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Abstract — Fundamental performance limits for pas-

sive time delay and Doppler estimation have been

studied extensively for several decades. The funda-

mental limits are usually parameterized in terms of

the signal-to-noise ratio (SNR) at each sensor, the

spectral support of the signals (fractional bandwidth),

and the time-bandwidth product of the observations.

In some applications, loss of coherence between the

signals measured at a pair of sensors significantly af-

fects the time delay and Doppler estimation accuracy.

For example, in aeroacoustics (low frequency sounds

< 300 Hz propagating through air) and ultrasonics

(sounds in the MHz range propagating through liv-

ing tissue), the signals received at spatially-separated

sensors are not perfectly coherent due to random mo-

tion of particles in the propagation medium. In or-

der to quantify the effect of partial signal coherence

on time delay and Doppler estimation, we present

Cramér-Rao and Ziv-Zakai bounds that are explicitly

parameterized by the signal coherence, along with the

traditional parameters of SNR, fractional bandwidth,

and time-bandwidth product. The results are applied

to the processing data from an “array of arrays” that

consists of several small-aperture sensor arrays dis-

tributed over a large two-dimensional area.

I. Introduction

An “array of arrays” is a collection of small-aperture sen-
sor arrays that are distributed over a large two-dimensional
area. Our objective is to use an array of arrays to estimate
the location of a non-moving vehicle or track the path of a
moving vehicle. An algorithm for source localization that
achieves nearly optimal performance while performing local
the processing at each array and limiting the communication
bandwidth between the arrays and a fusion center works as
follows [1, 2]. Each array estimates the source bearing and
transmits the bearing estimate and the raw data from one
sensor to the fusion center. The fusion center performs time
delay estimation (TDE) between array pairs, then estimates
the source location by triangulating the bearing and TD es-
timates. This method jointly processes data from widely-
separated arrays, in contrast to the more common “bearings-
only” localization/tracking algorithms, e.g., [3, 4, 5, 6, 7]. In
many cases, the Cramér-Rao bound (CRB) on localization ac-
curacy for the bearing and TD triangulation method is nearly
equal to the CRB for the optimal processor that uses the raw
data from all sensors at the fusion center. Further, these CRBs
may be significantly smaller than the CRB for bearings-only

triangulation.
Accurate TD estimates are clearly required in order to

achieve improved localization accuracy relative to bearings-
only triangulation. We are particularly interested in aeroa-
coustic tracking of ground vehicles using an array of micro-
phone arrays. Signal coherence is known to degrade with in-
creased spatial separation for low frequency sounds (10–300
Hz) propagating through air, e.g., [8, 9]. Our study in the
present paper of TD and Doppler estimation with partially
coherent signals is motivated by the issues presented above.
Our goal is to quantify those scenarios in which TDE is fea-
sible, as a function of signal coherence, SNR per sensor, frac-
tional bandwidth of the signal, and time-bandwidth product
of the observed data. The basic result is that for a given SNR,
fractional bandwidth, and time-bandwidth product, there ex-
ists a “threshold coherence” value that must be exceeded in
order for TDE to achieve the CRB. The analysis is based on
Ziv-Zakai bounds for TDE, as in [10, 11].

TD estimation with partially coherent signals is also rele-
vant in medical ultrasound applications, e.g., [12, 13]. The
medical ultrasound application is distinguished from the
aeroacoustic tracking of ground vehicles in that the former
is typically an active system while the latter is passive. The
medical ultrasound application therefore allows much more
control over the SNR and bandwidth of the signals. In pas-
sive aeroacoustics, the received signals are emitted by a vehicle
and are not controllable for the purposes of TD estimation.

This paper is organized as follows. TDE for a non-moving
source is considered in Section II, including the model for the
sensor data as correlated Gaussian random processes, CRBs,
Ziv-Zakai bound analysis leading to the threshold coherence
phenomenon, and simulation examples. TD and Doppler es-
timation for a moving source are briefly considered in Sec-
tion III, and concluding remarks are given in Section IV.

II. TDE for a Non-Moving Source

A model is formulated in this section for the discrete-time
signals received by H widely-spaced sensors, with emphasis
on the case of H = 2 sensors.1 Consider a single non-moving
source that is located at coordinates (xs, ys) in the (x, y)
plane. The H sensors are distributed in the same plane, at
coordinates (xh, yh), for h = 1, . . . , H . If c is the speed of
propagation, then the propagation time from the source to
sensor h is

τh =
dh

c
=

1

c

[
(xs − xh)2 + (ys − yh)2

]1/2
, (1)

where dh is the distance from the source to sensor h.

