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Abstract

We present performance analysis for source localization when wideband aeroacoustic signals
are measured at multiple distributed sensor arrays. The acoustic wavefronts are modeled with
perfect spatial coherence over individual arrays and with frequency-selective coherence between
distinct arrays, thus allowing for random fluctuations due to the propagation medium when
the arrays are widely separated. The signals received by the sensors are modeled as wideband
Gaussian random processes, and we study the Cramer-Rao bound (CRB) on source localization
accuracy for varying levels of signal coherence between the arrays and for processing schemes
with different levels of complexity. When the wavefronts at distributed arrays exhibit partial co-
herence, we show that the source localization accuracy is significantly improved if the coherence
is exploited in the source localization processing. Further, we show that a distributed processing
scheme involving bearing estimation at the individual arrays and time-delay estimation between
pairs of sensors performs nearly as well as the optimum scheme that jointly processes the data
from all sensors. We discuss tradeoffs between source localization accuracy and the bandwidth
required to communicate data from the individual arrays to a central fusion center.

1 Introduction

Battlefield acoustical surveillance schemes typically deploy multiple microphone arrays over a geo-
graphical area in order to measure the sound from a source as it moves through the region. Unless
the arrays are spaced very far apart, several arrays will measure the source at any given time. Our
objective in this paper is to study the performance of various methods for fusing the data from dis-
tributed arrays in order to estimate the source location. In particular, we study source localization
performance as a function of the wavefront coherence observed at the distributed arrays, and also
with respect to the communication bandwidth required to transmit data from individual arrays to
a central fusion processor. Three methods are considered:

1. Each array estimates the source bearing and transmits the bearing estimate to the fusion
center. The fusion processor then triangulates the bearings to estimate the source location.
This approach does not exploit wavefront coherence between the distributed arrays, but it
does minimize the communication bandwidth required to transmit data from the arrays to
the fusion center.



2. The raw data from all sensors is jointly processed to estimate the source location. This is the
optimum approach and it fully utilizes the coherence between distributed arrays. However,
it requires a large communication bandwidth, since the data from all of the sensors must be
transmitted to the fusion center.

3. Combination of methods 1 and 2: The objective is to perform some processing at the indi-
vidual arrays to reduce the communication bandwidth requirement while still exploiting the
coherence between distributed arrays. Each array estimates the source bearing and transmits
the bearing estimate to the fusion center. In addition, the raw data from one sensor in each
array is transmitted to the fusion center. The fusion center then estimates the propagation
time delay between pairs of distributed arrays, and triangulates these time delay estimates
with the bearing estimates to localize the source.

We present results later showing that method 3 performs nearly as well as method 2, as long as
the signal-to-noise ratio (SNR) is not too low.

The performance analysis presented in this paper is based on the Cramer-Rao lower bound
(CRB) on the accuracy of any unbiased estimator of the source location. We model the signals
measured at the distributed sensor arrays as jointly Gaussian wideband random processes. The
model is very general, and it accounts for propagation effects between the source and the distributed
arrays, including frequency-selective spatial coherence and different signal power levels received at
each array. The spatial coherence of the wavefronts is modeled as being perfect over each individual
array but variable between distinct arrays. This idealization allows us to study the effect of varying
coherence between arrays on source localization accuracy. Physical modeling of frequency-selective
coherence is discussed in [13]. The power spectral density of the source is arbitrary, allowing a
range of cases to be modeled including narrowband sources and sums of harmonics, as well as
wideband sources with continuous power spectra. An interesting observation from the model is
that the source location is equivalently parameterized in terms of the bearings from the individual
arrays and the time delays between pairs of arrays.! This observation motivates our introduction
of a decentralized algorithm that first estimates the bearings and time delays, and then localizes
the source through a triangulation procedure.

