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1 Introduction

Passive sensing of acoustic sources is attractive in many respects, including the relatively low signal

bandwidth of sound waves, the loudness of most sources of interest, and the inherent difficulty of

disguising or concealing emitted acoustic signals. The availability of inexpensive, low-power sensing

and signal processing hardware enables application of sophisticated real-time signal processing.

Among the many applications of aeroacoustic sensors, we focus in this chapter on detection and

localization of ground and air (both jet and rotary) vehicles from ground-based sensor networks.

Tracking and classification are briefly considered as well.

Elaborate, aeroacoustic systems for passive vehicle detection were developed as early as World

War I [1]. Despite this early start, interest in aeroacoustic sensing has generally lagged other tech-

nologies until the recent packaging of small microphones, digital signal processing, and wireless

communications into compact, unattended systems. An overview of modern outdoor acoustic sens-

ing is presented by Becker and Güdesen [2]. Experiments in the early 1990’s, such as those described

by Srour and Robertson [3], demonstrated the feasibility of network detection, array processing,

localization, and multiple target tracking via Kalman filtering. Many of the fundmental issues and

challenges described by Srour and Robertson remain relevant today.

Except at very close range, the typical operating frequency range we consider is roughly 30 to

250 Hz. Below 30 Hz (the infrasonic regime), wavelengths are greater than 10 m so that rather

large arrays may be required. Furthermore, wind noise (random pressure fluctuations induced by

atmospheric turbulence) reduces the observed signal-to-noise ratio (SNR) [2]. At frequencies above

several hundred Hz, molecular absorption of sound and interference between direct and ground-

reflected waves attenuate received signals significantly [4]. In effect, the propagation environment

acts as a low pass filter; this is particularly evident at longer ranges.

Aeroacoustics is inherently an ultra-wideband array processing problem, e.g., operating in

[30, 250] Hz yields a 157% fractional bandwidth centered at 140 Hz. To process under the nar-

row band array assumptions will require the fractional bandwidth to be on the order of a few

percent or less, limiting the bandwidth to perhaps a few Hz in this example. The wide bandwidth

significantly complicates the array signal processing, including angle-of-arrival (AOA) estimation,

wideband Doppler compensation, beamforming, and blind source separation (which becomes con-

volutional).

The typical source of interest here has a primary contribution due to rotating machinery (en-

gines), and may include tire and/or exhaust noise, vibrating surfaces, and other contributions.
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Internal combustion engines typically exhibit a strong sum of harmonics acoustic signature tied to

the cylinder firing rate, a feature that can be exploited in virtually all phases of signal process-

ing. Tracked vehicles also exhibit tread slap, which can produce very strong spectral lines, while

helicopters produce strong harmonic sets related to the blade rotation rates. Turbine engines, on

the other hand, exhibit a much more smoothly broad spectrum and consequently call for different

algorithmic approaches in some cases. Many heavy vehicles and aircraft are quite loud and can be

detected from ranges of several km or more. Ground vehicles may also produce significant seismic

waves, although we do not consider multi-modal sensing or sensor fusion here.

The problem is also complicated by time-varying factors that are difficult to model, such as

source signature variations resulting from acceleration/deceleration of vehicles, changing meteo-

rological conditions, multiple soft and loud sources, aspect angle source signature dependency,

Doppler shifts (with 1-Hz shifts at a 100-Hz center frequency not unusual), multipath, and so on.

Fortunately, at least for many sources of interest, a piecewise stationary model is reasonable on time

scales of one second or less, although fast moving sources may require some form of time-varying

model.

Sensor networks of interest are generally connected with wireless links, and are battery powered.

Consequently, the node power budget may be dominated by the communications (radio). There-

fore, a fundamental design question is how to perform distributed processing in order to reduce

communication bandwidth, while achieving near optimal detection, estimation, and classification

performance. We focus on this question, taking the aeroacoustic environment into account.

In particular, we consider the impact of random atmospheric inhomogeneities (primarily thermal

and wind variations caused by turbulence) on the ability of an aeroacoustic sensor network to

localize sources. Given that turbulence induces acoustical index-of-refraction variations several

orders of magnitude greater than corresponding electromagnetic variations [5], this impact is quite

significant. Turbulent scattering of sound waves causes random fluctuations in signals as observed

at a single sensor, with variations occurring on time scales from roughly one to hundreds of seconds

in our frequency range of interest [6, 7, 8]. Scattering is also responsible for losses in the observed

spatial coherence measured between two sensors [9, 10, 11]. The scattering may be weak or strong,

which are analogous to Rician and Rayleigh fading in radio propagation, respectively.

The impact of spatial coherence loss is significant, and generally becomes worse with increasing

distance between sensors. This effect, as well as practical size constraints, limits individual sensor

node array apertures to perhaps a few meters. At the same time, the acoustic wavelengths λ of
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interest are about 1 to 10 m (λ = (330 m/s)/(30 Hz) = 11 m at 30 Hz, and λ = 1.32 m at 250 Hz).

Thus, the typical array aperture will only span a fraction of a wavelength, and accurate AOA

estimation requires wideband superresolution methods. The source may generally be considered to

be in the far field of these small arrays. Indeed, if it is in the near field, then the rate of change of

the AOA as the source moves past the array must be considered.

The signal-coherence characteristics suggest deployment of multiple, small-baseline arrays as

nodes within an overall large-baseline array (see Figure 7 in Section 3.2). The source is intended

to be in the near-field of the large-baseline array. Exploitation of this larger baseline is highly

desirable, as it potentially leads to very accurate localization. We characterize this problem in

terms of the atmosphere-induced spatial coherence loss, and show fundamental bounds on the

ability to localize a source in such conditions. This leads to a family of localization approaches,

spanning triangulation (which minimizes inter-node communication), to time-delay estimation, to

fully centralized processing (which maximizes communication use and is therefore undesirable).

The achievable localization accuracy depends on both the propagation conditions and the time-

bandwidth product of the source.

The chapter is organized as follows. In Section 2 we introduce the wideband source array signal

processing model, develop the atmospheric scattering model, and incorporate the scattering into

the array model. We consider array signal processing in Section 3, including narrowband AOA

estimation with scattering present. We review wideband AOA estimation techniques, and high-

light various aeroacoustic wideband AOA experiments. Next, we consider localization with multi-

ple nodes (arrays) in the presence of scattering. We develop fundamental and tight performance

bounds on time delay estimation in the turbulent atmosphere, as well as bounds on localization.

Localization performance is illustrated via simulation and experiments. We then briefly consider

the propagation impact on detection and classification. Finally, in Section 4 we consider some

emerging aspects and open questions.

2 Models for Source Signals and Propagation

In this section, we present a general model for the signals received by an aeroacoustic sensor array.

We begin by briefly considering models for the signals emitted by ground vehicles and aircraft in

Section 2.1. Atmospheric phenomena affecting propagation of the signal are also summarized. In

Section 2.2, we consider the simplest possible case for the received signals: a single nonmoving

source emits a sinusoidal waveform, and the atmosphere induces no scattering (randomization of
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the signal). Then in Section 2.3, we extend the model to include the effects of scattering, and in

Section 2.4, approximate models for the scattering as a function of source range, frequency, and

atmospheric conditions are presented. The model is extended to multiple sources and multiple

frequencies (wideband) in Section 2.5.

