic energy
loss caused by spherical spreading of the wavefronts. Note from Figure 4(a) that the time record

2ACIDS is an acronym for Acoustic-Seismic Classification Identification Data Set.



for each run provides a view of the target at various aspect angles and ranges. The range is large
for aspect angles near ±90 degrees, and at these aspect angles the sensor observes the front of the
vehicle as it approaches the sensor, and the rear of the vehicle as it departs the sensor. At CPA,
the sensor observes the side of the vehicle.

We present plots of the estimated harmonic signatures for “Target 1” and “Target 2” in the
ACIDS data set. Both targets are “heavy tracked” vehicles, but they are different types within
this class. The estimated energy in the dominant harmonic components for Target 1 at various
aspect angles (and ranges) is shown in Figures 4(b) and 4(c). Corresponding results for Target 2
are shown in Figures 4(d) and 4(e). Plots (b) and (d) are at closer CPA range and slower speed,
while plots (c) and (e) have larger CPA range and faster speed. We observe from Figures 4(b)–4(e)
that the harmonic energy fluctuations are larger at further ranges, which agrees with the scattering
propagation models. We also observe that the harmonic signatures are somewhat different when
the sensor observes the front of the vehicle, when the sensor observes the rear of the vehicle, and at
CPA. For example, harmonic 6 varies with aspect angle for Target 1 in Figure 4(b), and harmonics 3
and 7 vary with aspect angle for Target 2 in Figures 4(d) and 4(e).

These observations suggest that we (incoherently) average the signatures at the front and rear
aspects, respectively, to reduce the fluctuations caused by scattering while preserving the aspect-
dependent features. Then the averaged front and rear signatures can be used in conjunction with
the CPA signature for classification. Figures 5 and 6 contain results for Targets 1 and 2, respectively,
that illustrate the aspect-dependent signatures from six runs in the ACIDS data set. There are
three runs for each target. Two of the three runs have CPA range of 5 m and speed 15 km/hr,
with the vehicle traveling in opposite directions in these two runs. The third run has larger CPA
range (25 m) and faster speed (30 km/hr).

Figures 5(a)–5(c) show the harmonic signatures for Target 1 at CPA, front, and rear, respec-
tively. The front and rear results in Figures 5(b) and 5(c) are obtained by averaging 10 signatures,
measured at different times at aspect angles near ±90 degrees. The CPA signature in Figure 5(a)
contains no averaging. Also shown in Figures 5(a)–5(c) by the ∗ is the mean signature at each
aspect over the three runs. The mean signatures from Figures 5(a)–5(c) are also plotted in Fig-
ure 5(d) to illustrate the variation in harmonic signature with CPA, front, and rear aspects. Note
from Figure 5(d) that harmonics 3, 6, and 7 vary by several dB at front and rear aspect angles.

Figure 6 shows corresponding results for Target 2. The mean signatures for front and rear aspect
angles in Figure 6(d) show the largest variation at harmonics 3, 6, and 7. Note in Figure 6(d) that
harmonics 3 and 7 switch positions as the second-largest harmonic component in the front and rear
aspect signatures.

5 Concluding Remarks

We have applied a propagation model to study the statistical fluctuations in harmonic signatures
caused by scattering of acoustic signals in the air. The fluctuations are larger at higher frequencies
and larger ranges between the source and sensor. The statistical model includes the effect of
coherent or incoherent averaging of independent observations of the harmonic signature, and the
model may be used to analyze the performance limits of classifiers based on harmonic line signatures.
If meteorological data is available to provide an estimate of the saturation level in the atmosphere,
then the model may be used in a real-time system to predict when classification is unreliable due
to excessive scattering.

We examined measured data in the Army Research Laboratory’s ACIDS data set to assess the
variability of ground vehicle harmonic signatures with range, speed, and aspect angle. The harmonic
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Figure 4: (a) Sensors and target path for ACIDS data. (b) and (c): Energy in dominant harmonics
for Target 1. (d) and (e): Energy in dominant harmonics for Target 2. (c) and (e) have larger CPA
range and faster speed than (b) and (d).
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Figure 5: Harmonic signatures for Target 1 for three runs. (a) CPA signature. (b) Average of 10
signatures at front aspect. (c) Average of 10 signatures at rear aspect. (d) Mean signatures over
the three runs at CPA, front, and rear aspects.
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Figure 6: Harmonic signatures for Target 2 for three runs. (a) CPA signature. (b) Average of 10
signatures at front aspect. (c) Average of 10 signatures at rear aspect. (d) Mean signatures over
the three runs at CPA, front, and rear aspects.



signatures exhibit larger fluctuations at larger ranges, as predicted by the model. The harmonic
signature variations with source aspect angle may be coarsely quantized into three cases: CPA (side
of target), front of vehicle, and rear of vehicle. Furthermore, several independent estimates of the
harmonic signature are typically available at the front and rear aspects, so these may be averaged
to reduce the fluctuations in the signature due to scattering. We showed the harmonic signatures
at CPA, front, and rear aspects for Targets 1 and 2 in the ACIDS data set. We observed that the
energy level of some harmonics varied by several dB at the front and rear aspects. Although results
for only two targets were included in this paper, we observed similar behavior in the harmonic
signatures of most targets in the data set.

The results in this paper considered a limited set of target speeds, ranges, and meteorological
conditions. We will examine a larger variety of conditions in future work. We are also working
with the ACIDS data set to quantify the improvement in classification performance that is enabled
when aspect-dependent signatures are used.
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Appendix

A Rationale for Scattering Model

This appendix provides an outline of the reasoning behind the model for saturation in (63).

1. Following [12], equations (13) and (16) imply

Ω = 1 − exp (−α(∞) · r) , (64)

where r is used for the range in (64) instead of x that is used in [12]. The extinction coefficient
α(ρ) for the second moment is described in (15) of [12] as

α(ρ) = 2πk2 [f(0) − f(ρ)] (65)

where k =
2πf

c0
(f = frequency, in Hz) (66)

c0 = speed of sound (67)
ρ = sensor separation, transverse to the propagation direction (68)

f(ρ) = two-dimensional correlation function for sound-speed fluctuation. (69)

2. We need to find α(ρ) for large ρ, and use this value as α(∞) in (64). It is shown in [13] that
the factor [f(0) − f(ρ)] in (65) initially increases monotonically with ρ, but then it saturates
when ρ is between 100 m and 1, 000 m (see Figure 4 in [13]). Therefore according to (65) and
(66), for large enough ρ,

α(∞) = ξf2, (70)

where ξ is a constant that depends on the atmospheric conditions.



3. We obtained a rough estimate for the value of ξ using the top-left panel in Figure 5 in [13]
for “mostly sunny, calm” conditions. Assuming that the largest value of ρ in the figure, 100
m, is “large enough” for α(∞), the following values are estimated from the plot:

f (Hz) 20 70 200 700
α(100)−1 104 103 102 10

Using these values in (70) yields a value for ξ ≈ 2 × 10−7. Then using ξ = 2 × 10−7 in (70),
and inserting (70) in (64) yields the model for Ω in (63).

We note that it may be possible using results in [16] to directly model the saturation in terms of

the “squared strength parameter” Φ2 �
= α(∞)r.
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