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ABSTRACT

Energy-constrained wireless sensor networks have conflict-
ing requirements between the need to communicate, and the
desire to avoid idle listening and thus save energy. Beneath
this simple observation lies a complex design space that en-
compasses all layers of the radio through application. Broad
design principles include the desire to exploit resources ex-
ternal to the network, such as beacons and (perhaps mobile)
access points that do not have strong energy constraints. We
consider synchronization, scheduled communications ren-
dezvous, and packet acquisition. Synchronization accuracy
worsens with prediction interval, saves energy by enabling
scheduling, but costs energy to maintain. Acquisition is
probabilistic due to noise, fading, and synchronization error,
with operating points defining energy-performance trade-
offs.

1. INTRODUCTION

The field of energy constrained sensor networks (EC-SN)is
multi-disciplinary, with a broad variety of applications, sens-
ing modalities, communication rates and ranges, and node
densities; see [1] for a tutorial overview and extended refer-
ence list. EC-SNs have battery reliant nodes, which implies
a finite lifetime, unless energy is available for recharging
(e.g., energy harvesting) or new long-life battery technol-
ogy succeeds (e.g., miniature atomic batteries). The inter-
relation of so many factors complicates the overall design,
but three basic design principles appear clear.

1. Signal processing viewpoint: optimize distributed de-
tection/estimation network tasks while minimizing use
of communications.

2. Communications viewpoint: Support specific network
goals while minimizing idle listening.

3. Systems viewpoint: Exploit external assets to the great-
est extent possible.

The Moore’s Law-type behavior of DSP hardware en-
ables increasingly sophisticated signal processing (SP), or

Work partially supported by the DARPA Connectionless Networks
program.

equivalently the same operations require less energy. How-
ever, perhaps more interesting is the lack of such rapid ad-
vance in analog components (RF front end, ADC), which
are not exhibiting dramatic reductions in energy consump-
tion. In addition, Shannon and Maxwell’s theories reveal
fundamental limits on energy required to reliably commu-
nicate, and these are not subject to advances in radio tech-
nology. (One can increase receiver sensitivity by reducing
the thermal temperature, but at a significant energy cost.)
The result is that operating the receiver produces a signifi-
cant energy drain, even when no message is present, and it
therefore becomes desirable to duty cycle the receiver, lead-
ing to design principle 2, and the caveat in 1.

Following principles 1 and 2 leads to several desirable
network properties, often from both an SP and communica-
tions point of view. These include knowledge of node loca-
tion (e.g., for network SP goals, for clustering and routing),
and some level of network synchrony (e.g., time of event re-
porting, scheduling transmission/reception, cooperative re-
lay). Node geolocation algorithms generally require active
transmission or exploitation of an opportunistic source, and
can take the form of a distributed algorithm or rely on ex-
ternal beacons [1, 2]. Our focus here is on obtaining and
maintaining network synchrony to a desired precision, and
its impact.

While distributed intra-network algorithms are available
for node geolocation and network synchrony, these of course
come with communications (and thus energy) costs. Clock
drifts (and node motion or addition of new nodes) require
synchronization (and geolocation) updates. This motivates
the third design principle, that dramatic energy savings can
be obtained when external assets are available which are
not energy constrained (e.g., continuous power supply, con-
nected to the internet, etc.). Primary examples include bea-
cons for synchrony and geolocation. These could come
from stationary or mobile access points, enabling offload-
ing of many tasks from the sensor nodes, leading to simple
and cheap designs. This is likely to be a key commercial
paradigm, with access points or base-stations linked to fixed
communications infrastructure. In military or ad hoc sce-
narios, introduction of a mobile access point simplifies both
communications and signal processing [3].



