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ABSTRACT

Multiple sensor arrays distributed over a region provide the means for accurate localization of the (z,y) position of a
source. When microphone arrays are used to measure aeroacoustic signals from ground vehicles, random fluctuations
in the air lead to frequency-selective coherence of the signals that arrive at widely-separated arrays. We have shown
previously that even in cases of imperfect spatial coherence, improvements in source localization accuracy are possible
when the data from widely-separated arrays are processed jointly by a fusion center. Further, we have shown that
a distributed processing scheme involving bearing estimation at individual arrays and time-delay estimation (TDE)
between pairs of widely-separated sensors performs nearly as well as the optimum scheme, with significantly lower
communication bandwidth. These results were obtained by studying the Cramér-Rao bound (CRB) on source
localization accuracy based on a statistical model for the data measured at the sensors. Refined bounds (Ziv-Zakai)
are presented in this paper that imply a threshold value of coherence is needed to achieve accurate TDE between
widely-separated sensors. The threshold coherence is a function of the signal to noise ratio, fractional bandwidth,
and time-bandwidth product of the observed signals. Results are presented from measured aeroacoustic data that
illustrate TDE with widely-separated sensors.

Keywords: aeroacoustic sensor arrays, imperfect spatial coherence, Ziv-Zakai bounds, time-delay estimation, near-
field source localization.

1. INTRODUCTION

We are concerned with estimating the location (xs,ys) of a wideband source using multiple sensor arrays that are
distributed over an area. We consider schemes that distribute the processing between the individual arrays and a
fusion center in order to limit the communication bandwidth between arrays and fusion center. Triangulation is a
standard approach for source localization with multiple sensor arrays. Each array estimates a bearing and transmits
the bearing to the fusion center, which combines the bearings to estimate the source location (xs,ys). Triangulation
is characterized by low communication bandwidth and low complexity, but it ignores coherence that may be present
in the wavefronts that are received at distributed arrays. In this paper, we investigate new approaches for source
localization with multiple arrays that exploit partial coherence of the wavefronts at distributed arrays. We have
shown previously! that the Cramér-Rao lower bound (CRB) on the variance of source location estimates is reduced
when coherence from array to array is exploited. We also showed! that the CRB changes little for suboptimum
source localization methods that employ distributed processing to reduce the communication bandwidth between the
arrays and the fusion center.

We focus on the case of narrowband processing in this paper. In particular, we investigate time delay estimation
(TDE) with partially-coherent signals received by widely-separated sensor arrays. We showed! that combining the
TDEs with bearing estimates from the individual arrays has nearly the same source localization CRB as the optimum
method that jointly processes of all of the sensor data. However, bearing estimation with TDE requires much less
communication bandwidth than the optimum method. We have described elsewhere? a subspace algorithm for
processing partially-coherent signals received by widely-separated sensor arrays.

We model the signals measured at the distributed sensor arrays as jointly Gaussian wideband random processes.
The model accounts for propagation effects between the source and the distributed arrays, including frequency-
selective spatial coherence and different signal power spectra received at each array. The spatial coherence of the
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wavefronts is modeled as perfect over each individual array but imperfect between distinct arrays. This idealization
allows us to study the effect of varying coherence between arrays on source localization accuracy. Physical modeling
of frequency-selective coherence is discussed by Wilson.> The power spectral density of the source is arbitrary,
allowing a range of cases to be modeled, including narrowband sources, sums of harmonics, and wideband sources
with continuous power spectra.

