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ABSTRACT

Multiple sensor arrays distributed over a planar region
provide the means for highly accurate localization of the
(z, y) position of a source. In some applications, such as mi-
crophone arrays receiving aeroacoustic signals from ground
vehicles, random fluctuations in the air lead to frequency-
selective coherence of the signals that arrive at widely sep-
arated arrays. We present a performance analysis for local-
ization of a wideband source using multiple sensor arrays.
The wavefronts are modeled with perfect spatial coherence
over individual arrays and with frequency-selective coher-
ence between distinct arrays. The sensor signals are mod-
eled as wideband Gaussian random processes, and we study
the Cramer-Rao bound (CRB) on source localization accu-
racy for varying levels of signal coherence and for process-
ing schemes with different levels of complexity. We show
that significant improvements in source localization accu-
racy are possible when partial signal coherence from array
to array is exploited. Further, we show that a distributed
processing scheme involving bearing estimation at the in-
dividual arrays and time-delay estimation between pairs of
sensors performs nearly as well as the optimum scheme that
jointly processes the signals from all sensors. Results based
on measured aeroacoustic data are included to illustrate
frequency-selective signal coherence at distributed arrays.

1. INTRODUCTION

We are concerned with estimating the location (z.,ys) of a
wideband source using multiple sensor arrays that are dis-
tributed over an area. We consider schemes that distribute
the processing between the individual arrays and a fusion
center in order to limit the communication bandwidth be-
tween arrays and fusion center. Triangulation is a standard
approach for source localization with multiple sensor arrays.
Fach array estimates a bearing and transmits the bearing to
the fusion center, which combines the bearings to estimate
the source location (a:s, ys). Triangulation is characterized
by low communication bandwidth and low complexity, but
it ignores coherence that may be present in the wavefronts
that are received at distributed arrays. In this paper, we
investigate new approaches for source localization with mul-
tiple arrays that exploit partial coherence of the wavefronts
at distributed arrays. We show that the Cramer-Rao lower
bound (CRB) on estimating the source location is signifi-
cantly reduced when coherence from array to array is ex-
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ploited. We also evaluate the performance of suboptimum
source localization methods that employ distributed pro-
cessing to reduce the communication bandwidth between
the arrays and the fusion center. Results are presented from
processing measured aeroacoustic data to illustrate signal
coherence at distributed arrays.

Previous work on source localization with aeroacoustic
arrays has focused on angle of arrival estimation with a
single array [1]. The problem of imperfect spatial coher-
ence in the context of narrowband angle-of-arrival estima-
tion with a single array has been studied in [2]-[5]. Pau-
raj and Kailath [2] presented a MUSIC algorithm that in-
corporates the nonideal spatial coherence, assuming that
the coherence variation is known. Gershman et al. [3] pro-
vided a procedure to jointly estimate the spatial coherence
loss and the angles of arrival. Song and Ritcey [4] provide
maximum-likelihood (ML) methods for estimating the pa-
rameters of a coherence model and the angles of arrival,
and Wilson [5] incorporates physical models for the spatial
coherence. The problem of decentralized array processing
has been studied in [6]-[8]. Wax and Kailath [6] present
subspace algorithms for narrowband signals and distributed
arrays, assuming perfect spatial coherence across each array
but neglecting the spatial coherence between arrays. We-
instein [7] presents performance analysis for pairwise pro-
cessing the wideband sensor signals from a single array and
shows negligible loss in localization accuracy when the SNR
is high. Stoica, Nehorai, and Soderstrom [8] consider ML
angle of arrival estimation with a large, perfectly coherent
array that is partitioned into subarrays.

2. DATA MODEL

A model is formulated in this section for the signals re-
ceived by the sensors in distributed arrays. Consider a sin-
gle source that is located at coordinates (z, y.) in the (z, y)
plane. Then H arrays are distributed in the same plane,
as illustrated in Figure 1. The signals measured at the
distributed sensor arrays are modeled as jointly Gaussian
wideband random processes. The model is very general, and
it accounts for propagation effects between the source and
the distributed arrays, including frequency-selective spatial
coherence and different signal power levels received at each
array. The spatial coherence of the wavefronts is modeled
as being perfect over each individual array but variable be-
tween distinct arrays. This idealization allows us to study



the effect of varying coherence between arrays on source lo-
calization accuracy. Physical modeling of frequency selec-
tive coherence is discussed in [9]. The power spectral den-
sity of the source is arbitrary, allowing a range of cases to
be modeled including narrowband sources and sums of har-
monics, as well as wideband sources with continuous power
spectra.