Previous work on source localization with acoustical arrays has focused on angle of arrival esti-
mation with a single array [1, 2, 3, 4]. These works use the coherent wideband focusing approach
[5, 6] to combine correlation matrices from different narrowband frequency bins into a single corre-
lation matrix that admits subspace processing. The problem of imperfect spatial coherence in the
context of narrowband angle-of-arrival estimation with a single array has been studied in [7]-[10].
Pauraj and Kailath [7] presented a MUSIC algorithm that incorporates the nonideal spatial coher-
ence, assuming that the coherence variation is known. Gershman et al. [8] provided a procedure to
jointly estimate the spatial coherence loss and the angles of arrival. Song and Ritcey [9] provide
maximum-likelihood methods for estimating the parameters of a coherence model and the angles
of arrival, and Wilson [10] incorporates physical models for the spatial coherence. The problem
of decentralized array processing has been studied in [11] and [12]. Wax and Kailath [11] present
subspace algorithms for narrowband signals and distributed arrays, assuming perfect spatial coher-
ence across each array but neglecting the spatial coherence between arrays. Weinstein [12] presents
performance analysis for pairwise processing the wideband sensor signals from a single array and
shows negligible loss in localization accuracy when the SNR is high.

The paper is organized as follows. Section 2 describes our model for the wideband signals
observed by the distributed sensor arrays. Section 3 presents the CRBs on source localization

!The parameterization of source location in terms of bearings and time delays is true as long as the array geometry
and frequency band of the source satisfy certain uniqueness properties.
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Figure 1: Geometry of source location and H distributed sensor arrays. A communication link is
available between each array and the fusion center.

accuracy for processing methods with different communication bandwidth requirements between
arrays and the central fusion center. Section 4 contains examples of source localization performance
for specific scenarios, and Section 5 contains a brief discussion of our continuing work. A glossary
of mathematical symbols is included in the Appendix.

2 Data Model

A model is formulated in this section for the discrete-time signals received by the sensors in
distributed arrays. Consider a single source that is located at coordinates (zs,ys) in the (z,y)
plane. Then H arrays are distributed in the same plane, as illustrated in Figure 1. Each array
h € {1,...,H} contains N} sensors, and has a reference sensor located at coordinates (zp,yp). The
location of sensor n € {1,..., N} is at (z, + Axpp, Yn + Aynn), where (Azpy,, Aypy,) is the relative
location with respect to the reference sensor. If ¢ is the speed of propagation, then the propagation
time from the source to the reference sensor on array h is
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We will assume that the wavefronts are well approximated by plane waves over the aperture of
individual arrays. Then the propagation time from the source to sensor n on array h will be
expressed by 7, + Thy,, Where

1 [z,
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where 7, is the propagation time from the reference sensor on array h to sensor n on array h, and
¢y, is the bearing of the source with respect to array h. Note that while the far-field approximation
(2) is reasonable over individual array apertures, the wavefront curvature that is inherent in (1)
must be retained in order to accurately model the (possibly) wide separation between arrays.

The time signal received at sensor n on array h due to the source will be represented as sp(t —
Th —Thn), Where the vector of signals s(t) = [s1(t),...,sg(t)] received at the H arrays are modeled
as real-valued, continuous-time, zero-mean, wide-sense stationary, Gaussian random processes with



—00 < t < co. These processes are fully specified by the H x H cross-correlation function matrix
R, (1) = E{s(t +7)s(t)"}, (3)

where E denotes expectation, superscript 1" denotes transpose, and we will later use the notation
superscript * and superscript H to denote complex conjugate and conjugate transpose, respectively.
The (g, h) element in (3) is the cross-correlation function

7s.gh(T) = E{sy(t +7) sn(t)} (4)

between the signals received at arrays g and h. The correlation functions (3) and (4) are equivalently
characterized by their Fourier transforms, which are the cross-spectral density function

Goan(@) = Flrogh(M} = [ rogn(r) exp(~jur) dr )
and the associated cross-spectral density matrix
Gs(w) = F{Rs(7)}. (6)

The diagonal elements G pp(w) of (6) are the power spectral density (PSD) functions of the signals
sp(t), and hence they describe the distribution of average signal power with frequency. The model
allows the average signal power to vary from one array to another. Indeed, the PSD may even vary
from one array to another to reflect propagation differences, source aspect angle differences, and
other effects that lead to coherence degradation in the signals at distributed arrays.