1In the array of arrays scenario described in Section I, the H
sensors considered here are located on distinct arrays.



The signal received at sensor h due to the source will be
represented as sh(t−τh), where the signals in the vector s(t) =
[s1(t), . . . , sH(t)]T are modeled as real-valued, continuous-
time, zero-mean, jointly wide-sense stationary, Gaussian ran-
dom processes with −∞ < t < ∞. These processes are fully
specified by the H × H cross-correlation function matrix

Rs(τ ) = E{s(t + τ ) s(t)T }, (2)

where E denotes expectation, superscript T denotes trans-
pose, and we will later use the notation superscript ∗ and
superscript H to denote complex conjugate and conjugate
transpose, respectively. The (g, h) element in (2) is the cross-
correlation function

rs,gh(τ ) = E{sg(t + τ ) sh(t)} (3)

between the signals received at sensors g and h. The corre-
lation functions (2) and (3) are equivalently characterized by
their Fourier transforms, which are the cross-spectral density
functions

Gs,gh(ω) = F{rs,gh(τ )} =

∫ ∞

−∞
rs,gh(τ ) exp(−jωτ ) dτ (4)

and the associated cross-spectral density matrix

Gs(ω) = F{Rs(τ )}. (5)

The diagonal elements Gs,hh(ω) of (5) are the power spec-
tral density (PSD) functions of the signals sh(t), and hence
they describe the distribution of average signal power with
frequency. The model allows the PSD to vary from one sensor
to another to reflect propagation differences and source aspect
angle differences.

The off-diagonal elements of (5), Gs,gh(ω), are the cross-
spectral density (CSD) functions for the signals sg(t) and sh(t)
received at distinct sensors g �= h. In general, the CSD func-
tions have the form

Gs,gh(ω) = γs,gh(ω) [Gs,gg(ω)Gs,hh(ω)]1/2 , (6)

where γs,gh(ω) is the spectral coherence function for the sig-
nals, which has the property 0 ≤ |γs,gh(ω)| ≤ 1. Coherence
magnitude |γs,gh(ω)| = 1 corresponds to perfect correlation
between the signals at sensors g and h, while the partially co-
herent case |γs,gh(ω)| < 1 models random effects in the prop-
agation paths from the source to sensors g and h.

The observed signal at sensor h is modeled as a sum of the
delayed source signal and noise,

zh(t) = sh(t − τh) + wh(t), (7)

where the noise signals wh(t) are modeled as real-valued,
continuous-time, zero-mean, jointly wide-sense stationary,
Gaussian random processes that are mutually uncorrelated at
distinct sensors, and are uncorrelated from the signals. That
is, the noise correlation properties are

E{wg(t + τ )wh(t)} = rw(τ ) δgh (8)

E{wg(t + τ )sh(t)} = 0, (9)

where rw(τ ) is the noise autocorrelation function, and the
noise PSD is Gw(ω) = F{rw(τ )}. We then collect the obser-
vations from the H sensors into a vector

Z(t) =




z1(t)
...

zH(t)


 . (10)

The elements of Z(t) in (10) are zero-mean, jointly wide-sense
stationary, Gaussian random processes. The CSD matrix of
Z(t) has the form

GZ(ω) = Gw(ω) I + (11)


Gs,11(ω) · · · e−jωD1H Gs,1H(ω)
...

. . .
...

e+jωD1H Gs,1H(ω)∗ · · · Gs,HH(ω)


 ,

where the relative time delay of the signal at sensors g, h is

Dgh = τg − τh. (12)

For H = 2 sensors, if we define D = D21 = τ2 − τ1, the
CSD matrix in (11) has the form

CSD

[
z1(t)
z2(t)

]
= GZ(ω) (13)

=

[
Gs,11(ω) + Gw(ω) e+jωD Gs,12(ω)
e−jωD Gs,12(ω)∗ Gs,22(ω) + Gw(ω)

]
,

where the CSD Gs,12(ω) in (13) can be expressed in terms of
the signal spectral coherence γs,12(ω) using (6):

Gs,12(ω) = γs,12(ω) [Gs,11(ω)Gs,22(ω)]1/2 . (14)