Previous work on source localization with acoustical arrays has focused on angle of arrival estimation with a
single array.* 7 These works use the coherent wideband focusing approach®® to combine correlation matrices from
different narrowband frequency bins into a single correlation matrix that admits subspace processing. The problem
of imperfect spatial coherence in the context of narrowband angle-of-arrival estimation with a single array has been
studied.'% 13 Paulraj and Kailath!'® presented a MUSIC algorithm that incorporates the nonideal spatial coherence,
assuming that the coherence variation is known. Gershman et al.'! provided a procedure to jointly estimate the spatial
coherence loss and the angles of arrival. Song and Ritcey'? provide maximum-likelihood methods for estimating the
parameters of a coherence model and the angles of arrival, and Wilson'? incorporates physical models for the spatial
coherence. The problem of decentralized array processing has been studied.!#'® Wax and Kailath'4 present subspace
algorithms for narrowband signals and distributed arrays, assuming perfect spatial coherence across each array but
neglecting the spatial coherence between arrays. Weinstein!® presents performance analysis for pairwise processing
the wideband sensor signals from a single array and shows negligible loss in localization accuracy when the SNR is
high.

The paper is organized as follows. Section 2 describes our model for partially coherent signals observed by
the distributed sensor arrays. Also included in Section 2 are results from measured data to illustrate that partial
signal coherence is present in measured aeroacoustic data with sensors separated by hundreds of meters. The CRB
expressions for source location accuracy are reviewed in Section 3. Section 4 presents fundamental bounds on time-
delay estimation that are an extension of the Ziv-Zakai bounds'® to the case of partially coherent signals. Examples
of processing measured data are included in Section 4, and Section 5 contains a brief discussion of our continuing
work.

2. DATA MODEL

A model is formulated in this section for the discrete-time signals received by the sensors in distributed arrays.
Consider a single source that is located at coordinates (zs,ys) in the (z,y) plane. Then H arrays are distributed
in the same plane, as illustrated in Figure 1. Each array h € {1,..., H} contains N}, sensors, and has a reference
sensor located at coordinates (zp,yp). The location of sensor n € {1,..., Ny} is at (zp, + AThn, Yn + AYnn), where
(Azpy, Ayny,) is the relative location with respect to the reference sensor. If ¢ is the speed of propagation, then the
propagation time from the source to the reference sensor on array h is
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We will assume that the wavefronts are well approximated by plane waves over the aperture of individual arrays.
Then the propagation time from the source to sensor n on array h will be expressed by 7, + Thsn, Where
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where 7, is the propagation time from the reference sensor on array h to sensor n on array h, and ¢y, is the bearing
of the source with respect to array h. Note that while the far-field approximation (2) is reasonable over individual
array apertures, the wavefront curvature that is inherent in (1) must be retained in order to accurately model the
(possibly) wide separation between arrays.

The time signal received at sensor n on array h due to the source will be represented as sp,(t — 7, — Thn ), Where
the vector of signals s(t) = [s1(t),...,sm(t)]7 received at the H arrays are modeled as real-valued, continuous-time,
zero-mean, wide-sense stationary, Gaussian random processes with —oo < ¢ < 0o. These processes are fully specified
by the H x H cross-correlation function matrix

Ri(7) = E{s(t+7)s(t)"}, 3)
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Figure 1. Geometry of source location and H distributed sensor arrays. A communication link is available between
each array and the fusion center.

where E denotes expectation, superscript 1" denotes transpose, and we will later use the notation superscript * and
superscript H to denote complex conjugate and conjugate transpose, respectively. The (g, h) element in (3) is the
cross-correlation function

rs.gh(T) = E{sg(t +7) sn(t)} (4)
between the signals received at arrays g and h. The correlation functions (3) and (4) are equivalently characterized
by their Fourier transforms, which are the cross-spectral density functions

Gugh (@) = Flrean(M} = [ rugn(r)exp(—jr) dr 6
and the associated cross-spectral density matrix
G (w) = F{Rs(7)}- (6)

The diagonal elements G pp(w) of (6) are the power spectral density (PSD) functions of the signals sp(t), and hence
they describe the distribution of average signal power with frequency. The model allows the average signal power
to vary from one array to another. Indeed, the PSD may vary from one array to another to reflect propagation
differences, source aspect angle differences, and other effects that lead to coherence degradation in the signals at
distributed arrays.

