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Abstract

A statistical analysis of differential Doppler estimation is presented that includes the par-
ticular features found in aeroacoustic signals from ground vehicles, namely a sum-of-harmonics
signal that is randomly scattered by the atmosphere. We use a physics-based statistical model
for the scattering to derive the Cramér-Rao bound (CRB) on differential Doppler estimation
as a function of the atmospheric conditions, the frequency of the source, and the range of the
source. We evaluate the CRB for several cases of interest, and we compare the performance of
algorithms with the CRB. We show with measured aeroacoustic data that differential Doppler
can be estimated with accuracy that is comparable to the CRB.

1 Introduction

The data collected by a network of aeroacoustic and seismic sensors may be processed to localize
the positions of ground vehicles, track the vehicles as they move, and identify the type of vehicle.
However, this processing is challenging because sound signals that propagate through the air are
scattered by turbulence, causing random fluctuations in the measured data [1]–[8].

In past work [9], we have studied time-delay estimation with widely-separated aeroacoustic
sensors. However, accurate time-delay estimates are difficult to obtain for two reasons: the sounds
emitted by many ground vehicles have a sum-of-harmonics structure with small time-bandwidth
product, and the scattering causes a loss in signal coherence at the sensors. In this paper, we
study Doppler estimation for moving sources, and we show that Doppler estimation does not
suffer from the difficulties of time-delay estimation. Indeed, the narrowband, harmonic structure
of the sources is advantageous for Doppler estimation, and the differential Doppler between two
sensors can be estimated noncoherently by examining the peaks in the power spectrum at each
sensor. We provide a statistical performance analysis of differential Doppler estimation using the
scattering propagation model summarized in [8]. Our analysis provides Cramér-Rao bounds (CRBs)
on the accuracy of differential Doppler estimation as a function of signal-to-noise ratio (SNR),
meteorological conditions, frequency of the source, and the range of the source. We compare
the performance of frequency estimation algorithms with the CRB, and we show with measured
aeroacoustic data that differential Doppler can be estimated with accuracy that is comparable to
the CRB.

The Doppler estimates from sensor nodes may be combined with bearing estimates to improve
the localization accuracy of a tracking algorithm. The Doppler estimates also may be used by a
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tracking algorithm to improve the accuracy of “data association” between bearings and sources
when multiple sources are present. The results presented here can be extended to CRB analysis of
source localization with bearing and/or differential Doppler estimates. The path of a moving source
may be estimated solely with differential Doppler estimates if five or more sensors are available [10],
or differential Doppler may be used in conjunction with bearing estimates.

This paper is organized as follows. The models for the source (sum of harmonics) and the
atmospheric scattering are presented in Section 2. The CRBs for differential Doppler estimation
are presented in Section 3, along with two algorithms for frequency estimation with scattered
signals. Numerical evaluations of the CRBs and computer simulations of frequency estimation
with scattered signals are also included in Section 3. Section 4 contains additional examples of
Doppler estimation, including differential Doppler estimation using measured aeroacoustic data.
Section 5 contains concluding remarks.

2 Models for Source Signals and Propagation

In this section, we present a general model for the signals received by a network of aeroacoustic
sensors. We begin by briefly considering models for the signals emitted by ground vehicles and
aircraft. Then we develop the model for the scattering caused by atmospheric turbulence for a
moving source emitting a single tone. The model is extended to moving sources that emit a sum of
harmonics by assuming that the scattering in each harmonic is independent. The scattering model
was developed by Wilson, Collier, and others [1]–[7]. The book chapter [8] presents the scattering
model for a nonmoving source and discusses the implications for signal processing. We will use the
scattering formulation from [8] in this paper, so the reader may refer to [8] for more details.

2.1 Source signals

The typical source of interest has a primary contribution due to rotating machinery (engines), and
may include tire and/or exhaust noise, vibrating surfaces, and other contributions. Internal com-
bustion engines typically exhibit a strong sum of harmonics acoustic signature tied to the cylinder
firing rate. Tracked vehicles also exhibit tread slap, which can produce very strong spectral lines,
while helicopters produce strong harmonic sets related to the blade rotation rates. Turbine engines,
on the other hand, exhibit a broader spectrum and consequently call for different algorithmic ap-
proaches in some cases. Our focus in this paper is on differential Doppler estimation for sources
with harmonic spectra.