2. SYNCHRONY

Duty cycling requires that each node maintains a clock, and
communications rendezvous implies achieving some desired
level of synchrony between nodes. So, in idle state, the node
energyEI may be dominated by the clock requirements,
and at high duty cycleEI dominates the node lifetime. Not
surprisingly clock accuracy increases with energy [1], im-
plying a tradeoff between the clock energy consumption per
node and the update rate of a network synchronization algo-
rithm. There are ensuing energy tradeoffs involving duty
cycle, throughput delay, and node density.

Intra-network synchronization schemes require a mes-
sage passing protocol, and often rely on message round-trip
delay estimation, e.g., see [4, 5]. Synchronization to a sin-
gle master node is possible, or early-late adjustment can be
used to converge to and track a global mean. In the follow-
ing, we assume an external clock is available, and consider
issues of accuracy and the implications for duty cycling and
acquisition.

Two clocks running at constant rates can be related sim-
ply asyi = a + bxi, where(xi, yi) are theith simultaneous
clock readings,a is the offset, andb is the skew between
them. Suppose GPS or other accurate clock is available via
broadcast, e.g., from anchored nodes. We model this as

yi = a + b xi + εi, 1 ≤ i ≤ n, (1)

whereyi is the broadcast time subject to errorεi, andxi

is the local clock reading. We assumeεi ∼ N(0, σ2
i ), and

measurements are uncorrelated (E[εiεj ] = 0, i 6= j). The
errorεi arises primarily due to variability in the node mes-
sage processing time, as well as propagation time. Any
quantization or other error is absorbed intoεi. We can re-
fine this model to include multiple sources of uncertainty,
e.g., onxi as well asyi, although it appears that process-
ing time uncertainty will dominate. Experimental evidence
exists to support the Gaussian assumption, e.g., see [6], al-
though if εi is non-Gaussian then robust versions of what
follows may readily be applied. Skewb and offseta are,
in general, time varying, e.g., due to temperature change
and aging. Aging effects are rather slow, and temperature
changes can be monitored. In the following we assumea
andb constant, keeping in mind that some drift is inevitable
and so estimates must be updated.

Motivated by the desire to use a low energy device, the
local clock readingxi is assumed to have less, perhaps much
less, accuracy thanyi. We receiven values ofyi and find
estimateŝa andb̂, which then may be used to predict future
values of the broadcast clock based on the local clock. The
problem is in standard linear regression form, and so we can
apply many well known useful results including bounds and
confidence intervals, distribution, and maximum likelihood
estimates via least squares (LS), e.g., see [7].

Denote the vector model as

y = Xβ + ε (2)

whereβ = [a, b]′, X = [1n, x], 1n = [1, · · · , 1]′, y =
[y1, · · · , yn]′, and similar forx andε. We assumeσ2

i = σ2

∀i, but note that weighted LS can be used with changing
variance. The resulting LS (ML) estimate is

β̂ = (X ′X)−1X ′y. (3)

The estimatêβ = [â, b̂]′ is efficient with variance given by
the diagonal of(X ′X)−1σ2. If σ2 is unknown then it can
be estimated via

s2 =
1

n − 2

{
n∑

1

y2
i − nȳ2 − b

[
n∑

1

(yi − ȳ)(xi − x̄)

]}
,

(4)
wherex̄ and ȳ are the sample means of the elements ofx
andy, respectively.

Let xj denote local clock times at which we desire to
estimate the corresponding broadcast clock values. Gen-
erally, suppose we havem values ofxj in a vectorx̃ =
[x1, · · · , xm]′. Then, broadcast clock estimatesŷ can be ob-
tained from linear interpolation via

ŷ = X̃β̂, (5)

with X̃ = [1m, x̃].
Suppose thatn observations are given. Then, at a spe-

cific future timex0 on our local clock (T seconds beyond
the nth observation, say), the prediction of the broadcast
clock valuey0 can be written as

ŷ0 = â + b̂ x0 = ȳ + b̂(x0 − x̄). (6)

What accuracy is expected in the prediction for a givenn
observations? How large canT be for a given desired ac-
curacy? These questions can be answered using confidence
intervals onŷ0.