Each array h € {1, ..., H} contains N}, sensors, and has
a reference sensor located at coordinates (a:h, yh). The loca-
tion of sensor n € {1,..., Np}is at (zrn+Azhn, yn + Aynn),
where (Amhn, Ayhn) is the relative location with respect to
the reference sensor. If ¢ is the speed of propagation, then
the propagation time from the source to the reference sensor
on array h is
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We will assume that the wavefronts are well approximated
by plane waves over the aperture of individual arrays. The
propagation time from the source to sensor n on array h
will be expressed by 7n + Thn, where
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where 73,5, is the propagation time from the reference sensor
on array h to sensor n on array h, and ¢ is the bearing of
the source with respect to array h. Note that while the far-
field approximation (2) is reasonable over individual array
apertures, the wavefront curvature that is inherent in (1)
must be retained in order to accurately model the (possibly)
wide separation between arrays.

The time signal received at sensor n on array h due to
the source will be represented as sh(t — T — Thn), where the
vector of signals s(t) = [s1(t),. .., sH(t)]T received at the
H arrays are modeled as real-valued, continuous-time, zero-
mean, wide-sense stationary, Gaussian random processes
with —oc0 < t < oo. These processes are fully specified
by the H x H cross-correlation function matrix

R.(7) = E{s(t +7)s(t)" }, (3)

where E denotes expectation, superscript T' denotes trans-
pose, and we will later use the notation superscript * and
superscript H to denote complex conjugate and conjugate
transpose, respectively. The (g, h) element in (3) is the
cross-correlation function

rs,gn(7) = E{sg(t +7) sn(t)} (4)

between the signals received at arrays g and h. The corre-
lation functions (3) and (4) are equivalently characterized
by their Fourier transforms, which are the cross-spectral
density functions and matrix

Gegn(w) = T{rsygh(f)}:/ re,gn(T)exp(—jwT) dr
G:(w) = F{R.(7)} (5)

The diagonal elements G nn(w) of (5) are the power spec-
tral density (PSD) functions of the signals sp(t), and hence

they describe the distribution of average signal power with
frequency. The model allows the average signal power to
vary from one array to another. Indeed, the PSD may even
vary from one array to another to reflect propagation differ-
ences, source aspect angle differences, and other effects that
lead to coherence degradation in the signals at distributed
arrays.

Let us elaborate the definition and the meaning of co-
herence between the signals s4(t) and si(t) received at dis-
tinct arrays g and h. In general, the cross-spectral density
function (5) can be expressed in the form

Gagn(w) = Yo,0n(w) [Gegg(w)Gapn(@)]'?,  (6)

where v, gn(w) is the spectral coherence function, which has
the property 0 < |vsgn(w)| < 1. The coherence function
Ye,gh(w) is generally complex-valued, but we will model it
as real-valued. This is a reasonable assumption for acoustic
propagation environments in which the loss of coherence is
due to random changes in the apparent source location, as
long as the change in apparent source location is the same
at both arrays g and h [5, 9].

We model the signal received at sensor n on array h as
a sum of the delayed source signal and noise,

Zhn () = sn(t — Th — Thn) + wan(t), (7)

where the noise signals whn(t) are modeled as real-valued,
continuous-time, zero-mean, wide-sense stationary, Gaus-
sian random processes that are uncorrelated at distinct sen-
sors. The noise correlation properties are

E{wgm(t + m)wnn(t)} = rw(7) dgndmn, (8)

where Tw(T) is the noise autocorrelation function, and the
noise power spectral density is Gu(w) = F{ru(r)}. We
then collect the observations at each array h into Np x 1
vectors zp(t) = [zn1(t), ..., znn, (£)]F forh =1,..., H, and
we further collect the observations from the H arrays into
a(Ni+- -4+ Ng) x 1 vector

zt)=[ m®" ... 20" ] (9)
The elements of Z(t) in (9) are zero-mean, wide-sense sta-
tionary, Gaussian random processes. We can express the
cross-spectral density matrix of Z(t) in a convenient form
with the following definitions. The array manifold for array
h at frequency w is

exp(—JjwTh1)
an(w) = ; (10)
exp(—Jjwth, N, )

exp []% ((cos ¢n)Azp1 + (sin th:)Ayhl:)]

exp []% ((cos pn)Azn, N, + (sin dn)Ayn n, )]

using Thn from (2) and assuming that the sensors have om-
nidirectional response to sources in the plane of interest.
Let us define the relative time delay of the signal at arrays
g and h as Dy, = 7y — 74 , where 7, is defined in (1). Then
the cross-spectral density matrix of Z(t) in (9) has the form
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Figure 1: Geometry of source location and H distributed sensor arrays. A communication link is available between each

array and the fusion center.

shown in (11) in Figure 2.  Recall that the source cross-
spectral density functions G gn(w) in (11) can be expressed
in terms of the spectral coherence vs gn(w) using (6).