2.1 Basic considerations

As we noted in the Introduction, the sources of interest typically have spectra that are harmonic

lines, or have relatively continuous broadband spectra, or some combination. The signal processing

for detection, localization, and classification is highly dependent on whether the source spectrum is

harmonic or broadband. For example, broadband sources allow time-difference of arrival processing

for localization, while harmonic sources allow differential Doppler estimation.

Various deterministic and random source models may be employed. Autoregressive (AR) pro-

cesses are well suited to modeling sums of harmonics, at least for the case of a single source, and

may be used for detection, Doppler estimation, filtering, AOA estimation, and so on [12, 13, 14].

Sum of harmonic models, with unknown harmonic structure, lead naturally to detection tests in

the frequency domain [15].

More generally, a Gaussian random process model may be employed to describe both harmonic

sets and wideband sources [16]; we adopt such a point of view here. We also assume a piecewise

stationary (quasi-static) viewpoint: although the source may actually be moving, the processing

interval is assumed to be short enough that the signal characteristics are nearly constant.

Four phenomena are primarily responsible for modifying the source signal to produce the actual

signal observed at the sensor array:

1. The propagation delay from the source to the sensors.

2. Random fluctuations in the amplitude and phase of the signals caused by scattering from

random inhomogeneities in the atmosphere such as turbulence.

3. Additive noise at the sensors caused by thermal noise, wind noise, and directional interference.

4. Transmission loss caused by spreading of the wavefronts, refraction by wind and temperature

gradients, ground interactions, and molecular absorption of sound energy.

Thermal noise at the sensors is typically independent from sensor to sensor. In contrast, inter-

ference from an undesired source produces additive noise that is (spatially) correlated from sensor

to sensor. Wind noise, which consists of low-frequency turbulent pressure fluctuations intrinsic to
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the atmospheric flow (and, to a lesser extent, flow distortions induced by the microphone itself

[17, 2]), exhibits high spatial correlation over distances of several meters [18].

The transmission loss (TL) is defined as the diminishment in sound energy from a reference value

Sref, which would hypothetically be observed in free space at 1 m from the source, to the actual

value observed at the sensor S. To a first approximation, the sound energy spreads spherically;

that is, it diminishes as the inverse of the squared distance from the source. In actuality the TL for

sound wave propagating near the ground involves many complex, interacting phenomena, so that

the spherical spreading condition is rarely observed in practice, except perhaps within the first 10

to 30 m [4]. Fortunately, several well refined and accurate numerical procedures for calculating

TL have been developed [19]. For simplicity, here we model S as a deterministic parameter, which

is reasonable when the state of the atmosphere does not change dramatically during the data

collection.

Particularly significant to the present discussion is the second phenomenon in the preceding list,

namely scattering by turbulence. The turbulence consists of random atmospheric motions occurring

on time scales from seconds to several minutes. Scattering from these motions causes random

fluctuations in the complex signals at the individual sensors and diminishes the cross coherence

of signals between sensors. The effects of scattering on array performance will be analyzed in

Sections 2.2 and 2.4.

The sinusoidal source signal that is measured at the reference distance of 1 m from the source

is written

sref(t) =
√

Sref cos(2πfot + χ), (1)

where the frequency of the tone is fo = ωo/(2π) Hz, the period is To sec, the phase is χ, and the

amplitude is
√

Sref. The sound waves propagate with wavelength λ = c/fo, where c is the speed of

sound. The wavenumber is k = 2π/λ = ωo/c. We will represent sinusoidal and narrowband signals

by their complex envelope, which may be defined in two ways, as in (2):

C{sref(t)} = s̃ref(t) = s
(I)
ref(t) + j s

(Q)
ref (t) = [sref(t) + j H{sref(t)}] exp (−j2πfot) (2)

=
√

Sref exp (jχ) . (3)

We will represent the complex envelope of a quantity with the notation C{·} or (̃·), the in-phase

component with (·)(I), the quadrature component with (·)(Q), and the Hilbert transform with H{·}.

The in-phase (I) and quadrature (Q) components of a signal are obtained by the processing in

Figure 2. The FFT is often used to approximate the processing in Figure 2 for a finite block of
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data, where the real and imaginary parts of the FFT coefficient at frequency fo are proportional

to the I and Q components, respectively. The complex envelope of the sinusoid in (1) is given by

(3), which is not time-varying, so the average power is |s̃ref(t)|2 = Sref.

It is easy to see for the sinusoidal signal (1) that shifting sref(t) in time causes a phase shift in the

corresponding complex envelope, i.e., C{sref(t− τo)} = exp(−j2πfoτo) s̃ref(t). A similar property is

true for narrowband signals whose frequency spectrum is confined to a bandwidth B Hz around a

center frequency fo Hz, where B � fo. For a narrowband signal z(t) with complex envelope z̃(t),

a shift in time is well-approximated by a phase shift in the corresponding complex envelope,

C{z(t − τo)} ≈ exp(−j2πfoτo) z̃(t) (narrowband approximation). (4)

Equation (4) is the well-known Fourier transform relationship between shifts in time and phase shifts

that are linearly proportional to frequency. The approximation is accurate when the frequency band

is narrow enough so that the linearly increasing phase shift is close to exp(−j2πfoτo) over the band.

The source and array geometry is illustrated in Figure 1. The source is located at coordinates

(xs, ys) in the (x, y) plane. The array contains N sensors, with sensor n located at (xo + ∆xn, yo +

∆yn), where (xo, yo) is the center of the array and (∆xn,∆yn) is the relative sensor location. The

propagation time from the source to the array center is

τo =
do

c
=

1
c

[
(xs − xo)2 + (ys − yo)2

]1/2
, (5)

where do is the distance from the source to the array center. The propagation time from the source

to sensor n is

τn =
dn

c
=

1
c

[
(xs − xo − ∆xn)2 + (ys − yo − ∆yn)2

]1/2
. (6)

Let us denote the array diameter by L = max{ρmn}, where ρmn is the separation between sensors

m and n, as shown in Figure 1. The source is in the far-field of the array when the source distance

satisfies do � L2/λ, in which case (6) may be approximated with the first term in the Taylor series

(1 + u)1/2 ≈ 1 + u/2. Then τn ≈ τo + τo,n with error that is much smaller than the source period,

To, where

τo,n = −1
c

[
xs − xo

do
∆xn +

ys − yo

do
∆yn

]
= −1

c
[(cos φ)∆xn + (sin φ)∆yn] . (7)

The angle φ is the azimuth bearing, or angle of arrival (AOA), as shown in Figure 1. In the far-field,

the spherical wavefront is approximated as a plane wave over the array aperture, so the bearing

φ contains the available information about the source location. For array diameters L < 2 m and
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tone frequencies fo < 200 Hz so that λ > 1.5 m, the quantity L2/λ < 2.7 m. Thus the far-field

is valid for source distances on the order of 10’s of meters. For smaller source distances and/or

larger array apertures, the curvature of the wavefront over the array aperture must be included in

τn according to (6). We develop the model for the far-field case in the next section. However, the

extension to the near-field is easily accomplished by redefining the array response vector (a in (20))

to include the wavefront curvature with an = exp(−j2πfoτn).