The variance of the prediction in (6) is given by

var(ŷ0) = σ2

{
1 +

1
n

+
(x0 − x̄)2∑
i(xi − x̄)2

}
. (7)

If σ2 is unknown, thens2 may be used in this expression.
The100(1−α)% confidence interval around̂y0 is given by

ŷ0 ± t(ν, 1 − α/2) var(ŷ0)1/2, (8)

whereν = n − 2 degrees of freedom, andt(·, ·) is the t-
distribution. For example, for a given future local timex0,
andα = 0.05, then95% of our random observations ofy0

are expected to lie in the interval defined by (8).
Example: In this example we consider prediction (ex-

trapolation), in order to make a communications rendezvous



as accurately as possible. To motivate, suppose a 1 msec slot
is used, then we might wish to obtain future timing accuracy
to a fraction of a msec to avoid excess wasted receiver on-
time and detection processing. The prediction is made using
(6).

Supposen = 100 observations are available, for two
cases. (1) every second in[0, 99] secs, and (2) every 10 sec-
onds in[0, 990] sec. Figure 1 plotst(ν, 1−α/2) var(ŷ0)1/2

against prediction time for case 1 (top) and case 2 (bottom),
with prediction time of zero corresponding to the last obser-
vation time (99 or 990 secs). Two measurement error vari-
ance cases are shown with standard deviations3.2 × 10−5

and10−4 (σ2 = 10−8 andσ2 = 10−9).
The solid curve in the bottom panel shows the best per-

formance with longer observation time (100 measurements
in 990 secs or16.5 minutes) and smaller error variance.
The solid line indicates that with confidence of95%, pre-
diction out to 3,000 seconds (50 minutes) will be within
±0.1 msecs of the actual reading of clocky, and under±0.2
msecs at 6,000 seconds, which might be reasonable for a 1
msec slot time. The worst performance case is shown in
the top curve of the top panel, based on 100 measurements
in 100 seconds, where prediction error after 500 secs (8.3
minutes) exceeds±0.4 msecs. 2

In situations with prolonged network inactivity, coarse
synchrony can be maintained over quiescent periods. Then,
upon initiation of network traffic, a tighter synchrony can
be reestablished. Transmission duration can be adaptively
extended to ensure high probability of detection at the re-
ceiver, with the transmission duration required growing with
prediction timeT.

The analysis of this section can be more generally ap-
plied. One interesting case that is directly covered is when a
duty-cycled GPS receiver (y) is incorporated within a node,
along with a low power clock (x) that is running continu-
ously. In this caseσ2 will be small, because bothxi andyi

are available within the same node.

3. ACQUISITION

When the receiver awakens for communications rendezvous,
it must determine if a packet is present and if so demodulate
it, subject to uncertainties in timing, carrier frequency, and
phase. The oscillator employed for communications may in
many cases be the same device as the local clock, in which
case both timing and carrier offset are related. Alternatively,
a second oscillator may be spun up just prior to rendezvous.
To study the acquisition problem and find guidelines on de-
sirable accuracy of timing and frequency synchronization
between transmitter and receiver prior to rendezvous, con-
sider a QPSK-DS (direct sequence) system, employing a
non-coherent correlator detector, e.g., see Viterbi [8]. The
non-coherent approach enables detection and timing acqui-
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Fig. 1. Confidence intervals for time prediction.

sition (chip synch) prior to carrier frequency and phase esti-
mation, so long as the carrier offset is not too large as quan-
tified below. For example, a training preamble or superim-
posed training sequence might be employed.