Let us elaborate the definition and the meaning of coherence between the signals s,4(t) and
sp(t) received at distinct arrays g and h. In general, the cross-spectral density function (5) can be
expressed in the form

Gogn() = Yo,h (@) [Gigg(@) G pn(@)]'?, (7)

where v, gn(w) is the spectral coherence function, which has the property 0 < |ys4n(w)| < 1. The
coherence function v, g, (w) is generally complex-valued, but we will model it as real-valued. This
is a reasonable assumption for acoustic propagation environments in which the loss of coherence is
due to random changes in the apparent source location, as long as the change in apparent source
location is the same at both arrays g and h [10, 13].

Let us consider the cases of fully coherent signals where v, 4,(w) = 1 at all frequencies, incoher-
ent signals where s g, (w) = 0 at all frequencies, and partial coherence where 0 < |ys gn(w)| < 1 at
some frequencies. If the signals are fully coherent 75 4n(w) = 1, then the signals are identical up to
a positive scale factor, i.e., s4(t) = agnsp(t) with agp > 0. In this case, the coherent cross-spectral
density and cross-correlation have the same form as the auto-spectral density and auto-correlation:

1/2
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75,mn(0)
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Ts7gh(7-)(COH) = Ts,hh(T) <::::hg7}gl§8))> . (9)

If the signals are incoherent with v, g5(w) = 0, then the cross-correlation r, g, (7) = 0 and the
Gaussian processes s4(t) and sp,(t) are statistically independent. If the signals are partially coherent
with 0 < [ysgn(w)| < 1 and we define ps gn(7) = F {75 gn(w)} as the inverse Fourier transform



of the coherence function, then we can express the partially coherent cross-spectral density and
cross-correlation functions in relation to the coherent counterparts (8) and (9) as

Gs,gh(w) = ’Ys,gh(w)Gs,gh(w)(COH) (10)

(e 9]

Ts,gh(T) = ps,gh(T) * Ts,gh(T)(COH) = /oops,gh(T - t)rs,gh(t)(COH) dt, (11)
where * in (11) denotes convolution. Physical models suggest that the spectral coherence s 45 (w)
is a low-pass function [13], so (11) shows that partial coherence produces a “smearing” of the cross-
correlation function relative to the perfectly coherent case. This smearing reduces the resolution
in estimating the relative time delay of the signals arriving at arrays g and h, which consequently
reduces the accuracy of source localization.
Next we model the signal received at sensor n on array h as a sum of the delayed source signal
and noise,
Zhn(t) = sn(t — Th — Thn) + Whn(t), (12)

where the noise signals wp,,(t) are modeled as real-valued, continuous-time, zero-mean, wide-sense
stationary, Gaussian random processes that are uncorrelated at distinct sensors. That is, the noise
correlation properties are

E{wgm(t + T)wpn(t)} = 1w (T) SghGmn, (13)

where 7, (7) is the noise autocorrelation function, and the noise power spectral density is Gy, (w) =
F{rw(7)}. We then collect the observations at each array h into Np, x 1 vectors

zn(t) = [zn1(t), .., zn, (1)]T for h=1,..., H, and we further collect the observations from the H
arrays into a (N1 + -+ + Ng) x 1 vector

Zl(t)
Z)=1| : |. (14)
ZH(t)

The elements of Z(t) in (14) are zero-mean, wide-sense stationary, Gaussian random processes.
We can express the cross-spectral density matrix of Z(¢) in a convenient form with the following
definitions. The array manifold for array h at frequency w is

exp(—jwTp1) exp []% ((cos ¢p)Axpy + (sin ¢p)Ayp)]
ap(w) = : = : : (15)
exp(—JjwTn,N, ) exp [j% ((cos ¢n) Az, N, + (sindp) Ay N, )]

using 7y, from (2) and assuming that the sensors have omnidirectional response to sources in the
plane of interest. Let us define the relative time delay of the signal at arrays g and h as

