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ABSTRACT

This paper presents issues and algorithms for the problem of source tracking with a network of aeroacoustic
sensors. We study fusion of data from sensors that are widely separated, and we give particular attention
to the important issues of limited communication bandwidth between sensor nodes, effects of source motion,
coherence loss between signals measured at different sensors, signal bandwidth, and noise. We compare the
tracking performance of various schemes, including joint (coherent) processing of all sensor data, as well as data-
reduction schemes that employ distributed computation and reduced communication bandwidth with a fusion
center. The key result of our analysis is a quantification of the potential gain in source tracking accuracy that
is achievable with greater communication bandwidth and joint processing of sensor data. We show that the
potential gain in accuracy depends critically on the scenario, as determined by the source motion parameters,
signal coherence between sensors, bandwidth of the source signals, and noise level. For scenarios that admit
increased accuracy with joint processing, we present a bandwidth-efficient algorithm that involves beamforming
at small-aperture sensor arrays combined with time-delay estimation between widely-spaced sensor arrays.

Keywords: Aeroacoustic sensor arrays, source localization and tracking, imperfect spatial coherence, decen-
tralized signal processing, data compression and fusion.

1. INTRODUCTION

We are concerned with tracking moving sources using a network of aeroacoustic sensors. We assume that the
sensors are placed in an “array of arrays” configuration containing several small-aperture arrays distributed
over a wide area. Each array contains local processing capability and a communication link with a fusion
center. A standard approach for estimating the source locations involves bearing estimation at the individual
arrays, communication of the bearings to the fusion center, and processing of the bearing estimates at the
fusion center with a tracking algorithm.1–5 This approach is characterized by low communication bandwidth
and low complexity, but the localization accuracy may be inferior to the optimal solution in which the fusion
center jointly processes all of the sensor data. The optimal solution requires high communication bandwidth
and high processing complexity. The amount of improvement in localization accuracy that is enabled by greater
communication bandwidth and processing complexity is dependent on the scenario, which we characterize in
terms of the source motion parameters, the power spectra (and bandwidth) of the signals and noise in the sensor
data, the coherence between the source signals received at widely separated sensors, and the observation time
(amount of data). We present a framework in this paper to identify scenarios that have the potential for improved
localization accuracy relative to the standard bearings-only tracking method. We propose an algorithm that is
bandwidth-efficient and nearly optimal that uses beamforming at small-aperture sensor arrays and time-delay
estimation between widely-separated sensors.

The sensor signals are modeled as Gaussian random processes, which allows deterministic as well as random
propagation effects to be included. Our previous work6, 7 considered a single source with fixed position (no
motion). We extend the analysis in this paper to moving sources that follow a parametric motion model.

This paper is organized as follows. The sensor data model is presented in Section 2 for the case of a non-
moving source. Results on time-delay estimation with partially-coherent signals are presented in Section 3, which
summarizes and extends our previous work.7 The sensor data model is extended to moving sources in Section 4.
An algorithm is outlined in Section 5, and concluding remarks are given in Section 6.
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Figure 1. Geometry of non-moving source location and an array of arrays. A communication link is available between

each array and the fusion center.

2. DATA MODEL FOR A NON-MOVING SOURCE
A model is formulated in this section for the discrete-time signals received by the sensors in an array of arrays.
To begin, suppose a single non-moving source is located at coordinates (xs, ys) in the (x, y) plane, and consider
H arrays that are distributed in the same plane, as illustrated in Figure 1. Each array h ∈ {1, . . . , H} contains
Nh sensors and has a reference sensor located at coordinates (xh, yh). The location of sensor n ∈ {1, . . . , Nh} is
at (xh + ∆xhn, yh + ∆yhn), where (∆xhn, ∆yhn) is the relative location with respect to the reference sensor. If
c is the speed of propagation, then the propagation time from the source to the reference sensor on array h is

τh =
dh

c
=

1
c

[
(xs − xh)2 + (ys − yh)2

]1/2
, (1)

where dh is the distance from the source to array h. We model the wavefronts over individual array apertures
as perfectly coherent plane waves. Then in the far-field approximation, the propagation time from the source to
sensor n on array h is expressed by τh + τhn, where

τhn ≈ −1
c

[
xs − xh

dh
∆xhn +

ys − yh

dh
∆yhn

]
= −1

c
[(cosφh)∆xhn + (sin φh)∆yhn] (2)

is the propagation time from the reference sensor on array h to sensor n on array h, and φh is the bearing of the
source with respect to array h. Note that while the far-field approximation (2) is reasonable over individual array
apertures, the wavefront curvature that is inherent in (1) must be retained in order to model wide separations
between arrays.