2.2 Narrowband model with no scattering

Here we present the model for the signals impinging on the sensor array when there is no scattering.

Using the far-field approximation, the noisy measurements at the sensors are

zn(t) = sn (t − τo − τo,n) + wn(t), n = 1, . . . , N. (8)

In the absence of scattering, the signal components are pure sinusoids,

sn(t) =
√

S cos (2πfot + χ) . (9)

The wn(t) are additive, white, Gaussian noise (AWGN) processes that are real-valued, continuous-

time, zero-mean, jointly wide-sense stationary, and mutually uncorrelated at distinct sensors with

power spectral density (PSD) (No/2) W/Hz. That is, the noise correlation properties are

E{wn(t)} = 0, −∞ < t < ∞, n = 1, . . . , N (10)

rw,mn(ξ) = E{wm(t + ξ)wn(t)} = rw(ξ) δmn, (11)

where E{·} denotes expectation and rw(ξ) = (No/2) δ(ξ) is the noise autocorrelation function that

is common at all sensors. The Dirac delta function is δ(·), and the Kronecker delta function is

δmn = 1 if m = n and 0 otherwise. As noted above, modeling the noise as spatially white may be

inaccurate if wind noise or interfering sources are present in the environment. The noise PSD is

Gw(f) = F{rw(ξ)} =
No

2
, (12)

where F{·} denotes Fourier transform. With no scattering, the complex envelope of zn(t) in (8)

and (9) is, using (4),

z̃n(t) = exp [−j (ωoτo + ωoτo,n)] s̃n(t) + w̃n(t)

=
√

S exp [j (χ − ωoτo)] exp [−j ωoτo,n] + w̃n(t), (13)
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where the complex envelope of the narrowband source component is

s̃n(t) =
√

S ejχ, n = 1, . . . , N (no scattering). (14)

We assume that the complex envelope is lowpass filtered with bandwidth from [−B/2, B/2] Hz,

e.g., as in Figure 2. Assuming that the lowpass filter is ideal, the complex envelope of the noise,

w̃n(t), has PSD and correlation

Gw̃(f) = (2No) rect
(

f

B

)
(15)

rw̃(ξ) = E{w̃n(t + ξ)w̃n(t)∗} = F−1 {Gw̃(f)} = (2NoB) sinc (Bξ) (16)

rw̃,mn(ξ) = E{w̃m(t + ξ)w̃n(t)∗} = rw̃(ξ) δmn, (17)

where (·)∗ denotes complex conjugate, rect(u) = 1 for −1/2 < u < 1/2 and 0 otherwise, and

sinc(u) = sin(πu)/(πu). Note that the noise samples are uncorrelated (and independent since

Gaussian) at sample times spaced by 1/B sec. In practice, the noise PSD Gw̃(f) is neither flat nor

perfectly band-limited as in (15). However, the lowpass filtering to bandwidth B Hz implies that

the noise samples have decreasing correlation for time spacing greater than 1/B sec.

Let us define the vectors

z̃(t) =

 z̃1(t)
...

z̃N (t)

 , s̃(t) =

 s̃1(t)
...

s̃N (t)

 , w̃(t) =

 w̃1(t)
...

w̃N (t)

 . (18)

Then using (13) with (7),

z̃(t) =
√

S exp [j (χ − ωoτo)] a + w̃(t) =
√

S ejθ a + w̃(t), (19)

where a is the array steering vector (or array manifold)

a =

 exp [j k ((cos φ)∆x1 + (sin φ)∆y1)]
...

exp [j k ((cos φ)∆xN + (sin φ)∆yN )]

 (20)

with k = ωo/c. Note that the steering vector, a, depends on the frequency ωo, the sensor lo-

cations (∆xn,∆yn), and the source bearing φ. The common phase factor at all of the sensors,

exp [j (χ − ωoτo)] = exp [j (χ − kdo)], depends on the phase of the signal emitted by the source (χ)

and the propagation distance to the center of the array (kdo). We simplify the notation and define

θ
�
= χ − kdo, (21)

which is a deterministic parameter.
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In preparation for the introduction of scattering into the model, let us write expressions for

the first- and second-order moments of the vectors s̃(t) and z̃(t). Let 1 be an N × 1 vector of

1’s, Rz̃(ξ) = E{z̃(t + ξ) z̃(t)†} be the N ×N cross-correlation function matrix with (m,n) element

rz̃,mn(ξ) = E{z̃m(t+ξ)z̃n(t)∗}, and Gz̃(f) = F {Rz̃(ξ)} be the cross-spectral density (CSD) matrix,

then

E{s̃(t)} =
√

S ejχ 1 E{z̃(t)} =
√

S ejθ a (22)

Rs̃(ξ) = S 11T Rz̃(ξ) = S aa† + rw̃(ξ) I (23)

Gs̃(f) = S 11T δ(f) Gz̃(f) = S aa† δ(f) + Gw̃(f) I (24)

E{s̃(t)̃s(t)†} = Rs̃(0) = S 11T E{z̃(t)z̃(t)†} = Rz̃(0) = S aa† + σ2
w̃ I, (25)

where (·)T denotes transpose, (·)∗ denotes complex conjugate, (·)† denotes complex conjugate trans-

pose, I is the N × N identity matrix, and σ2
w̃ is the variance of the noise samples,

σ2
w̃ = E

{
|w̃(t)|2

}
= rw̃(0) = 2NoB. (26)

Note from (24) that the PSD at each sensor contains a spectral line since the source signal is

sinusoidal. Note from (25) that at each sensor, the average power of the signal component is S, so

the signal to noise ratio (SNR) at each sensor is

SNR =
S

σ2
w̃

=
S

2NoB
. (27)

The complex envelope vector z̃(t) is typically sampled at a rate fs = B samples/sec, so the

samples are spaced by Ts = 1/fs = 1/B sec,

z̃(iTs) =
√

S ejθ a + w̃(iTs), i = 0, . . . , T − 1. (28)

According to (17), the noise samples are spatially independent as well as temporally independent,

since rw̃(iTs) = rw̃(i/B) = 0. Thus the vectors z̃(0), z̃(Ts), . . . , z̃((T −1)Ts) in (28) are independent

and identically distributed (iid) with complex normal distribution, which we denote by z̃(iTs) ∼

CN(mz̃,Cz̃), with mean and covariance matrix

mz̃ =
√

S ejθ a and Cz̃ = σ2
w̃ I (no scattering). (29)

The joint probability density function for CN (mz̃,Cz̃) is given by [20]

f (z̃) =
1

πNdet (Cz̃)
exp

[
− (z̃ − mz̃)

† C−1
z̃ (z̃− mz̃)

]
, (30)
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where “det” denotes determinant. In the absence of scattering, the information about the source

location (bearing) is contained in the mean of the sensor observations. If the T time samples

in (28) are coherently averaged, then the resulting SNR per sensor is T times that in (27), so

SNR′ = T · (S/σ2
w̃) = T · [S/(2No/Ts)] = T · S/(2No), where T = T · Ts is the total observation

time, in seconds.