Let us elaborate the definition and the meaning of coherence between the signals sq(t) and s5(t) received at
distinct arrays g and h. In general, the cross-spectral density function (5) can be expressed in the form

Gigh (W) = Ys,gh (@) [Gis,gg ()G nn(W)]"?, (7)

where 7, g (w) is the spectral coherence function, which has the property 0 < |ys gn(w)| < 1. The coherence function
vs,gh (W) is generally complex-valued, but we will model it as real-valued. This is a reasonable assumption for acoustic
propagation environments in which the loss of coherence is due to random changes in the propagation path length.'3
Note that our assumption of perfect spatial coherence across individual arrays implies that the random changes in
the propagation path length have negligible impact on the intra-array delays in (2). Thus the apparent bearing ¢;, to
array h remains fixed, but the inter-array path delays are randomly perturbed from their deterministic values given
by (1). These random effects are modeled by the signal coherence function, s gn(w).

We model the signal received at sensor n on array h as a sum of the delayed source signal and noise,
Zhn(t) = Sn(t — Th — Thn) + Whn(t), (8)

where the noise signals wy,, (t) are modeled as real-valued, continuous-time, zero-mean, wide-sense stationary, Gaus-
sian random processes that are uncorrelated at distinct sensors. That is, the noise correlation properties are

E{wgm (t + T)whn (t)} = 70 (T) dgn0mmn, (9)



where r,,(7) is the noise autocorrelation function, and the noise power spectral density is Gy (w) = F{r,(7)}. We
then collect the observations at each array h into Nj, x 1 vectors zp,(t) = [zp1(t), ..., zn.n, (t)]T for h=1,..., H, and
we further collect the observations from the H arrays into a (N7 + -+ Ng) x 1 vector

Zl(t)
zty=| : |. (10)

The elements of Z(t) in (10) are zero-mean, wide-sense stationary, Gaussian random processes. We can express the
cross-spectral density matrix of Z(¢) in a convenient form with the following definitions. The array manifold for
array h at frequency w is

exp(—jwTh1) exp [j% ((cos ¢dp)Azpy + (sin gi)h)Ayhl)]
ah(w) = = ) (11)
exp(—jwTh,N,) exp [ ((cos ¢n)Azp,, + (sin ¢n) Ayn,n,, )]

using 7p, from (2) and assuming that the sensors have omnidirectional response to sources in the plane of interest.
Let us define the relative time delay of the signal at arrays g and h as

Dgp = 74 — 1, (12)
where 7y, is defined in (1). Then the cross-spectral density matrix of Z(¢) in (10) has the form
Ga(w) = (13)

ai(w)a; (w)?Gs11(w) <o aj(w)ag (W) exp(—jwDiy)Gsam (W)
: ) : + Gy(w)L.
ag(w)a; (W) exp(+jwDiu)Gsim(w)* -+ ay (w)aH(w)HG&HH(w)

Recall that the source cross-spectral density functions Gy gn(w) in (13) can be expressed in terms of the spectral
coherence s gp(w) using (7).

Note that (13) depends on the source location parameters (x5, ys) through ay(w) and Dgj,. However, (13) points
out that the observations are also characterized by the bearings ¢1, ..., ¢y to the source from the individual arrays
and the relative time delays Dgp, between pairs of arrays. Therefore, one way to estimate the source location (s, ys)
is to estimate the bearings ¢1,...,¢n and the pairwise time delays Dgj,.