The time signal received at sensor n on array h due to the source will be represented as sh(t−τh−τhn), where
the vector of signals s(t) = [s1(t), . . . , sH(t)]T received at the H arrays are modeled as real-valued, continuous-
time, zero-mean, jointly wide-sense stationary, Gaussian random processes with −∞ < t < ∞. These processes
are fully specified by the H × H cross-correlation function matrix

Rs(τ) = E{s(t + τ) s(t)T }, (3)

where E denotes expectation, superscript T denotes transpose, and we will later use the notation superscript ∗
and superscript H to denote complex conjugate and conjugate transpose, respectively. The (g, h) element in (3)
is the cross-correlation function

rs,gh(τ) = E{sg(t + τ) sh(t)} (4)

between the signals received at arrays g and h. The correlation functions (3) and (4) are equivalently characterized
by their Fourier transforms, which are the cross-spectral density functions

Gs,gh(ω) = F{rs,gh(τ)} =
∫ ∞

−∞
rs,gh(τ) exp(−jωτ) dτ (5)



and the associated cross-spectral density matrix

Gs(ω) = F{Rs(τ)}. (6)

The diagonal elements Gs,hh(ω) of (6) are the power spectral density (PSD) functions of the signals sh(t), and
hence they describe the distribution of average signal power with frequency. The model allows the PSD to vary
from one array to another to reflect propagation differences and source aspect angle differences.

The off-diagonal elements of (6), Gs,gh(ω), are the cross-spectral density (CSD) functions for the signals sg(t)
and sh(t) received at distinct arrays g �= h. In general, the CSD functions have the form

Gs,gh(ω) = γs,gh(ω) [Gs,gg(ω)Gs,hh(ω)]1/2
, (7)

where γs,gh(ω) is the spectral coherence function for the signals, which has the property 0 ≤ |γs,gh(ω)| ≤ 1.
Coherence magnitude |γs,gh(ω)| = 1 corresponds to perfect correlation between the signals at sensors g and h,
while the partially coherent case |γs,gh(ω)| < 1 models random effects in the propagation paths from the source
to sensors g and h. Note that our assumption of perfect spatial coherence across individual arrays implies that
the random propagation effects have negligible impact on the intra-array delays τhn in (2) and the bearings
φ1, . . . φH .

The signal received at sensor n on array h is modeled as a sum of the delayed source signal and noise,

zhn(t) = sh(t − τh − τhn) + whn(t), (8)

where the noise signals whn(t) are modeled as real-valued, continuous-time, zero-mean, jointly wide-sense sta-
tionary, Gaussian random processes that are mutually uncorrelated at distinct sensors, and are uncorrelated
from the signals. That is, the noise correlation properties are

E{wgm(t + τ)whn(t)} = rw(τ) δghδmn (9)
E{wgm(t + τ)sh(t)} = 0, (10)

where rw(τ) is the noise autocorrelation function, and the noise PSD is Gw(ω) = F{rw(τ)}. We then collect the
observations at each array h into Nh × 1 vectors zh(t) = [zh1(t), . . . , zh,Nh

(t)]T for h = 1, . . . , H, and we further
collect the observations from the H arrays into a (N1 + · · · + NH) × 1 vector

Z(t) =




z1(t)
...

zH(t)


 . (11)

The elements of Z(t) in (11) are zero-mean, jointly wide-sense stationary, Gaussian random processes. We can
express the CSD matrix of Z(t) in a convenient form with the following definitions. The array manifold for array
h at frequency ω is

ah(ω) =




exp(−jωτh1)
...

exp(−jωτh,Nh
)


 =




exp
[
j ω

c ((cos φh)∆xh1 + (sin φh)∆yh1)
]

...
exp

[
j ω

c ((cosφh)∆xh,Nh
+ (sin φh)∆yh,Nh

)
]

 , (12)

using τhn from (2) and assuming that the sensors have omnidirectional response to sources in the plane of the
array. Let us define the relative time delay of the signal at arrays g and h as

Dgh = τg − τh, (13)

where τh is defined in (1). Then the cross-spectral density matrix of Z(t) in (11) has the form

GZ(ω) = (14)






a1(ω)a1(ω)HGs,11(ω) · · · a1(ω)aH(ω)H exp(−jωD1H)Gs,1H(ω)
...