2.3 Narrowband model with scattering

Next, we include the effects of scattering by atmospheric turbulence in the model for the signals

measured at the sensors in the array. As mentioned earlier, the scattering introduces random

fluctuations in the signals and diminishes the cross coherence between the array elements. The

formulation we present for the scattering effects was developed by Wilson, Collier and others [21,

22, 23, 11, 24, 25, 26]. The reader may refer to these studies for details about the physical modeling

and references to additional primary source material. Several assumptions and simplifications are

involved in the formulation: (1) the propagation is line-of-sight (no multipath), (2) the additive

noise is independent from sensor to sensor, and (3) the random fluctuations caused by scattering

are complex, circular, Gaussian random processes with partial correlation between the sensors.

The line-of-sight propagation assumption is consistent with Section 2.2 and is reasonable for

propagation over fairly flat, open terrain in the frequency range of interest here (below several

hundred Hz). Significant acoustic multipath may result from reflections off hard objects such as

buildings, trees, and (sometimes) the ground. Multipath can also result from refraction of sound

waves by vertical gradients in the wind and temperature.

By assuming independent, additive noise, we ignore the potential spatial correlation of wind

noise and interference from other undesired sources. This restriction may be averted by extending

the models to include spatially-correlated additive noise, although the signal processing may be

more complicated in this case.

Modeling of the scattered signals as complex, circular, Gaussian random processes is a substan-

tial improvement on the constant signal model (Section 2.2), but it is, nonetheless, rather idealized.

Waves that have propagated through a random medium can exhibit a variety of statistical behav-

iors, depending on such factors as the strength of the turbulence, the propagation distance, and

the ratio of the wavelength to the predominant eddy size [27, 5]. Experimental studies [28, 29, 8]

conducted over short horizontal propagation distances with frequencies below 1000 Hz demonstrate

that the effect of turbulence is highly significant, with phase variations much larger than 2π rad

and deep fades in amplitude often developing. The measurements demonstrate that the Gaussian
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model is valid in many conditions, although non-Gaussian scattering characterized by large phase

but small amplitude variations is observed at some frequencies and propagation distances. The

Gaussian model applies in many cases of interest, and we apply it in this chapter. The effect of

non-Gaussian signal scattering on aeroacoustic array performance remains to be determined.

The scattering modifies the complex envelope of the signals at the array by spreading a portion

of the power from the (deterministic) mean component into a zero-mean random process with a

PSD centered at 0 Hz. We assume that the bandwidth of the scattered signal, which we denote

by B, is much smaller than the tone frequency, fo. The saturation parameter [26, 25], denoted by

Ω ∈ [0, 1], defines the fraction of average signal power that is scattered from the mean into the

random component. The scattering may be weak (Ω ≈ 0) or strong (Ω ≈ 1), which are analogous

to Rician and Rayleigh fading in the radio propagation literature. The modification of (8), (9),

(13), and (14) to include scattering is as follows, where z̃n(t) is the signal measured at sensor n:

z̃n(t) = exp [−j (ωoτo + ωoτo,n)] s̃n(t) + w̃n(t) (31)

s̃n(t) =
√

(1 − Ω)S ejχ + ṽn(t) ejχ, n = 1, . . . , N (with scattering). (32)

In order to satisfy conservation of energy with E{|s̃n(t)|2} = S, the average power of the scattered

component must be E{|ṽn(t)|2} = Ω S. The value of the saturation Ω and the correlation properties

of the vector of scattered processes, ṽ(t) = [ṽ1(t), . . . , ṽN (t)]T , depend on the source distance (do)

and the meteorological conditions. The vector of scattered processes ṽ(t) and the additive noise

vector w̃(t) contain zero-mean, jointly wide-sense stationary, complex, circular Gaussian random

processes. The scattered processes and the noise are modeled as independent, E{ṽ(t+ξ)w̃(t)†} = 0.

The noise is described by (15)-(17), while the saturation Ω and statistics of ṽ(t) are determined

by the “extinction coefficients” of the first and second moments of s̃(t). As will be discussed

in Section 2.4, approximate analytical models for the extinction coefficients are available from

physical modeling of the turbulence in the atmosphere. In the remainder of this section, we define

the extinction coefficients and relate them to Ω and the statistics of ṽ(t), thereby providing models

for the sensor array data that include turbulent scattering by the atmosphere.

We denote the extinction coefficients for the first and second moments of s̃(t) by µ and ν(ρmn),

respectively, where ρmn is the distance between sensors m and n (see Figure 1). The extinction

coefficients are implicitly defined as follows:

E{s̃n(t)} =
√

(1 − Ω)S ejχ �
=

√
S ejχ e−µdo (33)

rs̃,mn(0) = E{s̃m(t)s̃n(t)∗} = (1 − Ω)S + rṽ,mn(0)
�
= S e−ν(ρmn)do (34)

11



where

rs̃,mn(ξ) = E{s̃m(t + ξ)s̃n(t)∗} = (1 − Ω)S + rṽ,mn(ξ). (35)

The right sides of (33) and (34) are the first and second moments without scattering, from (22)

and (23), respectively, multiplied by a factor that decays exponentially with increasing distance do

from the source. From (33), we obtain

√
(1 − Ω) = e−µdo and Ω = 1 − e−2µdo . (36)

Also, by conservation of energy with m = n in (34), adding the average powers in the unscattered

and scattered components of s̃n(t) must equal S, so

rs̃(0) = E {|s̃n(t)|} = e−2µdoS + rṽ(0) = S (37)

=⇒ rṽ(0) = E {|ṽn(t)|} =
∫ ∞

−∞
Gṽ(f) df =

(
1 − e−2µdo

)
S = Ω S, (38)

where rṽ(ξ) = E{ṽn(t + ξ)ṽn(t)∗} is the autocorrelation function (which is the same for all n) and

Gṽ(f) is the corresponding PSD. Therefore for source distances do � 1/(2µ), the saturation Ω ≈ 0

and most of the energy from the source arrives at the sensor in the unscattered (deterministic

mean) component of s̃n(t). For source distances do � 1/(2µ), the saturation Ω ≈ 1 and most of

the energy arrives in the scattered (random) component.

Next, we use (34) to relate the correlation of the scattered signals at sensors m and n, rṽ,mn(ξ),

to the second moment extinction coefficient, ν(ρmn). Since the autocorrelation of ṽn(t) is identical

at each sensor n and equal to rṽ(ξ), and assuming that the PSD Gṽ(f) occupies a narrow bandwidth

centered at 0 Hz, the cross-correlation and cross-spectral density satisfy

rṽ,mn(ξ) = γmn rṽ(ξ) and Gṽ,mn(f) = F{rṽ,mn(ξ)} = γmnGṽ(f), (39)

where |γmn| ≤ 1 is a measure of the coherence between ṽm(t) and ṽn(t). The definition of γmn as

a constant includes an approximation that the coherence does not vary with frequency, which is

reasonable when the bandwidth of Gṽ(f) is narrow. Although systematic studies of the coherence

time of narrowband acoustic signals have not been made, data and theoretical considerations (such

as in [27, Sec. 8.4]) are consistent with values ranging from tens of seconds to several minutes in

the frequency range [50, 250] Hz. Therefore the bandwidth of Gṽ(f) may be expected to be less

than 1 Hz. The bandwidth B in the lowpass filters for the complex amplitude in Figure 2 should

be chosen to be equal to the bandwidth of Gṽ(f). We assume that γmn in (39) is real-valued and

non-negative, which implies that phase fluctuations at sensor pairs are not biased toward positive
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or negative values. Then using (39) with (38) and (36) in (34) yields the following relation between

γmn and µ, ν:

γmn =
e−ν(ρmn)do − e−2µdo

1 − e−2µdo
, m, n = 1, . . . , N. (40)

We define Γ as the N × N matrix with elements γmn. The second moment extinction coefficient

ν(ρmn) is a monotonically increasing function, with ν(0) = 0 and ν(∞) = 2µ, so γmn ∈ [0, 1].