2.2 Overview of propagation phenomena

Four phenomena are primarily responsible for modifying a sinusoidal signal emitted by a nonmoving
source to produce the signal observed at the sensor network:

1. Transmission loss caused by spreading of the wavefronts, refraction by wind and temperature
gradients, ground interactions, and molecular absorption of sound energy.

2. The propagation delay from the source to the sensors.

3. Additive noise at the sensors caused by thermal noise, wind noise, and directional interference.

4. Random fluctuations in the amplitude and phase of the signals caused by scattering from
random inhomogeneities in the atmosphere such as turbulence.
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Figure 1: Geometry of one sensor and a source moving in a straight line at constant velocity.

The transmission loss (TL) is defined as the diminishment in sound energy from a reference value
Sref, which would hypothetically be observed in free space at 1 m from the source, to the actual
energy observed at the sensor S. To a first approximation, the sound energy spreads spherically;
that is, it diminishes as the inverse of the squared distance from the source. In actuality the TL for
sound wave propagating near the ground involves many complex, interacting phenomena, so that
the spherical spreading condition is rarely observed in practice, except perhaps within the first 10
to 30 m [13]. Several well refined and accurate numerical procedures for calculating TL have been
developed [14]. For simplicity, here we model S as a deterministic parameter, which is reasonable
when the state of the atmosphere does not change dramatically during the data collection.

The propagation delay is developed using the geometry in Figure 1, where the sensor is located
at (x1, y1) and the source path is modeled as a straight line with constant velocity over an interval
of length T ,

xs(t) = xs,0 + ẋs · (t − t0), t0 ≤ t ≤ t0 + T (1)
ys(t) = ys,0 + ẏs · (t − t0), (2)

where ẋs, ẏs are the velocity components. If d(t) is the distance between the source position and
the sensor at time t, then the propagation time is well-approximated by [11]

τ(t) =
d(t)
c

≈ τ(to) +
1
c
vr(to)(t − to) for ∆φ ≤ 18◦, (3)

where ∆φ is the change in bearing over the observation interval, as shown in Figure 1. In (3), c is
the speed of sound and vr(to) is the radial component of the velocity at the start of the observation
interval,

vr(to) =
xs,o − x1

d(to)
ẋs +

ys,o − y1

d(to)
ẏs = ẋs cos φ(to) + ẏs sinφ(to). (4)

Thermal noise at the sensors is typically independent from sensor to sensor. In contrast, inter-
ference from an undesired source produces additive noise that is (spatially) correlated from sensor
to sensor. Wind noise exhibits high spatial correlation over distances of several meters [12]. In this
paper, we model the additive noise as independent from sensor to sensor.
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Scattering of the signal by turbulence, which is the fourth phenomenon in the preceding list, is
particularly significant. The turbulence consists of random atmospheric motions occurring on time
scales from seconds to several minutes. Scattering from these motions causes random fluctuations in
the complex signals at the individual sensors and diminishes the cross coherence of signals between
sensors. The effects of scattering on differential Doppler estimation will be analyzed in Section 3
using the model presented in this section.

2.3 Scattering model for a narrowband, moving source

We now develop the model for the sensor signals incorporating the four phenomena described in
the preceding subsection. We assume that the source and the sensor network are in the same plane,
and we define (xm, ym) for m = 1, . . . ,M as the locations of M sensors. We develop the model for
a single sensor at (x1, y1), and the extension to M sensors follows easily because the scattering and
noise are independent at distinct sensors.

The sinusoidal source signal that is measured at the reference distance of 1 m from the source
(without motion) is written

sref(t) =
√

Sref cos(2πfot + χ), (5)

where the frequency of the tone is fo = ωo/(2π) Hz, the period is To sec, the phase is χ, and the
amplitude is

√
Sref. The sound waves propagate with wavelength λ = c/fo, and the wavenumber is

k = 2π/λ = ωo/c. We will represent sinusoidal and narrowband signals by their complex envelope,
which is defined as

C{sref(t)} = s̃ref(t) = s
(I)
ref(t) + j s

(Q)
ref (t) = [sref(t) + j H{sref(t)}] exp (−j2πfot) (6)

=
√

Sref exp (jχ) . (7)

We will represent the complex envelope of a quantity with the notation C{·} or (̃·), the in-phase
component with (·)(I), the quadrature component with (·)(Q), and the Hilbert transform with H{·}.
The fast Fourier transform (FFT) is often used to approximate the processing in (7) for a finite block
of data, where the real and imaginary parts of the FFT coefficient at frequency fo are proportional
to the I and Q components, respectively. The complex envelope of the sinusoid in (5) is given by
(7), which is not time-varying, so the average power is |s̃ref(t)|2 = Sref.