Dyy = 14 — T, (16)
where 73, is defined in (1). Then the cross-spectral density matrix of Z(¢) in (14) has the form

Gz(w) =
(17)
)H

aj(w)ay (w)HGSVH(w) <+ aj(w)ag(w)” exp(—jwD1g)Gs 10 (w)

+ Gy(w)L

ap(w)ag(w)f exp(—.l—ijlH)GsJH(w)* e aH(w)aH(w')HGS,HH(w)



Recall that the source cross-spectral density functions G g5 (w) in (17) can be expressed in terms
of the spectral coherence s 4n(w) using (7).
Note that (17) depends on the source location parameters (z,ys) through ap(w) and Dgy.

However, (17) points out that the observations are also characterized by the bearings ¢1,...,¢q
to the source from the individual arrays and the relative time delays D), between pairs of arrays.?
Therefore, one way to estimate the source location (z, ys) is to first estimate the bearings ¢1, ..., ¢

and the pairwise time delays Dg,. A significant advantage of this approach is that it allows
application of the vast amount of knowledge and techniques that are available for bearing estimation
with single arrays, as well as time delay estimation with two sensors. Once the bearings ¢1,...,¢q
and the time delays Dy, are estimated, the source location (z,,vs) is estimated by “triangulating”
with the equations

Ts — Th

— . h=1,....H 18
cos(r) [(z5 — 21)2 + (ys — yn)?]"/? "
. Ys — Yn
— . h=1,....H 19
sin(¢p) (25 — 21)2 + (ys — yh)2]1/2 (19)
1 / 1 /2 h=2,....H
Dgh = E |:(xs _xg)2+(ys _y9)2:|1 i - E |:<x5_xh)2+(ys_yh)2:|l 2’ g = 1::h— £20)

Methods for efficiently solving (18) to (20) for (zs,ys) need to be investigated. Standard solutions
are available for triangulating the bearings alone with (18) and (19), but the nonlinear equations
in (20) involving the time delays complicates the problem.

3 CRBs on Localization Accuracy

The problem of interest is to estimate the source location parameter vector @ = [z, yS]T using T’
samples of the sensor signals Z(0), Z(T5), ..., Z((T' — 1) - T), where T} is the sampling period. Let
us denote the sampling rate by f; = 1/Ts and ws = 27 fs;. We will assume that the continuous-
time random processes Z(t) are band-limited, and that the sampling rate fs is greater than twice
the bandwidth of the processes. Then Friedlander [16] has shown, using a theorem of Whittle
[17], that the Fisher information matrix (FIM) J for the parameters ® based on the samples
Z(0),Z(Ts),...,Z((T'— 1) - Ts) has elements

- T Ws 8Gz(u)) 718Gz(w) -1 Lo
=g [ {250 G 2 ot agra e

where “tr” denotes the trace of the matrix. The CRB matrix C = J~! then has the property
that the covariance matrix of any unbiased estimator © satisfies Cov(®) — C > 0, where > 0
means that Cov(®) — C is positive semidefinite [15]. The CRB provides a lower bound on the
performance of any unbiased estimator. Equation (21) provides a convenient way to compute the
FIM for the distributed sensor array model. It provides a powerful tool for evaluating the impact
that various parameters have on source localization accuracy. Parameters of interest include the
spectral coherence between distributed arrays, the signal bandwidth and power spectrum, the array
placement geometry, and the SNR. The FIM in (21) is not easily evaluated analytically, but it is
readily evaluated numerically for cases of interest. Next we specialize the FIM expression (21) for

two important cases.

In order to recover the source location (zs,ys) from the bearings ¢1,...,¢n and the relative time delays Dy,
the array geometry must be such that the set of equations (18) to (20) are uniquely invertible.