. . .
...

aH(ω)a1(ω)H exp(+jωD1H)Gs,1H(ω)∗ · · · aH(ω)aH(ω)HGs,HH(ω)


+ Gw(ω)I.

The source CSD functions Gs,gh(ω) in (14) can be expressed in terms of the signal spectral coherence γs,gh(ω)
using (7). Note that (14) depends on the source location parameters (xs, ys) through the bearings φh in ah(ω)
and the pairwise time-delay differences Dgh.

2.1. Cramér-Rao Bound (CRB)

The Cramér-Rao bound (CRB) provides a lower bound on the variance of any unbiased estimator. The problem
of interest is estimation of the source location parameter vector Θ = [xs, ys]T using T samples of the sensor
signals Z(0),Z(Ts), . . . ,Z((T −1) ·Ts), where Ts is the sampling period. The total observation time is T = T ·Ts.
Let us denote the sampling rate by fs = 1/Ts and ωs = 2πfs. We will assume that the continuous-time random
processes Z(t) are band-limited, and that the sampling rate fs is greater than twice the bandwidth of the
processes. Then Friedlander8, 9 has shown that the Fisher information matrix (FIM) J for the parameters Θ
based on the samples Z(0),Z(Ts), . . . ,Z((T − 1) · Ts) has elements

Jij =
T
4π

∫ ωs

0

tr
{

∂ GZ(ω)
∂ θi

GZ(ω)−1 ∂ GZ(ω)
∂ θj

GZ(ω)−1

}
dω, i, j = 1, 2, (15)

where “tr” denotes the trace of the matrix. The CRB matrix C = J−1 then has the property that the covariance
matrix of any unbiased estimator Θ̂ satisfies Cov(Θ̂) − C ≥ 0, where ≥ 0 means that Cov(Θ̂) − C is positive
semidefinite.10 Equation (15) provides a convenient way to compute the FIM for the array of arrays model as a
function of the signal coherence between distributed arrays, the signal and noise bandwidth and power spectra,
and the sensor placement geometry. The CRB is evaluated for various scenarios in our previous works.6, 7

3. TIME-DELAY ESTIMATION (TDE)

Let us parameterize the model in (14) by the bearings φh and the time-delay differences Dgh. Then we must
address the issue of time-delay estimation with signals that are partially coherent when |γs,gh| < 1. We consider
this problem first for the case of H = 2 sensors, as illustrated in Figure 2a with the differential time delay defined
as D = D21. It follows from (14) that the CSD matrix of the sensor data in Figure 2a is

CSD
[

z1(t)
z2(t)

]
= GZ(ω) = (16)[

Gs,11(ω) + Gw(ω) e+jωDγs,12(ω) [Gs,11(ω)Gs,22(ω)]1/2

e−jωDγs,12(ω)∗ [Gs,11(ω)Gs,22(ω)]1/2
Gs,22(ω) + Gw(ω)

]
.

The signal coherence function γs,12(ω) describes the degree of correlation that remains in the signal emitted by
the source at each frequency ω after propagating to sensors 1 and 2. Next, we develop an SNR-like expression
for the two-sensor case that appears in all subsequent expressions for fundamental limits on TD and Doppler
estimation. We begin with the magnitude-squared coherence11 (MSC) of the observed signals z1(t), z2(t) as a
function of the signal coherence magnitude, |γs,12(ω)|, and other spectral density parameters:

MSCz (|γs,12(ω)|) =
|CSD[z1(t), z2(t)]|2

PSD[z1(t)] · PSD[z2(t)]
=

|γs,12(ω)|2 Gs,11(ω)Gs,22(ω)
[Gs,11(ω) + Gw(ω)] [Gs,22(ω) + Gw(ω)]

=
|γs,12(ω)|2[

1 +
(

Gs,11(ω)
Gw(ω)

)−1
] [

1 +
(

Gs,22(ω)
Gw(ω)

)−1
] ≤ 1 (17)



Then the following “SNR” expression appears in subsequent performance bounds:

SNR (|γs,12(ω)|) =
MSCz (|γs,12(ω)|)

1 − MSCz (|γs,12(ω)|) (18)

=

{
1

|γs,12(ω)|2

[
1 +

(
Gs,11(ω)
Gw(ω)

)−1
][

1 +
(

Gs,22(ω)
Gw(ω)

)−1
]
− 1

}−1

(19)

≤ |γs,12(ω)|2

1 − |γs,12(ω)|2
. (20)

The inequality (20) shows that signal coherence loss (|γs,12(ω)| < 1) severely limits the “SNR” quantity that
characterizes performance, even if the SNR per sensor Gs,ii(ω)/Gw(ω) is very large.