In the absence of scattering, the model for the signal at the sensor that includes transmission
loss, propagation delay (for a moving source), and additive noise is

z(t) = s [t − τ(t)] + w(t) (8)

s(t) =
√

S cos (2πfot + χ) (9)

τ(t) = τ(to) +
1
c
vr(to)(t − to). (10)

Combining (9) and (10) into (8) yields the following model for the complex amplitude of the sensor
signal in the absence of scattering:

z̃(t) =
√

S exp {j [χ − 2πfoτ(to)]} exp
{
−j2π

vr(to)
c

fo(t − to)
}

+ w̃(t) (11)

=
√

S exp [jθ] exp [−j2πfd(t − to)] + w̃(t), (12)
θ = χ − 2πfoτ(to), (13)

fd =
vr(to)

c
fo = Doppler frequency shift. (14)
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Thus with no scattering, the complex amplitude in (12) is a pure sinusoid in additive noise. The
sinusoidal amplitude

√
S is determined by the source strength and transmission loss, the phase θ

in (13) is determined by the source phase and the propagation time, and the frequency −fd is the
Doppler frequency shift. Note that fd in (14) is proportional to the source frequency fo and radial
velocity vr(to).

The additive noise w(t) in (8) is a white, Gaussian noise (AWGN) process that is real-valued,
continuous-time, and zero-mean with power spectral density (PSD) Gw(f) = (No/2) W/Hz. There-
fore the complex envelope w̃(t) in (12) is a complex, circular, Gaussian random process with zero
mean and PSD Gw̃(f) = 2No. The noise moments are then

E{w̃(t)} = 0, −∞ < t < ∞, (15)
r
�w(ξ) = E{w(t + ξ)w∗(t)} = 2No δ(ξ) (16)

where E{·} denotes expectation and δ(ξ) is the Dirac delta function.
The scattering by atmospheric turbulence introduces random fluctuations in the signals and

diminishes the cross coherence between signals at different sensors. Several assumptions and sim-
plifications are involved in the scattering formulation [1]–[7], including that the propagation is
line-of-sight (no multipath), and the random fluctuations caused by scattering are complex, circu-
lar, Gaussian random processes.

The line-of-sight propagation assumption is reasonable for propagation over fairly flat, open
terrain in the frequency range of interest here (below several hundred Hz). Modeling the scattered
signals as complex, circular, Gaussian random processes is a substantial improvement on the con-
stant signal model in (12), but it is, nonetheless, rather idealized. Waves that have propagated
through a random medium can exhibit a variety of statistical behaviors. Experimental studies
[15, 16, 17] conducted over short horizontal propagation distances with frequencies below 1000 Hz
demonstrate that the effect of turbulence is highly significant, with phase variations much larger
than 2π rad and deep fades in amplitude often developing. The measurements demonstrate that
the Gaussian model is valid in many conditions, although non-Gaussian scattering characterized
by large phase but small amplitude variations is observed at some frequencies and propagation
distances. The Gaussian model applies in many cases of interest, and we apply it in this paper.

The scattering modifies the complex envelope of the signal at the sensor by spreading a portion of
the power from the (deterministic) mean component into a zero-mean random process. We denote
the scattered process by ṽ(t), which is a complex, circular, Gaussian random process with zero
mean and PSD Gṽ(f). We model Gṽ(f) as a symmetric function centered at 0 Hz with bandwidth
Bv Hz. Note that this implies that the autocorrelation function of the scattered process, rṽ(ξ), is
real-valued with coherence time on the order of 1/Bv sec. The saturation parameter [6, 7], denoted
by Ω ∈ [0, 1], defines the fraction of average signal power that is scattered from the mean into the
random component. The scattering may be weak (Ω ≈ 0) or strong (Ω ≈ 1), which are analogous to
Rician and Rayleigh fading in the radio propagation literature. The modification of (12) to include
scattering is as follows:

z̃(t) = s̃ [t − τ(t)] + w̃(t)

=
√

(1 − Ω)S exp [jθ] exp [−j2πfd(t − to)]

+
√

ΩS ṽ(t) exp [jθ] exp [−j2πfd(t − to)] + w̃(t). (17)

In order to satisfy conservation of energy at the sensor with E{|s̃(t)|2} = S, the scattered process
is normalized so that its average power is unity,

E{|ṽ(t)|2} = rṽ(0) =
∫ ∞

−∞
Gṽ(f) df = 1. (18)
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Figure 2: PSD Gz̃(f) for the sensor signal model in (17) for processing bandwidth B Hz.