3.1 Time delay estimation with partial coherence

If we specialize our general model to the case of H = 2 arrays containing N; = Ny = 1 sensor each,
then we have the classic problem of estimating the relative time delay of a signal at two sensors
[18]. Using (17), we characterize the observations at the two sensors by the cross-spectral density
matrix

Gz(w) = (22)

Gu11(w) + Gou(w) TPz oy 12< ) (G 11(w)Gipa(w))'/?
1Pz 1o (W) (G 1 (W) G2 (W) Gs22(w) + Gy(w) ’

which depends only on the time-delay parameter D13. The observation model (22) is more general
than the standard time-delay model [18], since it allows partial spectral coherence of the signal at
the two sensors through the function v, 12(w). The standard treatments of time-delay estimation
assume perfect coherence of the signal components, i.e., v, 12(w) = 1.3 The FIM for the time-delay
D15 can then be expressed in the form

Gs Gs
T /ws Cd2 Vs,12 (W)2 - ,11éL:)(w),222 ()
0 1+

s s Gs w GS w
2w Glifj)) + Ggﬁi)) + [1 = 7s,12(w)?] —’“((;w)(w)’z”( )

J(D12) = dw. (23)

The FIM (23) reduces to the well-known result in the time-delay literature [19, 16, 18] when the
signal is perfectly coherent between the sensors v, 12(w) = 1.

3.2 Narrowband signals with distributed arrays

Next we consider the case with H distributed arrays containing N1, ..., Ny sensors each, but with
an acoustic source that has a narrowband power spectrum. That is, the PSD G, j(w) of the signal
at each array h = 1,..., H is nonzero only in a narrow band of frequencies wy — (Aw/2) < w <
wo + (Aw/2). If the bandwidth Aw is chosen small enough so that the w—dependent quantities in
(21) are well approximated by their value at wp, then the narrowband approximation to the FIM
(21) is

Jij ~

Ws

TAw tr { aGaZ;;JO) Gz(wo)_li8 (ZZH(;O) Gz(wo)_l} . (24)

The quantity TA“’ multiplying the FIM in (24) is the time-bandwidth product of the observations.
In order for the narrowband approximation to be valid, the fractional bandwidth Aw/wg must be
small. If we consider a typical acoustic signal processing application in which the frequencies of
interest wp are in the range from 27 (50) to 27(250) rad/sec, then a reasonable value for Aw is 2,
representing a 1-Hz bandwidth. We will use Aw = 27 in the examples of narrowband processing
presented in Section 4.

3We should point out that the literature on time-delay estimation makes extensive use of the so-called “coherence
function.” However, the coherence function in the time delay literature is not s 12(w), which characterizes the
signal coherence. Instead, the coherence function in the time-delay literature is related to the noisy observations
z11(t), 221 (t) defined by (12). Specifically, it is the normalized cross-spectral density of z11(t) and z21(¢), i.e.:

_ . Gu(w) o Gu(w) o
7212() = exp(—jwDr2) (”as,um) (”Gmm) |

Thus any loss in spectral coherence in 7.,12(w) is due to the additive noise PSD G (w), and not loss of signal coherence
during propagation.




The narrowband FIM (24) extends in a simple way to the case of acoustic sources that contain
multiple narrowband frequency components centered at wq,...,wg:

TAw & oG _,0G _
gy = T2 57 e 288 Gy ) 128 00 | (25)

k=1

3.3 CRB for schemes with reduced communication bandwidth

The CRBs presented so far in this section provide a performance bound on source location esti-
mation methods that jointly process all the data from all the sensors. Such processing provides
the best attainable results, but it also requires significant communication bandwidth to transmit
data from the individual arrays to the fusion center. In this subsection, we develop approximate
performance bounds on schemes that perform bearing estimation at the individual arrays in order
to reduce the required communication bandwidth to the fusion center. These CRBs facilitate a
study of the tradeoff between source location accuracy and communication bandwidth between the
arrays and the fusion center.