Combining (31) and (32) into vectors, and using (36) yields

z̃(t) =
√

S ejθ e−µdo a + ejθ a ṽ(t) + w̃(t), (41)

where θ is defined in (21) and a is the array steering vector in (20). We define the matrix B with

elements

Bmn = exp [−ν(ρmn)do] , (42)

and then we can extend the second-order moments in (22)-(25) to the case with scattering as

E{z̃(t)} = e−µdo
√

S ejθ a
�
= mz̃ (43)

Rz̃(ξ) = e−2µdo S aa† + S
[
B ◦

(
aa†
)
− e−2µdo aa†

] rṽ(ξ)
S (1 − e−2µdo)

+ rw̃(ξ) I (44)

Gz̃(f) = e−2µdo S aa† δ(f)

+ S
[
B ◦

(
aa†
)
− e−2µdo aa†

] Gṽ(f)
S (1 − e−2µdo)

+ Gw̃(f) I (45)

E{z̃(t)z̃(t)†} = Rz̃(0) = S B ◦
(
aa†
)

+ σ2
w̃ I

�
= Cz̃ + mz̃ m†

z̃, (46)

where ◦ denotes element-wise product between matrices. The normalizing quantity S
(
1 − e−2µdo

)
that divides the autocorrelation rṽ(ξ) and the PSD Gṽ(f) in (44) and (45) is equal to rṽ(0) =∫

Gṽ(f) df . Therefore the maximum of the normalized autocorrelation is 1, and the area under the

normalized PSD is 1. The complex envelope samples z̃(t) have the complex normal distribution

CN (mz̃,Cz̃), which is defined in (30). The mean vector and covariance matrix are given in (43)

and (46), but we repeat them below for comparison with (29),

mz̃ = e−µdo
√

S ejθ a (with scattering) (47)

Cz̃ = S
[
B ◦

(
aa†
)
− e−2µdo aa†

]
+ σ2

w̃ I (with scattering). (48)

Note that the scattering is negligible if do � 1/(2µ), in which case e−2µdo ≈ 1 and Ω ≈ 0. Then

most of the signal energy is in the mean, with B ≈ 11T and γmn ≈ 1 in (40), since ν(ρmn) < 2µ.

For larger values of the source range do, more of the signal energy is scattered, and B may deviate

from 11T (and γmn < 1 for m �= n) due to coherence losses between the sensors. At full saturation

(Ω = 1), B = Γ.
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The scattering model in (41) may be formulated as multiplicative noise on the steering vector,

z̃(t) =
√

S ejθ a ◦
[
e−µdo 1 +

ṽ(t)√
S

]
+ w̃(t)

�
=

√
S ejθ (a ◦ ũ(t)) + w̃(t). (49)

The multiplicative noise process, ũ(t), is complex normal with mũ = E{ũ(t)} = e−µdo 1 and

E{ũ(t) ũ(t)†} = B, so the covariance matrix is C
�u = B− e−2µdo 11T = ΩΓ, where Γ has elements

γmn in (40). The mean vector and covariance matrix in (47) and (48) may be represented as

mz̃ =
√

S ejθ (a ◦ mũ) and Cz̃ = S
[(

aa†) ◦ C
�u

]
+ σ2

w̃ I.

2.4 Model for extinction coefficients

During the past several decades, considerable effort has been devoted to the modeling of wave

propagation through random media. Theoretical models have been developed for the extinction

coefficients of the first and second moments, µ and ν(ρ), along nearly line-of-sight paths. For

general background, we refer the reader to [5, 27, 30, 10]. Here we consider some specific results

relevant to turbulence effects on aeroacoustic arrays.

The extent that scattering affects array performance depends on many factors, including the

wavelength of the sound, the propagation distance from the source to the sensor array, the spacing

between the sensors, the strength of the turbulence (as characterized by the variance of the tem-

perature and wind-velocity fluctuations), and the size range of the turbulent eddies. Turbulence in

the near-ground atmosphere spans a vast range of spatial scales, from millimeters to hundreds of

meters. If the sensor spacing ρ is small compared to the size � of the smallest eddies (a case highly

relevant to optics but not low-frequency acoustics), ν(ρ) is proportional to k2ρ2, where k = ω/c0

is the wavenumber of the sound and c0 the ambient sound speed [27]. In this situation, the loss

in coherence between sensors results entirely from turbulence-induced variability in the AOA. Of

greater practical importance in acoustics are situations where ρ � �. The spacing ρ may be smaller

or larger than L, the size of the largest eddies.

When ρ � � and ρ � L, the sensor spacing resides in the inertial subrange of the turbulence [5].

Because the strength of turbulence increases with the size of the eddies, this case has qualitative

similarities to ρ � �. The wavefronts impinging on the array have a roughly constant AOA over

the aperture and the apparent bearing of the source varies randomly about the actual bearing.

Increasing the separation between sensors can dramatically decrease the coherence. In contrast,

when ρ � L is large, the wavefront distortions induced by the turbulence produce nearly uncor-

related signal variations at the sensors. In this case, further increasing separation does not affect

coherence: it is “saturated” at a value determined by the strength of the turbulence, and therefore
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has an effect similar to additive, uncorrelated noise. These two extreme cases are illustrated in

Fig. 3. The resulting behavior of ν(ρ) and Bmn (Eq. 42) are shown in Fig. 4.

The general results for the extinction coefficients of a spherically propagating wave, derived

with the parabolic (narrow-angle) and Markov approximations, and assuming ρ � �, are [Ref. [10],

Eqs. (7.60) and (7.71); Ref. [30], Eq. 20-28]:

µ =
π2k2

2

∫ ∞

0
dK⊥K⊥Φeff(K‖ = 0,K⊥) = k2σ2

effLeff/4, (50)

ν(ρ) = π2k2

∫ 1

0
dt

∫ ∞

0
dK⊥K⊥ [1 − J0(K⊥ρt)] Φeff(K‖ = 0,K⊥), (51)

in which J0 is the zeroth-order Bessel function of the first kind and K = K‖+K⊥ is the turbulence

wavenumber vector decomposed into components parallel and perpendicular to the propagation

path. The quantities Φeff(K), σeff , and Leff are the effective turbulence spectrum, effective variance,

and effective integral length scale. (The integral length scale is a quantitative measure of the size

of the largest eddies.) The spectrum is defined as

Φeff(K) =
ΦT (K)

T 2
0

+
4Φυ(K)

c2
0

, (52)

where T0 is the ambient temperature, and the subscripts T and υ indicate the temperature and

wind-velocity fields, respectively. The definition of the effective variance is the same, except with

σ2 replacing Φ(K). The effective integral length scale is defined as

Leff =
1

σeff

(
LT

σ2
T

T 2
0

+ Lυ
4σ2

υ

c2
0

)
. (53)

For the case ρ/Leff � 1, the contribution from the term in (51) involving the Bessel function is

small and one has ν(ρ) → 2µ, as anticipated from the discussion after (40). When ρ/Leff � 1, the

inertial-subrange properties of the turbulence come into play and one finds [Ref. [10], Eq. (7.87)]

ν(ρ) = 0.137
(

C2
T

T 2
0

+
22
3

C2
υ

c2
0

)
k2ρ5/3, (54)

where C2
T and C2

υ are the structure-function parameters for the temperature and wind fields, respec-

tively. The structure-function parameters represent the strength of the turbulence in the inertial

subrange.