In this section, we summarize and further study performance bounds on time-delay estimation (TDE) with
partially coherent signals that were originally presented in our earlier work.7 We can use (16) in (15) to find
the CRB for TDE with H = 2 sensors, yielding

CRB(D) =
4π

T

[∫ ωs

0

ω2 SNR (|γs,12(ω)|) dω

]−1

, (21)

where T is the total observation time of the sensor data and SNR (|γs,12(ω)|) is defined in (19). Let us consider
the case in which the signal PSDs, the noise PSD, and the coherence are flat (constant) over a bandwidth ∆ω
rad/sec centered at ω0 rad/sec. If we omit the frequency dependence of Gs,11, Gs,22, Gw, and γs,12, then the
integral in (21) may be evaluated to yield the following CRB expression:

CRB(D) =
1

2ω2
0

(
∆ω T

2π

) [
1 + 1

12

(
∆ω
ω0

)2
]

SNR (|γs,12|)
(22)

=
1

2ω2
0

(
∆ω T

2π

) [
1 + 1

12

(
∆ω
ω0

)2
]
{

1

|γs,12|2

[
1 +

(
Gs,11

Gw

)−1
] [

1 +
(

Gs,22

Gw

)−1
]
− 1

}
(23)

>
1

2ω2
0

(
∆ω T

2π

) [
1 + 1

12

(
∆ω
ω0

)2
] [ 1

|γs,12|2
− 1
]

. (24)

The quantity
(

∆ω·T
2π

)
is the time-bandwidth product of the observations,

(
∆ω
ω0

)
is the fractional bandwidth of

the signal, and Gs,hh/Gw is the SNR at sensor h. Note from the high-SNR limit in (24) that when the signals
are partially coherent |γs,12| < 1, increased source power does not reduce the CRB. Improved TDE accuracy is
obtained with partially coherent signals by increasing the observation time T or changing the spectral support of
the signal, which is [ω0−∆ω/2, ω0+∆ω/2]. The spectral support of the signal is not controllable in passive TDE
applications, so increased observation time is the only means for improving the TDE accuracy with partially
coherent signals. Source motion becomes more important during long observation times, and in Section 4 we
extend the model to include source motion.

The CRB in (23) agrees with known results for perfectly coherent signals11 and with results from the medical
ultrasound literature12, 13 for partially correlated speckle signals. The medical ultrasound application is distin-
guished from the aeroacoustic tracking of ground vehicles in that the former is typically an active system while
the latter is passive. The medical ultrasound application therefore allows much more control over the SNR and
bandwidth of the signals. In passive aeroacoustics, the received signals are emitted by a vehicle and are not
controllable for the purposes of TD estimation.

With perfectly coherent signals, it is well-known that the CRB on TDE is achievable only when the SNR
expression in (19) (with |γs,12(ω)| = 1) exceeds a threshold.14, 15 Next we show that for TDE with partially



coherent signals, a similar threshold phenomenon occurs with respect to coherence. That is, the coherence must
exceed a threshold in order to achieve the CRB (21) on TDE. We state the threshold coherence formula for the
following simplified scenario. The signal and noise spectra are flat over a bandwidth of ∆ω rad/sec centered at
ω0 rad/sec, and the observation time is T seconds. Further, assume that the signal PSDs are identical at each
sensor, and define the following constants for notational simplicity:

Gs,11(ω0) = Gs,22(ω0) = Gs, Gw(ω0) = Gw, and γs,12(ω0) = γs. (25)

Then the SNR expression in (19) has the form

SNR(|γs|) =

[
1

|γs|2

(
1 +

1
(Gs/Gw)

)2

− 1

]−1

. (26)