First we consider the simplest scheme in which each array transmits only its bearing estimate
to the fusion center. The fusion center then triangulates the bearings ¢1,..., ¢y to estimate the
source location (zs,ys) using (18) and (19). This scheme independently processes the data from
each array to estimate the bearings, so it does not exploit coherence of the signal at the arrays.
Therefore the performance of this scheme must be no better than the performance of the optimum
scheme with incoherent signals, i.e., with v, g5(w) = 0 for all g < h and all w. We use the CRB of
the optimum scheme with incoherent signals at all arrays to bound the performance of triangulation
with bearing estimates.

Next we consider a scheme in which each array transmits its bearing estimate and the T' samples
from one sensor to the fusion center. We assume that the sensor whose samples are transmitted is
located at the reference location (xy, yp,) for the array. In this case the fusion center is able to exploit
signal coherence at distributed arrays by estimating the time delays D,,. However, coherence is
not exploited in the estimation of the bearings.

We approximate the performance bound for this scheme as follows. To simplify the modeling, we
assume the existence of an independent sensor at the reference location (xp, yp) of each array. The
samples from this independent sensor are transmitted to the fusion center, but they are not used
for bearing estimation. Similar to (12), the observations at these additional sensors are modeled as

Zn(t) = sp(t — ) +wp(t), h=1,...,H, (26)

where the noise wp,(t) is independent from the noise at all other sensors and shares the common noise
PSD G, (w). We define a vector z(t) = [21(t), ..., Zx (t)]T and a larger vector Z(t) = [Z(t)T,z(t)T]"
that collects all of the sensor signals in this model. In order to reflect the fact that the signal
coherence is not exploited in the bearing estimation using Z(t) while it is exploited in the estimation
of the time delays Dy, using zj,(t), the cross-spectral density matrix of Z(¢) is modeled as

(B)
G, (w) 0
Gy(w) = z , 27
s = | F2 0
where G(ZB) (w) is formed from (17) assuming incoherent signals for bearing estimation
aj(w)ar(w)?Gs11(w) -+ 0
Gy (w) = 5 8 5 O (28)

0 - aH(w)aH(w)HGS,HH(W)



and G;TD)(w) includes the signal coherence to allow time-delay (TD) estimation

G (w) =
| (29)
Gs11(w) + Gy(w) s eIy (W) (Gs,ll(w)Gs,HH(w))1/2

etioDit (W) (Gont (W) G mrm (w)? - Goin (W) + G ()

We obtain the FIM for estimation of the source location parameters (zs,ys) using this scheme
by inserting Gz (w) in (27) into the general expression (21). The existence of H independent sensors
for time-delay estimation is assumed so that (27) becomes block-diagonal to decouple the bearing
and time-delay parameters. In practice, the use of the same sensor for bearing estimation and
time-delay estimation will have little effect on the estimation performance. Note that the model
assumes that the fusion processor estimates the time-delays Dy, for h = 2,... ,H, g=1,...,h
jointly based on the time samples z(1),...,z(7T). A practical time-delay estimation method is likely
to estimate only the H — 1 time delays Do, ..., D1y through independent, pairwise processing of
the sensor samples. Such a pairwise processing scheme cannot perform better than the CRB based
on (27). However, results of Weinstein [12] regarding pairwise processing of sensor signals on a
single array suggest that the performance degradation is negligible as long as the SNR is greater
than 0 dB. It is possible to obtain an exact CRB for pairwise time delay estimation using our model
by following Weinstein’s approach [12]. However, the exact CRB is considerably more complicated
and is valuable only for low SNR scenarios.