The PSD Gz̃(f) corresponding to the sensor signal model in (17) is illustrated in Figure 2, and
the corresponding formula is

Gz̃(f) = (1 − Ω)S δ(f + fd) + (ΩS)Gṽ(f + fd) + Gw̃(f). (19)

The observations are band-pass filtered with bandwidth B Hz, so the AWGN PSD is Gw̃(f) =
2No rect(f/B), where B must be larger than the maximum Doppler frequency shift for the source
of interest. The average SNR = S/(2NoB). Our objective in this paper is to study algorithms and
performance bounds for estimating fd in Figure 2 as a function of the saturation Ω, the processing
bandwidth B Hz, the observation time T sec, the average SNR = S/(2NoB), and the bandwidth of
the scattered signal Bv. Scattering (Ω > 0) causes fluctuations in the signal energy, with coherence
time of the fluctuations proportional to 1/Bv .

The sensor signals in (17) with PSD in Figure 2 may be sampled at the rate Fs = B samples per
second, so the spacing between samples is Ts = 1/B. In the observation time of T sec, N = �BT �
samples are obtained, which are collected in the vector

z̃ =

 z̃(0)
...

z̃((N − 1)Ts)

 . (20)

This vector has a complex Gaussian distribution with mean and covariance matrix

z̃ ∼ CN
(
ejθ

√
(1 − Ω)S a, (Ω S)Rṽ ◦

(
aaH

)
+ (2NoB)I

)
, (21)

where

a =


1

exp [−j2πfd/B]
...

exp [−j2π(N − 1)fd/B]

 , (22)

Rṽ is the covariance matrix of the samples of the scattered process with elements [Rṽ]mn =
rṽ [(m − n)/B], ◦ denotes element-wise product, (·)H denotes Hermitian transpose, and I is the
identity matrix.
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As noted above, scattering causes fluctuations in the signal energy measured at the sensor.
Figure 3(a) shows plots of the probability density function (PDF) of 10 log10 |z̃(t)|2. Note that
a small deviation of the saturation from Ω = 0 causes the PDF to spread over several dB. For
Ω > 0.5, deviations of 10 to 15 dB are not uncommon. The variation of Ω with source frequency,
range, and meteorological condition is discussed in the next subsection.

This model is easily extended to M sensors. The scattered processes at different sensors are
independent if the distance between the sensors is larger than a few 10’s of m [8]. Thus inde-
pendent scattering is a reasonable assumption since our focus is on differential Doppler estimation
with widely separated sensors.1 For M sensors, there are distinct Doppler shifts fd,1, . . . , fd,M

and distinct saturation values Ω1, . . . ,ΩM . The scattered processes ṽ1(t), . . . , ṽM (t) are modeled
as zero-mean, jointly wide-sense stationary, complex, circular Gaussian random processes that are
independent of the noise processes, E{ṽn(t+ξ)w̃m(t)∗} = 0. The scattered processes are character-
ized by the autocorrelation function rṽ(ξ) = E{ṽn(t+ ξ)ṽn(t)∗}, which is assumed to be real-valued
and identical for all sensors, with corresponding PSD Gṽ(f) = F{rṽ(ξ)}.

2.4 Model for the saturation

The value of the saturation Ω at a sensor depends on the source distance (d), the source frequency
(fo), and the meteorological conditions. The saturation Ω depends on the source range, d, according
to [8]

Ω = 1 − exp (−2µ d) , (23)

where µ is called the extinction coefficient for the first moment. An approximate expression for µ
as a function of frequency and meteorological condition is [8]

µ ≈
{

4.03 × 10−7 f2
o , mostly sunny conditions

1.42 × 10−7 f2
o , mostly cloudy condtions

, fo ∈ [30, 200] Hz. (24)

Figure 3(b) contains a contour plot of (24) for mostly sunny conditions. Note that Ω values over
the entire range from 0 to 1 may be encountered for frequencies and source ranges that are typical
in aeroacoustics. The saturation varies significantly with frequency for ranges larger than 100 m.