The Ziv-Zakai bound developed by Weiss and Weinstein14, 15 shows that the threshold SNR for CRB attainability
is a function of the time-bandwidth product

(
∆ω·T

2π

)
and the fractional bandwidth

(
∆ω
ω0

)
,

SNRthresh =
6

π2
(

∆ωT
2π

) ( ω0

∆ω

)2
[
ϕ−1

(
1
24

(
∆ω

ω0

)2
)]2

(27)

where ϕ(y) = 1/
√

2π
∫∞

y
exp(−t2/2) dt. It follows that the threshold coherence value is

|γs|2 ≥

(
1 + 1

(Gs/Gw)

)2

1 + 1
SNRthresh

, so |γs|2 ≥ 1
1 + 1

SNRthresh

as
Gs

Gw
→ ∞. (28)

For a specific TDE scenario, the threshold SNR for CRB attainability is given by (27), and (28) provides a
corresponding threshold coherence. Since |γs|2 ≤ 1, (28) is useful only if Gs/Gw > SNRthresh.

Figures 2b, c, and d contain plots of the threshold coherence in (28) as a function of the time-bandwidth
product

(
∆ω·T

2π

)
, SNR Gs

Gw
, and fractional bandwidth

(
∆ω
ω0

)
. Note that Gs

Gw
= 10 dB is nearly equivalent to

Gs

Gw
→ ∞. We note that very large time-bandwidth product is required to overcome coherence loss when the

fractional bandwidth is small at 0.1. The variation of threshold coherence with fractional bandwidth is illustrated
in Figure 2e. For a fixed threshold coherence value, such as 0.7, each doubling of the fractional bandwidth reduces
the required time-bandwidth product by about a factor of 10. We have presented computer simulation examples
elsewhere16 that verify the CRB and threshold coherence analysis for TDE.

Let us examine a narrowband signal scenario that is typical in aeroacoustics, with center frequency fo =
ωo/(2π) = 50 Hz and bandwidth ∆f = ∆ω/(2π) = 5 Hz, so the fractional bandwidth is ∆f/fo = 0.1. From
Figure 2b, coherence |γs| = 0.8 requires time-bandwidth product ∆f · T > 200, so the necessary time duration
T = 40 sec for TDE may be impractical for moving sources.

Larger time-bandwidth products of the observed signals are required in order to make TDE feasible in
environments with signal coherence loss. As discussed with respect to the CRB, only the observation time is
controllable in passive applications, thus leading us to consider source motion models in Section 4 for use during
long observation intervals.

We can extend the analysis of the H = 2 sensor case to TDE with H > 2 sensors following the approach
of Weinstein,17 leading to the conclusion that pairwise TDE is essentially optimum for cases of interest with
reasonable signal coherence between sensors. By pairwise TDE we mean that one sensor, say H , is identified as
the reference, and only the H − 1 time differences D1H , D2H , . . . , DH−1,H are estimated. Under the conditions
described below, these H−1 estimates are nearly as accurate for source localization as forming all pairs of TDEs
Dgh for all g < h. Weinstein’s analysis17 is valid for moving as well as non-moving sources.

Extending (25) and (26) to H > 2 sensors, let us assume equal Gs,hh/Gw at all sensors h = 1, . . . , H and
equal coherence γs between all sensor pairs, so that the SNR(|γs|) in (26) is equal for all sensor pairs. Then
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Figure 2. (a) Time-delay estimation (TDE) problem for a non-moving source with H = 2 sensors. (b)–(e): Threshold

coherence value from (28) versus time-bandwidth product
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∆ω·T
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)
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(b) 0.1, (c) 0.5, and (d) 1.0. In (e), the high SNR curves Gs/Gw → ∞ are superimposed for several values of fractional

bandwidth.



as long as H · SNR(|γs|) 
 1, we can show that forming all TDE pairs Dgh potentially improves the source
localization variance relative to pairwise processing by the factor

V =
H
(
1 + 2 · γs

1−γs

)
2
(
1 + H · γs

1−γs

) . (29)

Clearly V → 1 as γs → 1, and V < (3H)/[2(1 + H)] < 1.5 for γs > 0.5. Therefore the potential accuracy gain
from processing all sensor pairs is negligible when the coherence exceeds the threshold values that are typically
required for TDE.