Note that the extinction coefficients for both moments depend quadratically on the frequency of

the tone, regardless of the separation between the sensors. The quantities µ, C2
T , C2

υ , and Leff each

depend strongly on atmospheric conditions. Table 1 provides estimated values for typical atmo-

spheric conditions based on the turbulence models in [24, 11]. These calculations were performed

for a propagation path height of 2 m.
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It is evident from Table 1 that the entire range of saturation parameter values from Ω ≈ 0 to

Ω ≈ 1 may be encountered in aeroacoustic applications, which typically have source ranges from

meters to kilometers. Also, saturation occurs at distances several times closer to the source in

sunny conditions than in cloudy ones. In a typical scenario in aeroacoustics involving a sensor

standoff distance of several hundred meters, saturation will be small only for frequencies of about

100 Hz and lower. At frequencies above 200 Hz or so, the signal is generally saturated and random

fluctuations dominate.

Based on the values for C2
T and C2

υ in Table 1, coherence of signals is determined primarily

by wind-velocity fluctuations (as opposed to temperature), except for mostly sunny, light wind

conditions. It may at first seem a contradiction that the first-moment extinction coefficient µ is

determined mainly by cloud cover (which affects solar heating of the ground), as opposed to the

wind speed. Indeed, the source distance d0 at which a given value of Ω is obtain is several times

longer in cloudy conditions than in sunny ones. This can be understood from the fact that cloud

cover damps strong thermal plumes (such as those used by hang gliders and seagulls to stay aloft),

which are responsible for wind-velocity fluctuations that strongly affect acoustic signals.

Interestingly, the effective integral length scale for the sound field usually takes on a value

intermediate between the microphone separations within small arrays (around 1 m) and the spacing

between typical network nodes (which may be 100 m or more). As a result, high coherence can be

expected within small arrays. However, coherence between nodes in a widely spaced network will

be quite small, particularly at frequencies above 200 Hz or so.

Figure 5 illustrates the coherence of the scattered signals, γmn in (40), as a function of the

sensor separation, ρ. The extinction coefficient in (54) is computed at frequency f = 50 Hz and

source range do = 1, 500 m, with mostly sunny, light wind conditions from Table 1, so Ω = 0.95.

Note the coherence is nearly perfect for sensor separations ρ < 1 m, then the coherence declines

steeply for larger separations.

2.5 Multiple frequencies and sources

The model in (49) is for a single source that emits a single frequency, ω = 2πfo rad/s. The complex

envelope processing in (2) and Figure 2 is a function of the source frequency. We can extend the
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model in (49) to the case of K sources that emit tones at L frequencies ω1, . . . , ωL, as follows:

z̃(iTs;ωl) =
K∑

k=1

√
Sk(ωl) ejθk,l (ak(ωl) ◦ ũk(iTs;ωl)) + w̃(iTs;ωl),

i = 1, . . . , T
l = 1, . . . , L

(55)

= ([a1(ωl) . . . aK(ωl)] ◦ [ũ1(iTs;ωl) . . . ũK(iTs;ωl)])


√

S1(ωl) ejθ1,l

...√
SK(ωl) ejθK,l

 + w̃(iTs;ωl)

�
=
(
A(ωl) ◦ Ũ(iTs;ωl)

)
p̃(ωl) + w̃(iTs;ωl). (56)

In (55), Sk(ωl) is the average power of source k at frequency ωl, ak(ωl) is the steering vector for

source k at frequency ωl as in (20), ũk(iTs;ωl) is the scattering of source k at frequency ωl at

time sample i, and T is the number of time samples. In (56), the steering vector matrices A(ωl),

the scattering matrices Ũ(iTs;ωl), and the source amplitude vectors p̃(ωl) for l = 1, . . . , L and

i = 1, . . . , T , are defined by the context. If the sample spacing Ts is chosen appropriately, then the

samples at a given frequency ωl are independent in time. We will also model the scattered signals

at different frequencies as independent. Cross-frequency coherence has been previously studied

theoretically and experimentally, with [8, 31] presenting experimental studies in the atmosphere.

However, models for cross-frequency coherence in the atmosphere are at a very preliminary stage.

It may be possible to revise the assumption of independent scattering at different frequencies as

better models become available.

The covariance matrix at frequency ωl is, by extending the discussion following (49),

Cz̃(ωl) =
K∑

k=1

Sk(ωl)Ωk(ωl)
[
Γk(ωl) ◦

(
ak(ωl)ak(ωl)†

)]
+ σw̃(ωl)2 I, (57)

where the scattered signals from different sources are assumed to be independent. If we assume full

saturation (Ωk(ωl) = 1) and negligible coherence loss across the array aperture (Γk(ωl) = 11T ),

then the sensor signals in (55) have zero mean, and the covariance matrix in (57) reduces to the

familiar correlation matrix of the form

Rz̃(0;ωl) = E
{
z̃(iTs;ωl) z̃(iTs;ωl)†

}
= A(ωl)S(ωl)A(ωl)† + σw̃(ωl)2 I (Ωk(ωl) = 1 and no coherence loss), (58)

where S(ωl) is a diagonal matrix with S1(ωl), . . . , SK(ωl) along the diagonal.1

1For the fully saturated case with no coherence loss, we can relax the assumption that the scattered signals from
different sources are independent by replacing the diagonal matrix S(ωl) in (58) with a positive semidefinite matrix
with (m, n) element

�
Sm(ωl)Sn(ωl) ·E{�um(iTs; ωl)�un(iTs; ωl)

∗}, where �um(iTs; ωl) is the scattered signal for source
m.
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3 Signal Processing

In this section, we discuss signal processing methods for aeroacoustic sensor networks. The signal

processing takes into account the source and propagation models presented in the previous section,

as well as minimization of the communication bandwidth between sensor nodes connected by a

wireless link. We begin with angle of arrival (AOA) estimation using a single sensor array in

Section 3.1. Then we discuss source localization with multiple sensor arrays in Section 3.2, and we

briefly describe implications for tracking, detection, and classification algorithms in Sections 3.3

and 3.4.

3.1 Angle of arrival estimation

We discuss narrowband AOA estimation with scattering in Section 3.1.1, and then we discuss

wideband AOA estimation without scattering in Section 3.1.2.

3.1.1 Narrowband AOA estimation with scattering

In this section, we review some performance analyses and algorithms that have been investigated

for narrowband AOA estimation with scattering. Most of the methods are based on scattering

models that are similar to the single-source model in Section 2.3 or the multiple-source model in

Section 2.5 at a single frequency. Many of the references cited below are formulated for radio

frequency (RF) channels, so the equivalent channel effect is caused by multipath propagation and

Doppler. The models for the RF case are similar to those presented in Section 2.