3 Cramér-Rao Bounds and Doppler Frequency Estimation

The CRB provides a lower bound on the variance of any unbiased estimate f̂d, so E{|f̂d − fd|2} ≥
CRB(f̂d). The CRB for the complex Gaussian model in (21) is [20]

CRB(f̂d) = tr
[
R−1

z̃

dRz̃

d fd
R−1

z̃

dRz̃

d fd

]
+ 2 · Re

[
dmz̃

d fd

H

R−1
z̃

dmz̃

d fd

]
, (25)

where mz̃ = ejθ
√

(1 − Ω) a, Rz̃ = ΩRṽ ◦
(
aaH

)
+ SNR−1 I, and tr(·) denotes the trace of a matrix.

The derivatives are easily evaluated analytically and the CRB in (25) is evaluated numerically.
Schultheiss and Weinstein [10] derived closed-form expressions for the CRBs when Ω = 0 (no

scattering) and Ω = 1 (full scattering). These special cases are illustrated in the PSD plots in
1Models are available for the correlation of the scattered processes when the sensors are closely spaced [8].
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Figure 3: (a) Probability density function (pdf) of average power measured at the sensor for a signal
with average SNR = 30 dB for various values of the saturation, Ω. (b) Variation of saturation Ω
with source frequency and range under mostly sunny conditions.

Figure 4, and the CRB expressions from [10] are

Ω = 0 : CRB(f̂d) =
3

2π2T 3

No

S
(26)

Ω = 1 : CRB(f̂d) ≈ Bv

T

[∫ ∞

0

(
d

dx
log G1(x)

)2

dx

]−1

. (27)

For Ω = 1, the approximation is accurate for high SNR =S/(2NoB) and large BvT = time-
bandwidth product of the scattered process. The function G1(x) in (27) is a normalized form of
the scattered PSD with unit bandwidth, so that Gṽ(f) = (1/Bv)G1(f/Bv). Thus with no scattering
(Ω = 0), the CRB for frequency estimation gets smaller with higher SNR and longer observation
time, T . For full scattering (Ω = 1), the CRB gets smaller with less scattering bandwidth Bv and
longer observation time. The CRB for this case also depends on the shape of the scattered PSD
through G1(x).

3.1 Numerical evaluation of CRBs

Next we evaluate the CRBs on frequency estimation as a function of the saturation Ω, the scattering
bandwidth Bv, the observation time T , and the average SNR for several cases of interest. We use
the following form for the PSD of the scattered signal,

Gṽ(f) =
β

Bv
tri

(
f

Bv

)
+

1 − β

B
rect

(
f

B

)
, (28)
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Figure 4: Illustration of the sensor signal PSD for the cases of no scattering (Ω = 0) and full
scattering (Ω = 1).

where tri(x) = 1 − |x| for |x| ≤ 1 and 0 otherwise, rect(x) = 1 for |x| ≤ 0.5 and 0 otherwise,
and β ∈ [0, 1] determines the fraction of energy in the “peaked” triangular function that has
bandwidth Bv. The broader, rectangular component is added to (28) in order to prevent the PSD
from reaching the value of 0, which leads to optimistic CRBs. For example, the CRB formula in
(27) equals 0 if Gṽ(f) = 0 over a frequency interval. We use β = 0.95 in all of the examples. The
effective bandwidth of the scattered signal is approximately βBv+(1−β)B, and the autocorrelation
function of the scattered process is

rṽ(ξ) = β sinc2(Bvξ) + (1 − β) sinc(Bξ), (29)

where sinc(x) = sin(πx)/(πx). The covariance matrix of the scattered samples, Rṽ in (21), is
obtained from (29). The PSD shape-related factor in (27) can be evaluated in closed-form for (28)
and is approximately equal to [β/(1 − β)(B/Bv) − 1]−1 when β ≈ 1.