The signal coherence function γs,12(ω) describes the degree of
correlation that remains in the signal emitted by the source at
each frequency ω after propagating to sensors 1 and 2. Next,
we develop an SNR-like expression for the two-sensor case that
appears in all subsequent expressions for fundamental limits
on TD and Doppler estimation. We begin with the magnitude-
squared coherence (MSC) of the observed signals z1(t), z2(t)
as a function of the signal coherence magnitude, |γs,12(ω)|,
and other spectral density parameters:

MSCz (|γs,12(ω)|) =
|CSD[z1(t), z2(t)]|2

PSD[z1(t)] · PSD[z2(t)]

=
|γs,12(ω)|2 Gs,11(ω)Gs,22(ω)

[Gs,11(ω) + Gw(ω)] [Gs,22(ω) + Gw(ω)]

=
|γs,12(ω)|2[

1 +
(

Gs,11(ω)

Gw(ω)

)−1
] [

1 +
(

Gs,22(ω)

Gw(ω)

)−1
] (15)

≤ 1

Then the following “SNR” expression appears in subsequent
performance bounds:

SNR (|γs,12(ω)|) =
MSCz (|γs,12(ω)|)

1 − MSCz (|γs,12(ω)|) (16)

=

{
1

|γs,12(ω)|2

[
1 +

(
Gs,11(ω)

Gw(ω)

)−1
]

·

[
1 +

(
Gs,22(ω)

Gw(ω)

)−1
]
− 1

}−1

(17)

≤ |γs,12(ω)|2

1 − |γs,12(ω)|2
. (18)

The inequality (18) shows that signal coherence loss
(|γs,12(ω)| < 1) severely limits the “SNR” quantity that
characterizes performance, even if the SNR per sensor
Gs,ii(ω)/Gw(ω) is very large.



A CRB for TDE

The Cramér-Rao bound (CRB) provides a lower bound
on the variance of any unbiased estimator. The problem
of interest is estimation of the relative time delay vector
Θ = [D21, . . . , DH1]

T using T samples of the sensor signals
Z(0),Z(Ts), . . . ,Z((T − 1) · Ts), where Ts is the sampling pe-
riod. The total observation time is T = T · Ts. Let us de-
note the sampling rate by fs = 1/Ts and ωs = 2πfs. We
will assume that the continuous-time random processes Z(t)
are band-limited, and that the sampling rate fs is greater
than twice the bandwidth of the processes. Then Fried-
lander [14, 15] has shown that the Fisher information ma-
trix (FIM) J for the parameters Θ based on the samples
Z(0),Z(Ts), . . . ,Z((T − 1) · Ts) has elements

Jij = (19)

T
4π

∫ ωs

0

tr

{
∂ GZ(ω)

∂ θi
GZ(ω)−1 ∂ GZ(ω)

∂ θj
GZ(ω)−1

}
dω,

where “tr” denotes the trace of the matrix. The CRB matrix
C = J−1 then has the property that the covariance matrix of
any unbiased estimator Θ̂ satisfies Cov(Θ̂)−C ≥ 0, where ≥ 0
means that Cov(Θ̂)−C is positive semidefinite [16]. Equation
(19) provides a convenient way to compute the FIM for TDE
as a function of the signal coherence between sensors, the sig-
nal and noise bandwidth and power spectra, and the sensor
placement geometry. We used a similar approach to evaluate
the CRB for source localization in the array of arrays context
in [1, 2].

We can use (13), (14), and (19) to find the CRB for TDE
with H = 2 sensors, yielding

CRB(D) =
4π

T

[∫ ωs

0

ω2 SNR(|γs,12(ω)|) dω

]−1

, (20)

where T is the total observation time of the sensor data and
SNR(|γs,12(ω)|) is defined in (17). Let us consider the case
in which the signal PSDs, the noise PSD, and the coher-
ence are flat (constant) over a bandwidth ∆ω rad/sec cen-
tered at ω0 rad/sec. If we omit the frequency dependence
of Gs,11, Gs,22, Gw, and γs,12, then the integral in (20) may
be evaluated to yield the CRB expressions in (21), (22), and
(23) in Figure 1. The quantity

(
∆ω·T

2π

)
is the time-bandwidth

product of the observations,
(

∆ω
ω0

)
is the fractional bandwidth

of the signal, and Gs,hh/Gw is the SNR at sensor h. The
CRB in (22) agrees with known results for perfectly coherent
signals, e.g., [17], and with results from the ultrasonics lit-
erature [12, 13] for partially correlated speckle signals. Note
from the high-SNR limit in (23) that when the signals are
partially coherent |γs,12| < 1, increased source power does not
reduce the CRB. Improved TDE accuracy is obtained with
partially coherent signals by increasing the observation time
T or changing the spectral support of the signal, which is
[ω0 − ∆ω/2, ω0 + ∆ω/2]. The spectral support of the signal
is not controllable in passive TDE applications, so increased
observation time is the only means for improving the TDE
accuracy with partially coherent signals. Source motion be-
comes more important during long observation times, and in
Section III we extend the model to include source motion.