Let fc be the nominal carrier frequency, and local ref-
erence denotedcos 2π(fc + ∆f)t + φ, with ∆f andφ un-
known to the receiver. From the non-coherent correlator we
obtainγ = γ2

I +γ2
Q, whereγI andγQ are the outputs of the

I and Q channels, respectively. For the noise-free case

E2[γI ] + E2[γQ] = N2Ec · D(∆f), (9)

where

D(∆f) =
[
sin(πNTc∆f)

πNTc∆f

]2

. (10)

Here, the spreading sequence hasN chips, each of duration
Tc seconds and energyEc, so γ is a measure of received
energy.D(∆f) ≤ 1 is a degradation factor caused by fre-
quency mismatch∆f , andγ does not depend onφ. To
maximizeD(∆f), we wantNTc∆f as small as possible.
To keep the detector degradation constant, with∆f 6= 0,
an increase in sequence lengthN requires a corresponding
increase in bandwidth1/Tc. This is because, as∆f grows,
the degradation worsens proportional to the total sequence
timeNTc.

We find sinc2(.44) ≈ 1/2, so we desire∆f ≤ .44/NTc

for degradation≤ 3 dB. Serious degradation occurs when
∆f ≤ 1/NTc. If ∆f is too large, then the receiver must
search over frequency offset by computing more correla-
tions, i.e., by searching the (non-coherent) ambiguity sur-
face. For relatively smallN (of order103 or less, say), all
correlation lags may be computed simultaneously by em-
ploying the FFT, and searching over∆f requires additional
DSP energy via multiplication and IFFT operations.



Implicit in the preceeding is the assumption that when
the receiver is activated a packet will be arriving, which
will not always be the case. So, we next consider detec-
tion as characterized by probability of detectionPD for a
given probability of false alarmPF . A false alarm results
in further unnecessary receiver processing (e.g., demodu-
lation, decoding) before rejection of the signal present hy-
pothesis, hence energy wasted. Missed detection requires
retransmission (depending on network quality of service)
and so will trigger more significant energy expenditure.

Assume∆f is small, in a slow Rayleigh fading channel,
i.e., the fading is constant overNTc but independent from
realization to realization. The latter occurs even in static
networks in the presence of moving scatterers (e.g., moving
trees, cars, people). For the non-coherent QPSK-DS sys-
tem,

PF = e−θ/V , (11)

and
PD = e−θ/Vf (12)

whereV = Nσ2, σ2 is the additive white Gaussian noise
variance, andθ is the detection threshold set to establish
PF . Multi-user interference can be readily incorporated if a
Gaussian assumption is employed.Vf = V (1 + µ), where

µ =
NEcR

2(τ)
σ2

(13)

is the average SNR with degradation due to small timing
errorτ ,

R(τ) =
sin πτ/Tc

πτ/Tc
, (14)

andEc is the average energy per chip of the Rayleigh faded
signal. Smallτ implies the timing is known to within one
chip; in practice many lags must be computed, perhaps via
FFT, with the correlation peak having the above character-
istics.

Example: Figure 2 plotsPF vsPD , for N = 100, σ2 =
1, and average SNRµ varied throughEc. For constantµ the
ROC curve is generated by varyingθ. Hereτ = 0, so timing
degradation is not included. The effect of fading is apparent,
because high average SNR is needed to achieve highPD

with low PF . Potentially much more energy is wasted for
a missed detection (requiring retransmission) than a false
alarm, so a relatively highPF may need to be tolerated.2

4. CONCLUSIONS

Synchronization of wirelessly connected nodes comes with
a relative accuracy that worsens as the prediction interval
grows. Synchronization saves energy by enabling receiver
duty cycling, but costs energy to maintain.

Packet acquisition is probabilistic due to noise, fading,
and synchronization error, with performance described by
the receiver operating curve. While both types of detection
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Fig. 2. Receiver operating curves (ROC) in Rayleigh fading.

error incur energy loss, missed detection may be much more
costly than detector false alarm.

Battery driven networks that are fully stand-alone re-
quire significant resources for geolocation, synchronization,
and other basic tasks that must be performed in order for the
network to function. When available, external resources can
relieve the network in terms of node design and complexity,
as well as energy, and therefore greatly extend the useful
network lifetime.
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