The results from evaluating the CRBs for several scenarios are shown in Figure 5. In the plots,
the CRB based on (25) is indicated by the solid line for Ω ∈ [0, 1], while the Schultheiss/Weinstein
(S-W) CRBs for Ω = 0 and Ω = 1 in (26) and (27) are indicated by ∗. Figure 5(a) shows the CRB
variation with saturation Ω and scattered signal bandwidth Bv. (The values of all parameters are
specified in the caption to Figure 5.) The CRB with no scattering (Ω = 0) is independent of Bv

and agrees with the S-W formula in (26). With full scattering (Ω = 1), the CRB agrees with the
S-W approximation in (27) when BvT > 1. Note that the CRB increases rapidly for small values
of Ω > 0, and then the variation is fairly flat with Ω. Figure 5(b) shows the CRB variation with
saturation Ω and observation time T . Again we see the agreement with the S-W formula in (26) for
all values of T and (27) for BvT > 1, and the rapid increase in the CRB for small values of Ω > 0.
Figure 5(c) shows the CRB variation with saturation Ω and average SNR. Note that the CRB is
fairly insensitive to SNR for Ω > 0 and inversely proportional to SNR with no scattering (Ω = 0).
The SNR floor in the CRB is caused by the randomness of the scattered signal component. The
S-W formula in (27) gives the high-SNR limit for large BvT , and Figure 5(c) shows that (27) is
reasonably accurate even for the case BvT = 1 when the SNR > 10 dB. For parameter values that
are commonly encountered in aeroacoustics, e.g., Bv = 0.1 Hz, T = 1 sec, and SNR = 30 dB,
Figure 5 indicates that scattering increases the

√
CRB by about a factor of 10.

3.2 Doppler frequency estimation with scattered signals

Estimators for fd based on the model (21) are considered in this subsection. We do not consider
the general case in which the saturation Ω ∈ [0, 1] is unknown. Instead, we consider the maximum-
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Figure 5: CRBs for estimation of fd with various saturation Ω, scattered signal bandwidth Bv,
observation time T , and SNR. The Doppler shift value is fd = −0.2 Hz. (a) SNR = 28.5 dB,
B = 7 Hz, T = 1 sec, and Bv from 0.1 to 2.0 Hz. (b) SNR = 28.5 dB, B = 7 Hz, Bv = 1 Hz, and
T from 0.5 to 10.0 sec. (c) B = 7 Hz, Bv = 1 Hz, and T = 1 sec, and SNR from −1.5 to 38.5 dB.
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likelihood (ML) estimator for the case of no scattering (Ω = 0) and an estimator that was proposed
by Besson and Stoica [21] for the case of full scattering (Ω = 1). The periodogram (P-GRAM) is
the ML estimator with no scattering, and is given by

P-GRAM: f̂d = argmax
fd

∣∣∣∣∣
N−1∑
n=0

z̃(nTs) exp(j2πfd nTs)

∣∣∣∣∣
2

(30)

where Ts = 1/B. The P-GRAM exploits the known form of the deterministic signal component.
For the case of full scattering (Ω = 1), the signal component in (21) is a random process

with unknown covariance matrix Rṽ (or, equivalently, unknown PSD shape Gṽ(f)). The unknown
covariance matrix Rṽ complicates the estimation of fd. If Rṽ is real-valued and Toeplitz, which
agrees with our model, Besson and Stoica [21] proposed the following estimator for fd that accounts
for the unknown Rṽ:

C2-GRAM: f̂d = argmax
fd

Re

{
N−1∑
m=1

r̂z̃[m]2 exp(j4πfd mTs)

}
, (31)

where r̂z̃[m] is a consistent estimate of the mth lag of the sensor signal autocorrelation,

r̂z̃[m] =
1

N − m

N−1∑
n=m

z̃(nTs) z̃((n − m)Ts)∗. (32)

The estimator in (31) is labeled C2-GRAM because it is similar to the correlogram (C-GRAM)
except that the correlation estimates are squared to compensate for the unknown Rṽ . Note that
the summations in (30) and (31) can both be evaluated efficiently using the (inverse) FFT.

Figure 6 contains simulated mean-squared error (MSE) results for both estimators for the range
of saturation values Ω ∈ [0, 1]. The processing bandwidth is B = 5 Hz, the observation time is
T = 2 sec, the Doppler shift is fd = 0.31 Hz, and the MSE results are based on 10, 000 runs for each
case. Figures 6(a) and (b) have average SNR = 30 dB, while Figures 6(c) and (d) have average
SNR = 10 dB. Figures 6(a) and (c) have scattering bandwidth Bv = 1 Hz, while Figures 6(b)
and (d) have scattering bandwidth Bv = 0.1 Hz. The P-GRAM and C2-GRAM estimators perform
similarly for the conditions in these simulations. The MSEs of both estimators are close to the
CRB for Ω < 0.1, then the MSE diverges from the CRB for larger values of Ω. For Ω > 0.5, the
MSEs are fairly insensitive to the SNR and Bv values.