B Ziv-Zakai bounds for TDE

With perfectly coherent signals, it is well-known that the
CRB on TDE is achievable only when the SNR expression in

(17) (with |γs,12(ω)| = 1) exceeds a threshold [10, 11]. Next
we show that for TDE with partially coherent signals, a sim-
ilar threshold phenomenon occurs with respect to coherence.
That is, the coherence must exceed a threshold in order to
achieve the CRB (20) on TDE. We state the threshold coher-
ence formula for the following simplified scenario. The signal
and noise spectra are flat over a bandwidth of ∆ω rad/sec
centered at ω0 rad/sec, and the observation time is T sec-
onds. Further, assume that the signal PSDs are identical at
each sensor, and define the following constants for notational
simplicity:

Gs,11(ω0) = Gs,22(ω0) = Gs, Gw(ω0) = Gw,

and γs,12(ω0) = γs. (24)

Then the SNR expression in (17) has the form

SNR(|γs|) =

[
1

|γs|2

(
1 +

1

(Gs/Gw)

)2

− 1

]−1

. (25)

Analysis of the Ziv-Zakai bound in [10, 11] shows that the
threshold SNR for CRB attainability is a function of the
time-bandwidth product

(
∆ω·T

2π

)
and the fractional band-

width
(

∆ω
ω0

)
,

SNRthresh =
6

π2
(

∆ωT
2π

) (
ω0

∆ω

)2
[
ϕ−1

(
1

24

(
∆ω

ω0

)2
)]2

(26)

where ϕ(y) = 1/
√

2π
∫ ∞

y
exp(−t2/2) dt. It follows that the

threshold coherence value is

|γs|2 ≥

(
1 + 1

(Gs/Gw)

)2

1 + 1
SNRthresh

, (27)

which for high SNR becomes

|γs|2 ≥ 1

1 + 1
SNRthresh

as
Gs

Gw
→ ∞. (28)

For a specific TDE scenario, the threshold SNR for CRB at-
tainability is given by (26), and (27) provides a corresponding
threshold coherence for CRB attainability. Since |γs|2 ≤ 1,
(27) is useful only if Gs/Gw > SNRthresh.

Figure 2 contains plots of the threshold coherence in (27)
as a function of the time-bandwidth product

(
∆ω·T

2π

)
, SNR

Gs
Gw

, and fractional bandwidth
(

∆ω
ω0

)
. Note that Gs

Gw
= 10 dB

is nearly equivalent to Gs
Gw

→ ∞. We note that very large
time-bandwidth product is required to overcome coherence
loss when the fractional bandwidth is small at 0.1. The vari-
ation of threshold coherence with fractional bandwidth is il-
lustrated in Figure 2d. For a fixed threshold coherence value,
such as 0.7, each doubling of the fractional bandwidth reduces
the required time-bandwidth product by about a factor of 10.

Let us examine a narrowband signal scenario that is typical
in aeroacoustics, with center frequency fo = ωo/(2π) = 50 Hz
and bandwidth ∆f = ∆ω/(2π) = 5 Hz, so the fractional band-
width is ∆f/fo = 0.1. From Figure 2a, coherence |γs| = 0.8
requires time-bandwidth product ∆f · T > 200, so the neces-
sary time duration T = 40 sec for TDE may be impractical
for moving sources.

Larger time-bandwidth products of the observed signals are
required in order to make TDE feasible in environments with



CRB(D) =
1

2ω2
0

(
∆ω T
2π

) [
1 + 1

12

(
∆ω
ω0

)2
]

SNR(|γs,12|)
(21)

=
1

2ω2
0

(
∆ω T
2π

) [
1 + 1

12

(
∆ω
ω0

)2
] {

1

|γs,12|2

[
1 +

(
Gs,11

Gw

)−1
] [

1 +
(

Gs,22

Gw

)−1
]
− 1

}
(22)

>
1

2ω2
0

(
∆ω T
2π

) [
1 + 1

12

(
∆ω
ω0

)2
] [

1

|γs,12|2
− 1

]
. (23)

Fig. 1: Expressions for CRB on time delay D for 2 sensors.