4 Examples

In this section, examples are presented that illustrate the improvement in source localization ac-
curacy when coherence between the distributed arrays is exploited. We consider scenarios with
H = 2 and H = 3 arrays. The individual arrays are identical and contain Ny = --- = Ny =7
sensors. Each array is circular and has 4-ft radius, with six sensors equally spaced around the
perimeter and one sensor in the center. Narrowband processing in a 1-Hz band centered at 50 Hz
is assumed, with an SNR of 10 dB at each sensor, i.e., Gspn(w)/Gy(w) = 10 for h = 1,..., H
and 27(49.5) < w < 27m(50.5) rad/sec. The signal coherence 75 12(w) = vs(w) is varied between 0
and 1. We assume that 7" = 4000 time samples are obtained at each sensor with sampling rate
fs = 2000 samples/sec. The source localization performance is evaluated by plotting the ellipse in
(z,y) coordinates that satisfy the expression

[xy}*’lﬂﬂa (30)

where J is the FIM. If the errors in (x,y) localization are jointly Gaussian distributed, then the
ellipse (30) represents the contour at one standard deviation in root-mean-square (RMS) error.
The error ellipse for any unbiased estimator of source location cannot be smaller than the ellipse
described by (30).

First we consider a scenario with H = 2 arrays located at coordinates (z1,y1) = (0,0), (x2,y2) =
(400, 400), and one source located at (xs, ys) = (200, 300), where the units are meters. The array and
source locations are illustrated in Figure 2a, along with the RMS error ellipse for joint processing
of all sensor data for coherence values vs(w) = 0,0.5, and 1. The largest ellipse in Figure 2a
corresponds to incoherent signals v5(w) = 0 and characterizes the performance of the simple method



of triangulation using the bearing estimates from the two arrays. Note that signal coherence
between the arrays significantly reduces the width of the ellipse along one axis. However, the
localization along the other axis of the ellipse is not reduced by coherence. This is because the two
widely separated arrays are able to accurately localize the bearing of the source but not its range.
Figure 2b shows the ellipse radius for various values of the signal coherence 74(w). Note that even
a small amount of coherence produces a significant improvement in localization accuracy. Note
also that for this scenario, the localization scheme based on bearing estimation with each array and
time-delay estimation using one sensor from each array performs equivalently to the optimum, joint
processing scheme. Figure 2c shows a closer view of the error ellipses for the scheme of bearing
estimation plus time-delay estimation with one sensor from each array. The ellipses are identical
to those in Figure 2a for joint processing.

Figure 3 displays the results when a third array is added at location (z3,y3) = (100,0). The
coherence between all pairs of arrays is assumed to be identical, i.e., vs gn(w) = vs(w) for (g,h) =
(1,2),(1,3),(2,3). Note that increased signal coherence allows improved source localization along
both axes of the ellipse. The largest ellipse in Figure 3a is the incoherent case, characterizing the
performance of triangulation with independent bearing estimates. Figure 3b shows that a significant
improvement in localization accuracy is possible with the small value of coherence vs(w) = 0.1,
with continued improvement as the coherence increases. As in Figure 2, the method of bearing
estimation plus time delay estimation using one sensor from each array performs nearly as well as
joint processing.

These results indicate that even small amounts of signal coherence between widely distributed
arrays provides the potential for significant improvement in source localization accuracy. We point
out that the CRB results for time-delay estimation in this case are optimistic due to the narrowband
model for the observations. With narrowband signals at 50 Hz, the time delays are resolvable only
within the interval of one period of (50 Hz)~! = 0.02 sec. The CRB assumes that the ambiguities on
the order of 0.02 seconds are resolved by an unbiased estimator. Modeling the signal as wideband
removes this ambiguity in time-delay estimation.

5 Concluding Remarks

We have presented a model in this paper for source localization with distributed sensor arrays.
The model is general and may be used to represent sources with arbitrary power spectrum and
frequency-dependent coherence between the distributed arrays. The model assumes perfect wave-
front coherence across individual arrays in order to focus attention on the value of coherence at
distributed arrays.