Wilson [21] analyzed the Cramér-Rao bound (CRB) on AOA estimation for a single source

using several models for atmospheric turbulence. Rayleigh signal fading was assumed. Collier and

Wilson extended the work [22, 23] to include unknown turbulence parameters in the CRB, along

with the source AOA. Their CRB analysis provides insight into the combinations of atmospheric

conditions, array geometry, and source location that are favorable for accurate AOA estimation.

They note that refraction effects make it difficult to accurately estimate the elevation angle when

the source and sensors are near the ground, so aeroacoustic sensor arrays are most effective for

azimuth estimation.

Other researchers that have investigated the problem of imperfect spatial coherence in the

context of narrowband AOA estimation include [32]–[40]. Paulraj and Kailath [32] presented a

MUSIC algorithm that incorporates nonideal spatial coherence, assuming that the coherence losses

are known. Song and Ritcey [33] provided maximum-likelihood (ML) methods for estimating
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the angles of arrival and the parameters in a coherence model. Gershman et al. [34] provided a

procedure to jointly estimate the spatial coherence loss and the angles of arrival. In the series of

papers [35]–[38], stochastic and deterministic models were studied for imperfect spatial coherence,

and the performance of various AOA estimators was analyzed. Ghogho and Swami [39] presented

an algorithm for AOA estimation with multiple sources in the fully-saturated case. Their algorithm

exploits the Toeplitz structure of the B matrix in (42) for a uniform linear array (ULA).

None of the references [32]–[39] handle range of scattering scenarios from weak (Ω = 0) to strong

(Ω = 1). Fuks, Goldberg, and Messer [40] treat the case of Rician scattering on RF channels, so this

approach does include the entire range from weak to strong scattering. Indeed, the “Rice factor”

in the Rician fading model is related to the saturation parameter through (1 − Ω)/Ω. The main

focus in [40] is on CRBs for AOA estimation.

3.1.2 Wideband AOA estimation without scattering

Narrow band processing in the aeroacoustic context will limit the bandwidth to perhaps a few

Hz, and the large fractional bandwidth encountered in aeroacoustics significantly complicates the

array signal processing. A variety of methods are available for wideband AOA estimation, with

varying complexity and applicability. Application of these to specific practical problems leads to a

complicated task of appropriate procedure choice. We outline some of these methods and various

tradeoffs, and describe some experimental results. Basic approaches include: classical delay-and-

sum beamformer, incoherent averaging over narrow band spatial spectra, maximum likelihood,

coherent signal subspace methods, steered matrix techniques, spatial resampling (array interpola-

tion), and frequency-invariant beamforming. Useful overviews include Boehme [41], and Van Trees

[42]. Significant progress in this area has occurred in the previous 15 years or so; major earlier

efforts include the underwater acoustics area, e.g., see Owsley [43].

Using frequency decomposition at each sensor, we obtained the array data model in (55). For

our discussion of wideband AOA methods, we will ignore the scattering, and so assume the spatial

covariance can be written as in (58). Equation (58) may be interpreted as the covariance matrix

of the Fourier-transformed (narrowband) observations (55). The noise is typically assumed to be

Gaussian and spatially white, although generalizations to spatially correlated noise are also possible,

which can be useful for modeling unknown spatial interference.

Working with an estimate R̂z̃(0;ωl), we may apply covariance-based high resolution AOA es-

timators (MUSIC, MLE, etc.), although this results in many frequency-dependent angle estimates

that must be associated in some way for each source. A simple approach is to sum the result-
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ing narrowband spatial spectra, e.g., see [44]; this is referred to as noncoherent averaging. This

approach has the advantages of straightforward extension of narrowband methods and relatively

low complexity, but can produce artifacts. And, noncoherent averaging requires that the SNRs

after channelization be adequate to support the chosen narrow band AOA estimator; in effect

the method does not take strong advantage of the wideband nature of the signal. However, loud

harmonic sources can be processed in this manner with success.

A more general approach was first developed by Wang and Kaveh [45], based on the following

additive composition of transformed narrowband covariance matrices,

Rscm(φi) =
∑

l

T(φi, ωl)Rz̃(0;ωl)T(φi, ωl)†, (59)

where φi is the ith AOA. Rscm(φi) is referred to as the steered covariance matrix or the focused

wideband covariance matrix. The transformation matrix T(φi, ωl), sometimes called the focusing

matrix, can be viewed as selecting delays to coincide with delay-sum beamforming, so that the

transformation depends on both AOA and frequency. Viewed in another way, the transformation

matrix acts to align the signal subspaces, so that the resulting matrix Rscm(φi) has a rank one

contribution from a wideband source at angle φi. Now, narrowband covariance-based AOA estima-

tion methods may be applied to the matrix Rscm(φi). This approach is generally referred to as the

coherent subspace method (CSM). CSM has significant advantages: it can handle correlated sources

(due to the averaging over frequencies), it averages over the entire source bandwidth, and has good

statistical stability. On the other hand, it requires significant complexity, and as originally proposed

requires pre-estimation of the AOAs which can lead to biased estimates [46]. (Valaee and Kabal [47]

present an alternative formulation of focusing matrices for CSM using a two-sided transformation,

attempting to reduce the bias associated with CSM.)

A major drawback to CSM is the dependence of T on the the AOA. The most general form

requires generation and eigendecomposition of Rscm(φi) for each look angle; this is clearly unde-

sirable from a computational standpoint.2 The dependence of T on φi can be removed in some

cases by incorporating spatial interpolation, thereby greatly reducing the complexity. The basic

ideas are established by Krolik and Swingler in [48]; for an overview (including CSM methods) see

Krolik [49].

As an example, consider a uniform linear array (ULA) [48, 49], with d = λi/2 spacing. In

order to process over another wavelength choice λj (λj > λi), we could spatially interpolate the
2In their original work, Wang and Kaveh relied on pre-estimates of the AOAs to lower the computational burden

[45].
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physical array to a virtual array with the desired spacing (dj = λj/2). The spatial resampling

approach adjusts the spatial sampling interval d as a function of source wavelength λj . The result

is a simplification of (59) to

Rsr =
∑

l

T(ωl)Rz̃(0;ωl)T(ωl)†, (60)

where the angular dependence is now removed. The resampling acts to align the signal subspace

contributions over frequency, so that a single wideband source results in a rank one contribution

to Rsr. Note that the spatial resampling is implicit in (60) via the matrices T(ωl). Conventional

narrow band AOA estimation methods may now be applied to Rsr and, in contrast to CSM, this

operation is conducted once for all angles.

Extensions of [48] from ULAs to arbitrary array geometries can be undertaken, but the depen-

dence on look angle returns, and the resulting complexity is then similar to the CSM approaches.

To avoid this, Friedlander and Weiss considered spatial interpolation of an arbitrary physical array

to virtual arrays that are uniform and linear [50], thereby returning to a formulation like (60).

Doron et al. [51] developed a spatial interpolation method for forming a focused covariance matrix

with arbitrary arrays. The formulation relies on a truncated series expansion of plane waves in

polar coordinates. The array manifold vector is now separable, allowing focusing matrices that are

not a function of angle. The specific case of a circular array leads to an FFT-based implementation

that is appealing due to its relatively low complexity.