This result suggests strategies with moderate communication bandwidth that potentially achieve nearly
optimum localization performance. The reference sensor, H , sends its raw data to all other sensors. Those
sensors h = 1, . . . , H −1, locally estimate the time differences D1,H , . . . , DH−1,H , and these estimates are passed
to the fusion center for localization processing with the bearing estimates φ1, . . . , φH . A modified scheme with
more communication bandwidth but more centralized processing is for all H sensors to communicate their data
to the fusion center, with TDE performed at the fusion center.

4. DATA MODEL FOR A MOVING SOURCE

Our objective in this paper is to quantify scenarios in which jointly processing data from widely-spaced sensors
has the potential for improved source localization accuracy, compared with incoherent triangulation/tracking of
bearing estimates. We established in Section 2 that the potential for improved accuracy depends directly on
TDE between the sensors. Then we showed in Section 3 that TDE with partially-coherent signals is feasible
only with an increased time-bandwidth product of the sensor signals. This leads to a constraint on the minimum
observation time, T , in passive applications where the signal bandwidth is fixed. If the source is moving, then
approximating it as non-moving becomes poorer as T increases, so modeling the source motion becomes more
important.

Approximate bounds are known18, 19 that specify conditions of validity for non-moving and moving source
models. Let us consider H = 2 sensors with Doppler values α2 > α1 (see (43) for the definitions of α1, α2). If
fmax (Hz) is the maximum signal frequency that is processed, then TDE estimation accuracy is not seriously
affected by ignoring source motion, as long as the time interval T satisfies

T � 1

fmax

(
α2
α1

− 1
) . (30)

Taking typical parameters for ground vehicles in aeroacoustics, let us consider a vehicle moving at 5% the speed
of sound (15 m/sec), with radial motion that is in opposite directions at the two sensors. Then α2/α1 − 1 ≈ 0.1
and (30) becomes T � 10/fmax. For fmax = 100 Hz, the requirement is T � 0.1 sec, which according to the
analysis in Section 2 yields insufficient time-bandwidth product for partially coherent signals that are typically
encountered. Thus motion modeling and Doppler compensation are critical, even for aeroacoustic sources that
move more slowly than in this example.

In this section, we extend the non-moving source model from Section 2 using first-order motion models (see
(31),(32),(46)). The first-order motion models are simple and accurate over larger time intervals T compared
with the non-moving source model. However, accurate modeling of more complex trajectories over longer time
intervals requires higher-order polynomial models, with added complexity. The source position trajectory is
modeled as a straight line with constant velocity over an interval of length T ,

xs(t) = xs,0 + ẋs · (t − t0), t0 ≤ t ≤ t0 + T (31)
ys(t) = ys,0 + ẏs · (t − t0), (32)

so ẋs, ẏs are the velocity components. The source trajectory parameter vector is

Θ = [xs,0, ẋs, ys,0, ẏs]T , (33)



and the (time-varying) propagation time from the source to the sensors on array h follows from (1) and (2):

τh(t) =
dh(t)

c
=

1
c

[
(xs(t) − xh)2 + (ys(t) − yh)2

]1/2
(34)

τhn(t) ≈ −1
c

[
xs(t) − xh

dh(t)
∆xhn +

ys(t) − yh

dh(t)
∆yhn

]
= −1

c
[(cosφh(t))∆xhn + (sin φh(t))∆yhn] . (35)

The bearing and bearing rate are related to the source motion parameters Θ as

φh(t) = tan−1

[
ys(t) − yh

xs(t) − xh

]
= tan−1

[
ys,0 + ẏs · (t − t0) − yh

xs,0 + ẋs · (t − t0) − xh

]
(36)

φ̇h(t) =
ẏs cosφh(t) − ẋs sin φh(t)

dh(t)
. (37)

The radial velocity of the source with respect to array h is

vr,h(t) = ẋs cosφh(t) + ẏs sin φh(t). (38)

We can insert (31) and (32) into (34) to obtain the following approximation for the propagation time to array h:

τh(t) = τh(t0)
[
1 +

2 · cosφh(t0) · ẋs · (t − t0)
dh(t0)

+
2 · sin φh(t0) · ẏs · (t − t0)

dh(t0)

]1/2

(39)

≈ τh(t0) +
vr,h(t0)

c
· (t − t0), (40)

where dh(t0) and vr,h(t0) are the source distance and radial velocity at the start of time interval t = t0. The
approximation (40) is valid as long as the total motion during the time interval T is much less than the range,
i.e., |2 ẋsT | � dh(t0) and |2 ẏsT | � dh(t0).