10
−1

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TIME × BANDWIDTH

T
H

R
E

S
H

O
LD

 C
O

H
E

R
E

N
C

E
, |

 γ
s |

FRACTIONAL BANDWIDTH = 0.1

G
s
 / G

w
 =  0 dB           

G
s
 / G

w
 = 10 dB           

G
s
 / G

w
 → ∞

10
−1

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TIME × BANDWIDTH

T
H

R
E

S
H

O
LD

 C
O

H
E

R
E

N
C

E
, |

 γ
s |

FRACTIONAL BANDWIDTH = 0.5

G
s
 / G

w
 =  0 dB           

G
s
 / G

w
 = 10 dB           

G
s
 / G

w
 → ∞

(a) (b)

10
−1

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TIME × BANDWIDTH

T
H

R
E

S
H

O
LD

 C
O

H
E

R
E

N
C

E
, |

 γ
s |

FRACTIONAL BANDWIDTH = 1

G
s
 / G

w
 =  0 dB           

G
s
 / G

w
 = 10 dB           

G
s
 / G

w
 → ∞

10
−1

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TIME × BANDWIDTH

T
H

R
E

S
H

O
LD

 C
O

H
E

R
E

N
C

E
, |

 γ
s |

G
s
 / G

w
 → ∞

FRAC. BW = 0.1 
FRAC. BW = 0.25
FRAC. BW = 0.5 
FRAC. BW = 1.0 

(c) (d)

Fig. 2: Threshold coherence value from (27) versus time-bandwidth product
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signal coherence loss. As discussed with respect to the CRB
in Section II.A, only the observation time is controllable in
passive applications, thus leading us to consider source motion
models in Section III. The remainder of this section continues
to focus on non-moving sources, with a simulation example
presented in Section II.C that verifies the CRB and threshold
coherence values for TDE.

C TDE simulation example

Consider TDE at H = 2 sensors with varying signal co-
herence γs. Our simulation example involves a signal with
bandwidth ∆f = 30 Hz that is centered at f0 = 100 Hz,
so the fractional bandwidth ∆f/f0 = 0.3. The signal, noise,
and coherence are flat over the frequency band, with SNR
Gs/Gw = 100 (20 dB). The signals and noise are band-pass
Gaussian random processes. The sampling rate in the simu-
lation is fs = 104 samples/sec, with T = 3 × 104 samples, so
the time interval length is T = 3 sec.

Figure 3 displays the simulated RMS error on TDE for
0.2 ≤ γs ≤ 1.0, along with the corresponding CRB from (22)
in Figure 1. The simulated RMS error is based on 100 runs,
and the TDE is estimated from the location of the maximum
of the cross-correlation of the sensor signals. The threshold
coherence for this case is 0.41, which is calculated using (27)
and (26). Note in Figure 3 that the simulated RMS error on
TDE diverges sharply from the CRB very near to the thresh-
old coherence value of 0.41, illustrating the accuracy of the
analytical threshold coherence in (27).

III. Tracking a Moving Source

We have extended the non-moving source model in Sec-
tion II to allow the source to move with constant velocity
along a straight line. Over long observation intervals, apply-
ing the non-moving source model to a moving source leads to
inaccurate localization, as quantified in [18], [19]. The source
motion provides information for localization and tracking, and
we have extended the CRB on differential Doppler estima-
tion from [20] to the case of partially coherent signals. As

in [20], the CRB on differential Doppler is a scalar multiple
of the CRB on TDE in (20). The Ziv-Zakai considerations
are not relevant to differential Doppler estimation, so there is
no threshold coherence phenomenon for differential Doppler
estimation.