2.1. Signal coherence in measured data

Next we present results from measured aeroacoustic data to illustrate typical values of signal coherence at distributed
arrays. The experimental setup is illustrated in Figure 2a, which shows the path of a moving ground vehicle and the
locations of four microphone arrays (labeled 1, 3, 4, 5). Each array is circular with N = 7 sensors, 4-ft radius, and
six sensors equally spaced around the perimeter with one sensor in the center. We focus on the 10 second segment
indicated by the <’s in Figure 2a (which correspond to the time segment 340-350 sec in the data). Figure 2b shows
the power spectral density (PSD) of the data measured at arrays 1 and 3 during the 10 second segment. Note the
dominant harmonic at 39 Hz. Figure 2c shows the estimated coherence between arrays 1 and 3 during the 10 second
segment. The coherence is approximately 0.85 at 40 Hz, which demonstrates the presence of significant coherence at
widely-separated microphones. Exploiting this coherence has the potential for improved source localization accuracy.
Figure 2d shows the estimated coherence between two sensors on array 1, spaced by 8 feet. Note that the coherence
is close to unity for frequencies in the range from about 40 to 200 Hz, so our model of perfect signal coherence over
individual arrays is reasonable.

The Doppler effect due to source motion was compensated prior to the coherence estimate shown in Figure 2c.
Without Doppler compensation, the coherence is significantly reduced, as shown in Figure 3a. The time-varying
radial velocity of the source with respect to each array in Figure 2a is plotted in the top panel of Figure 3b. If s(t) is



the waveform emitted by the source that is moving with radial velocity v with respect to the sensor, then the sensor
receives a waveform with the form s(at), where the scaling factor « is

v
=1-- 14
a . (14)

and c is the speed of wave propagation. The scaling factor « is plotted in the bottom panel of Figure 3b. Note that
for this data set, 0.98 < a < 1.02, which corresponds to a Doppler frequency shift of approximately +1 Hz for an
emitted tone at 50 hertz. We use a digital resampling algorithm to compensate for the Doppler effect.

3. CRBS ON LOCALIZATION ACCURACY

The problem of interest is to estimate the source location parameter vector ® = [z, ys]* using T samples of the
sensor signals Z(0), Z(Ts), ..., Z((T — 1) - Ts), where Ty is the sampling period. Let us denote the sampling rate by
fs = 1/T, and wy = 27 f;. We will assume that the continuous-time random processes Z(t) are band-limited, and
that the sampling rate f is greater than twice the bandwidth of the processes. Then Friedlander'® has shown, using
a theorem of Whittle,2’ that the Fisher information matrix (FIM) J for the parameters ® based on the samples
Z(0),Z(Ts),...,Z((T — 1) - T) has elements

T [9GzW) 190Gz (w) 4 .
J” - QWS/O tI‘{ 891 Gz(w) 89] Gz(w) dw) Z7.7 - 172; (15)

]T

where “tr” denotes the trace of the matrix. The CRB matrix C = J~! then has the property that the covariance
matrix of any unbiased estimator © satisfies Cov(®) — C > 0, where > 0 means that Cov(®) — C is positive
semidefinite.!® The CRB provides a lower bound on the performance of any unbiased estimator. Equation (15)
provides a convenient way to compute the FIM for the distributed sensor array model. It provides a powerful tool for
evaluating the impact that various parameters have on source localization accuracy. Parameters of interest include
the spectral coherence between distributed arrays, the signal bandwidth and power spectrum, the array placement
geometry, and the SNR. The FIM in (15) is not easily evaluated analytically, but it is readily evaluated numerically
for cases of interest.

Consider an acoustic source that has a narrowband power spectrum. That is, the PSD G pn(w) of the signal at
each array h = 1,..., H is nonzero only in a narrow band of frequencies wy — (Aw/2) < w < wy + (Aw/2). If the
bandwidth Aw is chosen small enough so that the w—dependent quantities in (15) are well approximated by their
value at wp, then the narrowband approximation to the FIM (15) is

Jij ~ TAW tr { 8Gz(w0) 1 8 Gz(wO)

a0, Gz(wO) 8793 Gz(wo)l} . (16)

Ws

The quantity % multiplying the FIM in (16) is the time-bandwidth product of the observations. In narrowband
array processing, the T' time samples per sensor are often segmented into M blocks containing T'/M samples each.
Then the discrete Fourier transform (DFT) is applied to each block, and the complex coefficients at frequency wy (at

each sensor) are used to form M array “snapshots”. In this case, the quantity TAw 5 approximately equal to M.