Next we use the approximation (40) and model the received signal at the reference sensor on array h as

sh (t − τh(t)) = sh

[(
1 − vr,h(t0)

c

)
t − τh(t0) +

vr,h(t0) t0
c

]
(41)

= sh

(
αh t − τh(t0) +

vr,h(t0) t0
c

)
, t0 ≤ t ≤ t0 + T , (42)

where

αh = 1 − vr,h(t0)
c

= 1 − 1
c

[ẋs cosφh(t0) + ẏs sin φh(t0)] (43)

is the Doppler compression and

τh(t0) =
dh(t0)

c
=

1
c

[
(xs,0 − xh)2 + (ys,0 − yh)2

]1/2
(44)

is the propagation delay at the initial time t = t0. Without loss of generality, we set t0 = 0, so the received
signal at sensor n on array h is

sh (αh t − τh(0) − τhn(t)) , (45)

which is the extension of the signal component of (8) to the moving source case. Note from (2) that τhn(t)
depends on the source location only through the time-varying bearing φh(t), which we approximate with a
first-order model

φh(t) ≈ φh(t0) + φ̇(t0) · (t − t0), t0 ≤ t ≤ t0 + T . (46)

For a single array h, the Doppler compression αh and time delay τh(t0) have negligible effect on estimation of the
the intra-array delays τhn(t), since αh and τh(t0) are identical for each n = 1, . . . , Nh. Thus each array can be
processed separately to estimate the bearings φ1(t0), . . . , φH(t0) and bearing rates φ̇1(t0), . . . , φ̇H(t0), and these



can be “triangulated” via (36) and (37) to estimate the source motion parameters Θ in (33). An algorithm20

for estimating φh(t0) and φ̇h(t0) is described in Section 5.

Let us consider the signals received at the reference sensors at each array, so τhn(t) = 0 in (45):

s1

[(
1 − vr,1(t0)

c

)
t − τ1(t0)

]
, . . . , sH

[(
1 − vr,H(t0)

c

)
t − τH(t0)

]
. (47)

Our modeling assumptions imply that each signal sh

[(
1 − vr,h(t0)

c

)
t − τh(t0)

]
is a wide-sense stationary Gaus-

sian random process. However, for two arrays g, h with unequal Doppler vr,g(t0) �= vr,h(t0), the signals at arrays
g, h are not jointly wide-sense stationary,18, 21 complicating the analytical description and the CRB performance
analysis. The jointly nonstationary sensor signals generally are not characterized by a cross-spectral density ma-
trix, so the CRB is not the inverse of a FIM of the form (15). An approximate CRB analysis for TDE with
jointly nonstationary signals as in (47) was derived by Knapp and Carter.18 The CRB analysis was rigorously
justified by Schultheiss and Weinstein,21 and they extended the results to CRBs on differential Doppler. A
clever transformation is used so that the jointly nonstationary signals in (47) are locally modeled by a CSD of
the form (14), and Schultheiss and Weinstein show21 that the representation is accurate for CRB analysis.

Formulating the results of Schulthiess and Weinstein21 for the case of partially coherent signals∗, we make
the following observations for H = 2 arrays. The results are valid for large observation time (T much larger than
the coherence time of the signals and noise). The TDE is D12 = τ1(t0) − τ2(t0) and the differential Doppler is
∆v12 = vr,1(t0) − vr,2(t0).

• Estimation of TDE and differential Doppler are decoupled, so the CRB on D12 is given by (21), which is
identical to the non-moving source case.

• The threshold coherence analysis for TDE in (28) and Figure 2 extends to the moving source case. In the
best case that Doppler effects are perfectly estimated and compensated, the TDE problem that remains is
identical to the non-moving source case. Doppler estimation is less demanding in terms of time-bandwidth
product compared with TDE. Indeed, Doppler estimation is possible with sinusoidal signals that have
negligible bandwidth.21

The CRB on differential Doppler,21 modified for partially-coherent signals, is

CRB(∆v12) =
24π

T
( c

T
)2
[
2
∫ ωs

0

ω2 SNR (|γs,12(ω)|) dω

]−1

. (48)

Note that (48) is a scalar multiple of the CRB on TDE in (21). The CRB on differential Doppler may be
achievable in scenarios where the time-bandwidth product is insufficient for TDE.