Note that (11) depends on the source location parame-
ters (zs,ys) through an(w) and Dgy,. However, (11) points
out that the observations are also characterized by the bear-
ings ¢1,...,¢n to the source from the individual arrays and
the relative time delays Dgn between pairs of arrays. There-
fore, one way to estimate the source location (z¢,ys) is to
first estimate the bearings ¢1, ..., ¢x and the pairwise time
delays Dgy,.

3. CRBS ON LOCALIZATION ACCURACY

The problem of interest is to estimate the source location
parameter vector @ = [z, ys]T using T' samples of the sen-
sor signals Z(0), Z(Ts),...,Z((T — 1) - T¢), where T is the
sampling period. Let us denote the sampling rate by f. =
1/Ts and ws = 27 fs. We will assume that the continuous-
time random processes Z(t) are band-limited, and that the
sampling rate f. is greater than twice the bandwidth of
the processes. Then Friedlander [10] has shown that the
Fisher information matrix (FIM) J for the parameters ©
based on the samples Z(0), Z(Ts),...,Z((T — 1) - Ts) has
elements J;; shown in (12) in Figure 2. The CRB matrix
C = J7! then has the property that the covariance ma-
trix of any unbiased estimator © satisfies Cov(®) — C > 0,
where > 0 means that Cov(é:) — C is positive semidefinite.
The CRB provides a lower bound on the performance of
any unbiased estimator. Equation (12) provides a conve-
nient way to compute the FIM for the distributed sensor
array model. It provides a powerful tool for evaluating the
impact that various parameters have on source localization
accuracy. Parameters of interest include the spectral coher-
ence between distributed arrays, the signal bandwidth and
power spectrum, the array placement geometry, and the
SNR. The FIM in (12) is not easily evaluated analytically,
but it is readily evaluated numerically for cases of interest.
The FIM expression (12) can be specialized for two impor-
tant cases. With H = 2 arrays containing N1 = N> = 1 sen-
sor each, we obtain a generalization of the classic time delay
estimation problem [11] with partial signal coherence at the
sensors. For arbitrary number of arrays H and Ny, ..., Ng,

we can specialize (12) for sources with a narrowband power
spectrum.

The CRB based on (12) provides a performance bound
on source location estimation methods that jointly process
all the data from all the sensors. Such processing provides
the best attainable results, but it also requires significant
communication bandwidth to transmit data from the in-
dividual arrays to the fusion center. We have developed
performance bounds for schemes that perform bearing es-
timation at the individual arrays in order to reduce the
required communication bandwidth to the fusion center.
These CRBs facilitate a study of the tradeoff between source
location accuracy and communication bandwidth between
the arrays and the fusion center. Two methods are consid-
ered [12]:

1. Ordinary triangulation, where each array estimates
the source bearing and transmits the bearing esti-
mate to the fusion center. This approach does not
exploit wavefront coherence between the distributed
arrays, but it minimizes the communication band-
width between the arrays and the fusion center.

2. Each array estimates the source bearing and trans-
mits the bearing estimate to the fusion center. In
addition, the raw data from one sensor in each ar-
ray is transmitted to the fusion center. The fusion
center then estimates the propagation time delay be-
tween pairs of distributed arrays, and triangulates
these time delay estimates with the bearing estimates
to localize the source.

Method 2 performs nearly as well as optimum joint process-

ing if the SNR is high enough.

4. EXAMPLES

We present an example that illustrates the potential im-
provement in source localization accuracy when coherence
between the distributed arrays is exploited. Consider a
scenario with H = 3 arrays, where the individual arrays
are identical and contain N1 = Ny = N3 = 7 sensors.
Each array is circular and has 4-ft radius, with six sen-
sors equally spaced around the perimeter and one sensor
in the center. Narrowband processing in a 1-Hz band cen-
tered at 50 Hz is assumed, with an SNR of 10 dB at each



sensor, i.e., Gspn(w)/Gw(w) = 10 for h = 1,..., H and
27(49.5) < w < 27(50.5) rad/sec. The signal coherence
Ye,gh(w) = vs(w) is varied between 0 and 1. We assume that
T = 4000 time samples are obtained at each sensor with
sampling rate fs = 2000 samples/sec. The source localiza-
tion performance is evaluated by computing the radius of
the ellipse in (z,y) coordinates that satisfies the expression

[x y]J

in (z,y) localization are jointly Gaussian distributed, then
the ellipse represents the contour at one standard devia-
tion in root-mean-square (RMS) error. The error ellipse for
any unbiased estimator of source location cannot be smaller
than this ellipse derived from the FIM.