ws

4. THRESHOLD COHERENCE FOR TIME DELAY ESTIMATION

In this section, we present a model for partial signal coherence in terms of an equivalent additive noise component,
which allows the fundamental bounds on time delay estimation'® to be extended to the case of partially coherent
signals. Bounds on time delay estimation are important because one of the suboptimum methods for distributed
processing with low communication bandwidth! requires time delay estimation between widely separated sensors.
The fundamental bounds'® are useful because they specify the required signal-to-noise ratio (SNR) such that the
CRB is attainable. That is, if the SNR is less than a threshold, then the CRB on source localization accuracy is an
optimistic and unattainable lower bound. We will show that for signals that are partially coherent when received at
the sensors, a threshold phenomenon occurs with respect to coherence. That is, the signal coherence must exceed
a threshold in order for the CRBs to be attainable. The existence of a threshold phenomenon for signal coherence
is a useful refinement of the CRB results,! since the CRBs® are formulated without regard for the conditions of
attainability.
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Figure 2. (a) Path of ground vehicle and array locations for measured data. (b) Mean power spectral density
(PSD) at arrays 1 and 3 estimated from measured data over the 10 second segment < in (b). Top panel is G5 11(f),
bottom panel is G 33(f). (¢) Mean spectral coherence 7, 13(f) between arrays 1 and 3 estimated over the 10 second
segment. (d) Mean spectral coherence for two sensors on array 1, with sensor spacing 8 feet.
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Figure 3. (a) Mean short-time spectral coherence between arrays 1 and 3 if Doppler is not compensated. (b) Radial

velocity and Doppler scaling factor « in (14) for source in Figure 2a with respect to each array.

The appendix presents a decomposition of partially coherent signals into a coherent component and an incoher-
ent additive noise component. Consider estimation of the time delay D in the model presented as (35),(36) and
(45),(46) in the appendix. Let us specialize to narrowband processing, with signal bandwidth Aw centered at wg and
observation time T' seconds. Further, we assume that the signal power is identical at each sensor, and we define the
following constants for notational simplicity:

Gsa1(wo) = Gs2(wo) = Gs,  Gu(wo) = Gu,  Vs,12(wo) = 7s- (17)

Then combining the formulation in the appendix with previously developed Ziv-Zakai bounds,'® we can show that
the following SNR expression characterizes the performance of time delay estimation with partially coherent signals:

5 -1
SNR(7,) = [ﬁ <1+ 7@3/1%)) - 11 | (18)

The threshold SNR for CRB attainability in the narrowband time delay estimation problem is'®

o o2y [ (Aw)2\T2
SNRthresh = W%T) (E) [(b 1 ( 24w? )] (19)

where ¢(y) = 1//2x fyoo exp(—t%/2) dt. Thus

SNR(’YS) 2 SNRthresh (20)

identifies the values of signal coherence 7, and signal/noise PSDs G5/G,, for CRB attainability. We can combine
(18) with (20) to obtain the condition for CRB attainability

G, 1
- > 21
: , (21)

2 . 1/2
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For a specific narrowband time delay estimation scenario, the threshold SNR for CRB attainability is given by (19),
and (22) provides a corresponding threshold coherence for CRB attainability.

Figure 4 contains plots of (21) and (22) for time delay estimation with signals in a band centered at wy = 2750
rad/sec using a time segment of duration 7" = 2 seconds. Note in Figure 4a that the threshold coherence value
is 0.9314 for G4/G,, — o0, and that larger coherence is required for finite values of G;/G,,. Figure 4b shows the
variation in threshold coherence as a function of signal bandwidth, Aw. Note that nearly perfect coherence is required
when the signal bandwidth is less than 5 Hz (or 10% fractional bandwidth). The threshold coherence drops sharply
for values of signal bandwidth greater than 10 Hz (20% fractional bandwidth). Thus for sufficiently wideband signals,
e.g., Aw > 2710 rad/sec, a certain amount of coherence loss can be tolerated while still allowing unambiguous time
delay estimation.