Interestingly, differential Doppler provides sufficient information for source localization, even without TDE,
as long as five or more sensors are available.21 Thus the source motion may be exploited in scenarios where
TDE is not feasible, such as narrowband signals.

• We discussed TDE with H > 2 sensors in Section 2, concluding that pairwise processing of TDEs
D1H , . . . , DH−1,H with a reference sensor H is nearly optimum for scenarios of interest (see (29)). A simi-
lar result holds for differential Doppler estimation,21 where pairwise estimation of ∆v1H , . . . , ∆vH−1,H is
nearly as accurate as estimation of all pairs ∆vgh, as long as H · SNR(|γs|) 
 1.

5. AN ALGORITHM

The parameters that can be directly estimated from the sensor data are the bearings φ1(t0), . . ., φH(t0), bearing
rates φ̇1(t0), . . . , φ̇H(t0), pairwise time differences D1H = τ1(t0)− τH(t0), . . ., DH−1,H = τH−1(t0)− τH(t0), and
differential Doppler ∆v1H = vr,1(t0)−vr,H(t0), . . . , ∆vH−1,H = vr,H−1(t0)−vr,H(t0). Equations (36), (37), (43),

∗The signal coherence between the signals at arrays g and h in (47) is defined assuming perfect compensation of the
Doppler compression αg , αh, thus yielding the definition in (7).



(44) define the nonlinear relations that “triangulate” these parameters and relate them to the source motion
parameters Θ = [xs,0, ẋs, ys,0, ẏs]T .

A distributed processing algorithm is outlined below.

1. Use the local polynomial approximation (LPA) beamformer20 at each array to estimate the bearings and
bearing rates. The LPA beamformer in20 is formulated for narrowband processing, and it is a generalization
of the classical beamformer to moving sources. We extend it in a straightforward way to wideband signals
by incoherently averaging the LPA beampatterns at different frequencies.

2. Solve (36), (37) to obtain initial estimates of the source motion parameters Θ. These estimates correspond
to incoherent triangulation of the bearings and bearing rates from individual arrays.

3. Estimate the Doppler compression factors α1, . . . , αH , compensate for Doppler, and test whether the signals
at distinct arrays have sufficient coherence, fractional bandwidth, and time-bandwidth product to enable
TDE between arrays (see Section 2 for the conditions).

4. If the conditions are not met, then incoherent triangulation of the bearings and bearing rates is nearly
optimum, and further joint processing is not informative.

5. If the conditions are met, then identify a reference array H (the array with maximum SNR) and estimate the
time differences D1H , . . ., DH−1,H and differential Dopplers ∆v1H , . . ., ∆vH−1,H . The maximum likelihood
solution involves wideband ambiguity function search over Doppler and TDE,18 but computationally
simpler alternatives have been investigated.22

6. A suboptimum procedure is to avoid the joint Doppler and TDE estimation in the preceding step, and
instead use the initial Doppler estimates from steps 1 and 2 and perform TDE after approximate Doppler
compensation. With this approach, triangulation of the TDEs via (44) will improve the estimates of xs,0

and ys,0 only (and not the source velocity ẋs, ẏs).

7. If multiple sources are present, then the LPA beamformer in step 1 may be used to separate the source
signals at each array prior to Doppler/TDE estimation.

We have presented an example of the LPA beamformer in steps 1 and 7 for a two-source scenario based on mea-
sured aeroacoustic data elsewhere,16 and we have also presented examples of TDE with Doppler compensation
(step 5).7

6. CONCLUDING REMARKS

The potential gain in source localization accuracy when data from distributed arrays is processed jointly and
coherently is quantified by the CRBs presented in this paper. The amount of improvement and the feasibility of
achieving the improvement depend critically on the scenario, which is characterized by the coherence between
source signals arriving at distributed sensors, the signal bandwidth and spectrum shape (wideband vs. harmonic),
the observation time for coherent processing, the noise level, the source motion parameters (velocity, complexity
of maneuvers), and the number of sources. In feasible scenarios in which the time-bandwidth product is large
enough to enable TDE, we proposed an algorithm that requires moderate communication bandwidth between
sensors. The processing involves estimation of bearing and bearing rate at individual arrays, and estimation of
time delay and differential Doppler between pairs of arrays.
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