First, we extend the non-moving source model from Sec-
tion II using first-order motion models. The source position
trajectory is modeled as a straight line with constant velocity
over an interval of length T ,

xs(t) = xs,0 + ẋs · (t − t0), t0 ≤ t ≤ t0 + T (29)

ys(t) = ys,0 + ẏs · (t − t0), (30)

so ẋs, ẏs are the velocity components. The source trajectory
parameter vector is

Θ = [xs,0, ẋs, ys,0, ẏs]
T , (31)

and the (time-varying) propagation time from the source to
sensor h follows from (1),

τh(t) =
dh(t)

c
=

1

c

[
(xs(t) − xh)2 + (ys(t) − yh)2

]1/2
. (32)

We can show that the propagation time to sensor h is approx-
imated by

τh(t) ≈ τh(t0) +
vr,h(t0)

c
· (t − t0), (33)

where dh(t0) and vr,h(t0) are the source range and radial veloc-
ity at the start of the time interval t = t0. The approximation
(33) is valid as long as the total motion during the time inter-
val T is much less than the range, i.e., |2 ẋsT | 	 dh(t0) and
|2 ẏsT | 	 dh(t0).

Next we use the approximation (33) and model the received
signal at sensor h as

sh (t − τh(t)) ≈ sh

(
αh t − τh(t0) +

vr,h(t0) t0
c

)
, (34)

where

αh = 1 − vr,h(t0)

c
(35)

is the Doppler compression and

τh(t0) =
dh(t0)

c
=

1

c

[
(xs,0 − xh)2 + (ys,0 − yh)2

]1/2
(36)

is the propagation delay at the initial time t = t0. Without
loss of generality, we set t0 = 0, so the received signal at sensor
h is

sh (αh t − τh(0)) , h = 1, . . . , H, (37)

which is the extension of the signal component of (7) to the
moving source case.

The signal at each sensor, sh

[(
1 − vr,h(0)

c

)
t − τh(0)

]
, h =

1, . . . , H , is a wide-sense stationary Gaussian random pro-
cess. However, for two sensors g, h with unequal Doppler
vr,g(0) �= vr,h(0), the signals at sensors g, h are not jointly
wide-sense stationary [18, 20], complicating the analytical de-
scription and the CRB performance analysis. The jointly non-
stationary sensor signals generally are not characterized by a
cross-spectral density matrix, so the CRB is not the inverse
of a FIM of the form (19). An approximate CRB analysis
for TDE with jointly nonstationary signals is given in [18].
The CRB analysis is rigorously justified in [20] and extended



to CRBs on differential Doppler. A clever transformation is
used in [20] so that the jointly nonstationary signals are lo-
cally modeled by a CSD of the form (11), and it is shown that
the representation is accurate for CRB analysis.

We can formulate the results in [20] for the case of par-
tially coherent signals2, from which we make the following
observations for H = 2 sensors. The results are valid for large
observation time (T much larger than the coherence time of
the signals and noise). The TD is D12 = τ1(0)− τ2(0) and the
differential Doppler is ∆v12 = vr,1(0) − vr,2(0).

• Estimation of TDE and differential Doppler are decou-
pled, so the CRB on D12 is given by (20), which is
identical to the non-moving source case.

• The threshold coherence analysis for TDE in (27) and
Figure 2 extends to the moving source case. In the ideal
case that Doppler effects are perfectly estimated and
compensated, the TDE problem that remains is identi-
cal to the non-moving source case. Doppler estimation
is less demanding in terms of time-bandwidth product
compared with TDE. Indeed, Doppler estimation is pos-
sible with sinusoidal signals that have negligible band-
width [20].

• The CRB on differential Doppler [20], modified for
partially-coherent signals, is

CRB(∆v12) =

24π

T

(
c

T

)2
[
2

∫ ωs

0

ω2 SNR(|γs,12(ω)|) dω

]−1

.(38)

Note that (38) is a scalar multiple of the CRB on TDE in
(20). The CRB on differential Doppler may be achiev-
able in scenarios where the time-bandwidth product is
insufficient for TDE.

Interestingly, differential Doppler provides sufficient in-
formation for source localization, even without TDE, as
long as five or more sensors are available [20]. Thus the
source motion may be exploited in scenarios where TDE
is not feasible, such as narrowband signals [20].

IV. Concluding Remarks

We have presented performance bounds for time delay and
Doppler estimation when the signals received at the sensors
suffer coherence loss during propagation. The results are ap-
plicable to the localization and tracking of ground vehicles
with an aeroacoustic array of arrays. The bounds quantify
the requirements on signal coherence, signal bandwidth, ob-
servation time, and SNR such that TDE is feasible between
widely-spaced sensors. If the TDE is feasible, then improved
source localization accuracy may be possible with an array of
arrays compared with bearings-only triangulation. In contin-
uing work, we have extended the two-sensor results presented
here to H > 2 sensors, following the analysis in [21].
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