4.1. Examples

First we present an illustration based on processing the measured data for the source in Figure 2a. Figure 5 shows
results of cross-correlation processing of the data for a 2 second segment at time 342 seconds. Figure 5a is obtained
by cross-correlating the signals received at arrays 1 and 3, for which the coherence is appreciable only over a narrow
band near 39 Hz. A peak in the cross-correlation is not evident, which is expected based on the preceding analysis,
since nearly perfect coherence is needed for narrowband time delay estimation in this scenario. Figure 5b is obtained
by cross-correlating the signals received at two sensors on array 1, where the coherence is as shown in Figure 2d.
Due to the high signal coherence over a wide band, a peak is clearly evident in the cross-correlation.

Next we present an illustration based on measured data with a synthetically-generated, non-moving, wideband
acoustic source. The location of the source and two sensors (0 and 1) form a triangle as follows: the distance from the
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Figure 5. (a) Cross-correlation of signals at arrays 1 and 3 in Figure 2a for source at time 342 sec. (b) Cross-
correlation of signals at two sensors on array 1, separated by 8 feet.

source to sensors 0 and 1 is 233 feet and 329 feet, respectively, and the distance between sensors 0 and 1 is 233 feet.
The power spectral density (PSD) and coherence magnitude estimated from 1-second segments of data measured
at sensors 0 and 1 is shown in Figure 6a. The actual transmitted signal has a bandwidth of approximately 50 Hz
that is centered at 100 Hz. Note that the PSDs of the sensor signals do not have their maxima at 100 Hz due to
the acoustic propagation. However, the coherence magnitude is roughly 0.8 over a 50 Hz band centered at 100 Hz.
The threshold coherence is exceeded for this data set, so TDE between sensors 0 and 1 should be feasible. Figure 6b
shows the generalized cross-correlation with peak at zero lag, which is the correct location because the sensor data is
time-aligned. This example shows the feasibility of TDE with acoustic signals measured at widely-separated sensors,
provided that the SNR, fractional bandwidth, time-bandwidth product, and coherence are such that the thresholds
illustrated in Figure 4 are exceeded.

5. CONCLUDING REMARKS

Items of continuing work include the following. We are continuing to process measured data with moving ground
vehicles that exhibit coherence and bandwidth levels that exceed the thresholds presented in this paper. Our objective
is to demonstrate the improved source localization accuracy when TDEs between distributed arrays is processed with
the bearing estimates from individual arrays.

The model in this paper assumes that the source location is fixed over the observation time. We are investigating
models for the source motion that will improve the accuracy of source localization, Doppler correction, and tracking.
Also, we are investigating extensions to the case of tracking multiple moving sources.

APPENDIX A. EQUIVALENT ADDITIVE NOISE MODEL FOR COHERENCE

The formulation in this appendix begins with Gaussian random variables for simplicity, and then the formulation is
extended to Gaussian random processes.

Let X and Y be two complex, circular, Gaussian random variables with zero mean and

B{X*} = 0%, E{|[Y|*} = 0%, E{XY"*} = poxoy. (23)
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Figure 6. (a) Power spectral density (PSD) and coherence for synthetically-generated wideband source located 233
feet from sensors 0 and 1. (b) Generalized cross-correlation of 1-second segment from one sensor with 10-second
segment from other sensor, with time-alignment so the peak is ideally at zero lag.