4 Examples

Two examples are presented in this section. First we consider Doppler estimation for a harmonic
source at various ranges using the model for saturation in (23) and (24). Then we present an
example of differential Doppler estimation based on measured aeroacoustic data from a ground
vehicle.

4.1 Doppler estimation for a harmonic source

Let us consider a harmonic source with fundamental frequency 15 Hz, and suppose that harmonics
3, 6, 9, and 12 (at 45, 90, 135, and 180 Hz) are used for Doppler estimation. According to the
model for saturation Ω in (23), (24), and Figure 3(b), Ω varies with frequency and range. The
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Figure 6: Comparison of frequency estimation mean-squared error (MSE) with the CRB for B = 5
Hz, T = 2 sec, and fd = 0.31 Hz based on 10,000 runs for each case. (a) Average SNR = 30 dB,
Bv = 1 Hz. (b) Average SNR = 30 dB, Bv = 0.1 Hz. (c) Average SNR = 10 dB, Bv = 1 Hz. (d)
Average SNR = 10 dB, Bv = 0.1 Hz.
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Freq. Range (m)
(Hz) 5 10 20 40 80 160 320

45 0.004 0.008 0.016 0.032 0.063 0.122 0.230
90 0.016 0.032 0.063 0.122 0.230 0.409 0.648

135 0.036 0.071 0.137 0.255 0.444 0.691 0.905
180 0.063 0.122 0.230 0.407 0.648 0.876 0.985

Table 1: Values of saturation Ω for harmonic frequencies at various ranges under mostly sunny
conditions using (23) and (24).

Freq. Range (m)
(Hz) 5 10 20 40 80 160 320

45 0.004 0.006 0.008 0.013 0.019 0.031 0.053
90 0.007 0.010 0.015 0.023 0.034 0.054 0.096

135 0.011 0.015 0.022 0.032 0.049 0.078 0.145
180 0.014 0.020 0.028 0.041 0.061 0.097 0.171

Table 2:
√

CRB on Doppler frequency shift for harmonic frequencies at various ranges for the
saturation values in Table 1.

saturation values for ranges from 5 to 320 m are shown in Table 1, where Ω varies over much of the
range from 0 to 1. The CRB on Doppler estimation will be different for each harmonic frequency,
depending on the range of the source.

We consider a processing bandwidth B = 10 Hz, observation time T = 2 sec, and scattering
bandwidth Bv = 0.5 Hz. The source range is varied from 5 m to 320 m, and the SNR is proportional
to 1/range2, resulting in SNR variations from 33 dB at range 5 m to −3 dB at range 320 m. Table 2
contains the

√
CRB on Doppler frequency estimation for each frequency and range. The

√
CRB on

Doppler estimation is smaller at the 45 Hz harmonic than the 180 Hz harmonic by about a factor
of 3 at each range. The

√
CRB gets larger by about an order of magnitude when the source range

increases from 10 m to 320 m.

4.2 Example with measured data

An example using measured aeroacoustic data [9] is shown in Figure 7, where Figure 7(a) shows
the path of a tracked vehicle. Figure 7(b) shows the estimated differential Doppler shift of a
frequency component near 38 Hz at sensor arrays 1 and 3 during the 10 sec time segment indicated
in Figure 7(a). Note from the MEAN ESTIMATE line in Figure 7(b) that smoothing the Doppler
estimates over time provides an error from GPS ground truth that is comparable to

√
CRB ≈ 0.1 Hz,

where the CRB is computed for conditions that approximate those in the experiment.

5 Concluding Remarks

We have developed a model for the Doppler frequency shift at acoustic sensors that includes the
effects of scattering by atmospheric turbulence. CRBs and algorithms for Doppler frequency esti-
mation were presented. It will be useful to extend the results to obtain CRBs on source localization
accuracy using differential Doppler with multiple sensors. In addition, it will be useful to evaluate
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Figure 7: (a) Vehicle path and array locations. (b) Differential Doppler estimates using sensors 1
and 3 during a 10-second segment.

the relative accuracy of source localization based on triangulation of bearings with triangulation
based on differential Doppler.
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