T = 1, where J is the FIM. If the errors

The H = 3 arrays are located at coordinates (z1,y1) =
(0,0), (z2,y2) = (400,400), (zs,ys) = (100,0), and one
source is located at (z¢,ys) = (200, 300), where the units
are meters. Figure 3a shows the ellipse radius for various
values of the signal coherence v.(w). Note that a significant
improvement in localization accuracy is potentially possible
with the small value of coherence v:(w) = 0.1, and the CRB
gets smaller as the coherence increases. Note also that the
localization scheme 2 described above (bearing plus time-
delay estimation) may perform as well as the optimum, joint
processing scheme.

The CRB results in Figure 3a indicate that even small
amounts of signal coherence between widely distributed ar-
rays provide the potential for significant improvement in
source localization accuracy. We point out that the CRB
results for time-delay estimation in this case are optimistic
due to the narrowband model for the observations. With
narrowband signals at 50 Hz, the time delays are resolvable
only within the interval of one period of (50 Hz)™! = 0.02
sec. The CRB assumes that the ambiguities on the order
of 0.02 seconds are resolved by an unbiased estimator. This
ambiguity in time-delay estimation can be reduced by ex-
ploiting the wideband nature of the signals.

Next we present results from measured aeroacoustic data
to illustrate typical values of signal coherence at distributed
arrays. The experimental setup is illustrated in Figure 3b,
which shows the path of a moving ground vehicle and the lo-
cations of four microphone arrays (labeled 1, 3, 4, 5). Each
array is circular with N = 7 sensors, 4-ft radius, and six sen-
sors equally spaced around the perimeter with one sensor
in the center. We focus on the 10 second segment indicated
by the ¢’sin Figure 3b. Figure 3c shows the power spectral
density (PSD) of the data measured at arrays 1 and 3 dur-
ing the 10 second segment. Note the dominant harmonic at
40 Hz. Figure 3d shows the estimated coherence between
arrays 1 and 3 during the 10 second segment. The coher-
ence is approximately 0.85 at 40 Hz, which demonstrates
the presence of significant coherence at widely-separated
microphones. Exploiting this coherence has the potential
for improved source localization accuracy, as illustrated in
the CRBs of Figure 3a. The Doppler effect due to source
motion was compensated prior to the coherence estimate
shown in Figure 3d.
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Figure 2: Cross-spectral density matrix Gz(w) of Z(#) in (9), and FIM J for parameters @ = [z, y]”.

CRB ON ELLIPSE "RADIUS": H = 3 ARRAYS

45

40f

35

N
a
T

RMS ERROR (m)
N
=]
T

-
o
T

10r

O JOINT PROCESSING
- BEARING + TD EST. 7

&
& % s

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
COHERENCE

(a)

MEAN PSD, ARRAY 1

65

100 150 200 250 300
FREQUENCY (Hz)

MEAN PSD, ARRAY 3

80

60 L
0

100 150 200 250 300
FREQUENCY (Hz)

()

9900

9800

9700

NORTH (m)
© ©
aQ =
Q =1
=] =]

9400

9300

9200

GROUND VEHICLE PATH AND ARRAY LOCATIONS

T | E———

340 - 350 SEC

1 0

— VEHICLE PATH
—— 10 SEC SEGMENT
O ARRAY 1

ARRAY 3

ARRAY 4

ARRAY 5

+ x ¥

5+

I
7100

I I I I
7600 7700 7800 7900

EAST (m)
(b)

MEAN SHORT-TIME SPECTRAL COHERENCE, ARRAYS 1 & 3

I I I I
7200 7300 7400 7500

I I
8000 8100

COHERENCE |y{

50 100 150 200 250

FREQUENCY (Hz)

(d)

300

Figure 3: (a) CRBs on RMS source localization error for a scenario with H = 3 arrays and one source. (b) Path of ground
vehicle and array locations for measured data. (c) Mean power spectral density (PSD) at arrays 1 and 3 estimated from
measured data over the 10 second segment < in (b). Top panel is G 11(f), bottom panel is G, 33(f). (d) Mean spectral
coherence ’75713(f) estimated over the 10 second segment.