Then X and Y can be expressed as

- %O—YSHVQ, (25)

where S, Ny, Ny are independent, zero mean, complex, circular Gaussian random variables with

E{|S]?} = lp| (26)
E{[N1[*} = ox (1-1p]) (27)
E{|N2[*} = 0% (1= |ol). (28)

The relations in (23) can be verified using (24)-(28). Note that for X, the “coherent” part ox S has variance |p|o%,
while the “incoherent” part Ny has variance (1 — |p|) 0%. As |p| decreases, a larger portion of 0% is applied to Ny,
so the incoherent noise gets stronger.

Suppose that X and Y described by (23) are observed in noise,

Z1 = X4+Wi=0xS+N+W; (29)
Zy = Y+W1:|%|OYS+N2+W2, (30)

where Wi and Ws are independent, zero mean, complex, circular Gaussian random variables with variance O’IQ/V, and
W1, Wy are independent of X,Y (and therefore S, N1, Nao). If we define the SNR of Z; and Z5 based only on the
coherent signal component, then

2
SNRl —_ > |p| Ox - g |p| (31)
ow + A =lpl)ox e 4 (1)

9%




2
g
SNRy = — +|(p1|_Y| e ) . (32)
R O L -

Some observations about (31) and (32) follow.

1. SNR; and SNR; increase monotonically as |p| increases.

2. SNR; (SNRy2) increases monotonically as 0% (0%) increases, and for fixed |p| is bounded by

. L el
U%l(lgloo SNR, = 0%15100 SNRy = T (33)

Thus a loud source (large 0%, 0% ) has larger coherent SNR, i.e., increasing 0%, 0% cannot reduce the coherent
SNR, but the limit (33) cannot be exceeded for a given |p|.

3. If a particular coherent SNR is desired, then (33) implies a threshold coherence magnitude |p| that is required

to achieve that SNR, given by
SNR

>
Pl = s R

Note that for large coherent SNR, nearly perfect coherence |p| s 1 is required.

(34)

The analysis extends to complex Gaussian random processes as follows. Consider a time delay estimation problem
with two sensors and noisy observations of the form in (8),

z(t) = sit) +wi(?) (35)
22(t) = s2(t — D)+ wa(t), (36)
where wy (t), w2 (t) are additive, white, Gaussian noise (AWGN) processes, s1(t), s2(t) are partially coherent Gaussian

random processes, and D is the time delay. The AWGN processes w (t), w2(t) have properties as in (9) with power
spectral density (PSD) G, (w), and the signals s1(t), s2(t) are characterized by the cross-spectral density matrix

[ s1(t) } . Gann(w) Ys12(w) (G (@)Ca () 37
s2(1) Yo12(w)* (Ga1(w)Gaa(w))"? Gon(w) '
Then analogous to (24), (25), s1(t) and s2(t) can be represented as
s1(t) = hi(t) x s(t) + na(t) (38)
sa(t) = ha(t) * s(t) + na(t) (39)

where s(t),n1(t),n2(t) are independent, zero mean, circular, complex Gaussian random processes, * denotes convo-
lution, and

H1 (w) = Gq711(w)1/2 (40)
W) = ¥s,12(w)” W) /2

HQ( ) |’}/g,12(LU)|GS722( ) (41)

Gsw) = [rs12(w)] (42)

Gilw) = Giu(w) [l —[rs12(w)l] (43)

Ga(w) = GszWw)[l—|ys12()l]. (44)

Gs(w),G1(w), G2(w) are the PSDs of s(t),n1(t), n2(t), and Hy(w), Hz2(w) are the frequency responses corresponding
to hi(t), ha(t) that model the deterministic “channels” from source to sensors. Then (38),(39) can be inserted into
(35),(36),

a() = (hxs)(0) +m(t) +wn () (45)
2(t) = (ho*8)(t — D)+ na(t) + wa(t), (46)



which fits the standard model for time delay estimation of coherent signals observed through linear filters in AWGN.2!
The partial signal coherence s 12(w) between s1(t), s2(t) in (35),(36) is equivalently modeled by the filtered coherent
signals (hy * s), (ha % s) and the excess additive noise ny(t), na(t).
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