The following are some items of current and future work based on this model.

e Combine the general model and performance analysis in this paper with physical models for
the coherence and source power spectrum as in Wilson [10, 13, 14].

e Analyze the sensitivity of various schemes for processing signals from distributed arrays to
uncertainty in time synchronization and position of the arrays.

e Study the performance versus complexity tradeoff for schemes that further reduce the com-
munication bandwidth between the distributed arrays and the central fusion center. For
example, study methods for compressing the sampled data from distributed sensors so that
the cross-correlation properties are preserved for time-delay estimation.
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Figure 2: RMS source localization error ellipses based on the CRB for H = 2 arrays and one
source. The array and source locations are shown in (a), along with the error ellipses for joint
processing of all sensor data for coherence values vs(w) = 0,0.5, and 1. Part (b) shows the error
ellipse radius [(major axis)? + (minor axis)?] Y2 for a range of coherence values, comparing joint
processing with the reduced-complexity scheme of bearing estimation plus time-delay estimation
using data from one sensor per array. Part (c) is a closer view of the RMS error ellipses for the
bearing plus time-delay estimation scheme.
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Figure 3: RMS source localization error ellipses based on the CRB for H = 3 arrays and one source.




e The source is assumed to be stationary (not moving) in this paper. A natural way to in-
corporate source movement into our model is to parameterize the source motion and then
estimate the motion parameters instead of the static location (zs,ys). However, a joint
localization /tracking algorithm of this sort may require different schemes for distributed pro-
cessing.

e Extend the model and the processing to include multiple sources.

Appendix

A Glossary of Symbols

E{-}: Expectation operation

Superscript T, %, H: Transpose, complex conjugate, and conjugate transpose, respectively.
(zs,ys): Location of source

H: Number of arrays

Np: Number of sensors in array h

(zh,yn): Location of reference sensor on array h

rp: Distance from source to reference sensor on array h.

(Azpp, Aypn): Location of sensor n on array h, relative to (xp,yp)

c: Wave propagation speed

7h: Propagation time from source to reference sensor on array h

Thnt Propagation time from source to sensor n on array h

sp(t — Th — Thn): Time signal received at sensor n on array h due to the source (no noise)
s(t) = [s1(t),...,sz(t)]T: Vector of source signals received at arrays

rsgh(T) = E{sg(t + 7) sp(t)}: Cross-correlation function between signals received at arrays g, h
R,(7) = E{s(t +7)s(t)"}: Cross-correlation function matrix

F{-} and F{-}71: Fourier transform and inverse Fourier transform operations

G gh(w) = F{rsgn(r)}: Cross-spectral density function of signals at arrays g and h

Gs nh(w): Power spectral density (PSD) of signal at array h

Gs(w) = F{Rs(7)}: Cross-spectral density matrix

% (G‘;’(g;h(w)( )]1 T3¢ Spectral coherence function of source signals
s,99\W)Gs hp (W

’Ys,gh(w) =

Ps,gh(T) = F{7s,gn(w)}: Inverse Fourier transform of coherence function



wpn(t): Additive noise at sensor n on array h

rw(7) and Gy (w): Noise autocorrelation function and power spectral density
znn(t): Observed signal at sensor n on array h (due to source and noise)
zn(t) = [zn1(t), . .., znn, (£)]T: Vector of observations at array h

Z(t) = [z1()T,. ..,z (t)T]T: Vector of observations from all arrays
ap(w): Array manifold for array h at frequency w

¢p: Bearing of source with respect to array h

Dgyp = 174 — ¢ Relative time delay of the signal at arrays g and h
Gz(w): Cross-spectral density matrix of Z(t)

J: Fisher information matrix (FIM)

T: Number of time samples observed at sensors

fs,ws: Sampling rate in hertz and rad/sec, respectively

Ts = 1/fs: Spacing between time samples

Zp(t): Observed signal at independent sensors used for time-delay estimation, and vectors:
z2(t) = [21(t), ..., Za ()], Z(t) = [z(®)",2(t)"]"
Gy(w): Cross-spectral density matrix of Z(t)
(TD)

G(ZB)(w), G, ’(w): Cross-spectral density matrices for independent bearing and time-delay esti-
mation
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