While the spatial resampling methods are clearly desirable from a complexity standpoint, ex-

periments indicate that they break down as the fractional bandwidth grows (see the examples that

follow). This depends on the particular method, and the original array geometry. This may be

due to accumulated interpolation error, undersampling, and calibration error. As we have noted,

and show in our examples, fractional bandwidths of interest in aeroacoustics may easily exceed

100%. Thus, the spatial resampling methods should be applied with some caution in cases of large

fractional bandwidth.

Alternatives to the CSM approach are also available. Many of these methods incorporate

time domain processing, and so may avoid the frequency decomposition (DFT) associated with

CSM. Buckley and Griffiths [52], and Agrawal and Prasad [53], have developed methods based on

wideband correlation matrices. (The work of [53] generally relies on a white or near-white source

spectrum assumption, and so might not be appropriate for harmonic sources.) Sivanand et al.

[54, 55, 56] have shown that the CSM focusing can be achieved in the time domain, and treat

the problem from a multichannel FIR filtering perspective. Another FIR based method employs
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frequency invariant beamforming, e.g., see Ward et al. [57] and references therein.

3.1.3 Performance analysis and wideband beamforming

Cramer-Rao bounds (CRBs) on wideband AOA estimation can be established using either a deter-

ministic or random Gaussian source model, in additive Gaussian noise. The basic results were shown

by Bangs [58]; see also Swingler [59]. The deterministic source case in (possibly colored) Gaussian

noise is described in Kay [20]. Performance analysis of spatial resampling methods is considered

by Friedlander and Weiss, who also provide CRBs, as well as a description of maximum-likehood

wideband AOA estimation [50].

These CRBs typically require known source statistics, apply to unbiased estimates, and assume

no scattering, whereas prior spectrum knowledge is usually not available, and the above wideband

methods may result in biased estimates. Nevertheless, the CRB provides a valuable fundamental

performance bound.

Basic extensions of narrow band beamforming methods are reviewed in Van Trees [42, chpt. 6],

including delay-sum and wideband minimum variance distortionless response (MVDR) techniques.

The CSM techniques also extend to wideband beamforming, e.g., see Yang and Kaveh [60].

3.1.4 AOA experiments

Next, we highlight some experimental examples and results, based on extensive aeroacoustic ex-

periments carried out since the early 1990’s [3, 61, 62, 63, 64, 65, 66]. These experiments were

designed to test wideband superresolution AOA estimation algorithms based on array apertures of

a few meters or less. The arrays were typically only approximately calibrated, roughly operating

in [50, 250] Hz, primarily circular in geometry, and planar (on the ground). Testing focused on

military vehicles, and low flying rotary and fixed wing aircraft, and ground truth was typically

obtained from GPS receivers on the sources.

Early results showed that superresolution AOA estimates could be achieved at ranges of one

to two kilometers [61], depending on the various propagation conditions and source loudness, and

that non-coherent summation of narrowband MUSIC spatial signatures significantly outperforms

conventional wideband delay-sum beamforming [62]. When the sources had strong harmonic struc-

ture, it was a straightforward matter to select the spectral peaks for narrowband AOA estimation.

These experiments also verified that a piece-wise stationary assumption was valid over intervals

approximately below one second, that the observed spatial coherence was good over apertures of

a few meters or less, and that only rough calibration was required with relatively inexpensive mi-
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crophones. Outlier AOA estimates were also observed, even in apparently high SNR and good

propagation conditions. In some cases outliers composed 10% of the AOA estimates, but these

were infrequent enough that a robust tracking algorithm can reject them.

Tests of the CSM method (CSM-MUSIC) were conducted with diesel engine vehicles exhibiting

strong harmonic signatures [63], as well as turbine engines exhibiting broad, relatively flat spectral

signatures [64]. The CSM-MUSIC approach was contrasted with noncoherent MUSIC. In both

cases the M largest spectral bins were selected adaptively for each data block. CSM-MUSIC was

implemented with focusing matrix T diagonal. For harmonic source signatures, the noncoherent

MUSIC method was shown to outperform CSM-MUSIC in many cases, generally depending on

the observed narrowband SNRs [63]. On the other hand, the CSM-MUSIC method displays good

statistical stability at a higher computational cost. And, inclusion of lower SNR frequency bins in

noncoherent MUSIC can lead to artifacts in the resulting spatial spectrum.

For the broadband turbine source, the CSM-MUSIC approach generally performed better than

noncoherent MUSIC, due to the ability of CSM to capture the broad spectral spread of the source

energy [64]. Figure 6 depicts a typical experiment with a turbine vehicle, showing AOA estimates

over a 250 second span, where the vehicle traverses approximately a ±1 kilometer path past the

array. The largest M = 20 frequency bins were selected for each estimate. The AOA estimates

(circles) are overlaid on GPS ground truth (solid line). The AOA estimators break down at the

farthest ranges (the beginning and end of the data). Numerical comparison with the GPS-derived

AOA’s reveals the CSM-MUSIC to have slightly lower mean square error. While the three AOA

estimators shown in Figure 6 for this single source case have roughly the same performance, we

emphasize that examination of the beam patterns reveals that the CSM-MUSIC method exhibits

the best statistical stability and lower sidelobe behavior over the entire data set [64]. In addition,

the CSM-MUSIC approach exhibited better performance in multiple source testing.

Experiments with the spatial resampling approaches reveal that they require spatial oversam-

pling to handle large fractional bandwidths [65, 66]. For example, the array manifold interpolation

(AMI) method of Doron et al. [51] was tested experimentally and via simulation using a 12-element

uniform circular array. While the CSM-MUSIC approach was asymptotically efficient in simula-

tion, the AMI technique did not achieve the CRB. The AMI algorithm performance degraded as

the fractional bandwidth was increased for a fixed spatial sampling rate. While the AMI approach

is appealing from a complexity standpoint, effective application of AMI requires careful attention

to the fractional bandwidth, maximum source frequency, array aperture, and degree of oversam-
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pling. Generally, the AMI approach required higher spatial sampling when compared to CSM type

methods, and so AMI lost some of its potential complexity savings in both hardware and software.

3.2 Localization with distributed sensor arrays

The previous subsection was concerned with AOA estimation using a single sensor array. The

(x, y) location of a source in the plane may be estimated efficiently using multiple sensor arrays

that are distributed over a wide area. We consider source localization in this section using a

network of sensors that are placed in an “array of arrays” configuration, as illustrated in Figure 7.

Each array contains local processing capability and a wireless communication link with a fusion

center. A standard approach for estimating the source locations involves AOA estimation at the

individual arrays, communication of the bearings to the fusion center, and triangulation of the

bearing estimates at the fusion center (e.g., see [67, 68, 69, 70, 71]). This approach is characterized

by low communication bandwidth and low complexity, but the localization accuracy is generally

inferior to the optimal solution in which the fusion center jointly processes all of the sensor data.

The optimal solution requires high communication bandwidth and high processing complexity.

The amount of improvement in localization accuracy that is enabled by greater communication

bandwidth and processing complexity is dependent on the scenario, which we characterize in terms

of the power spectra (and bandwidth) of the signals and noise at the sensors, the coherence between

the source signals received at widely separated sensors, and the observation time (amount of data).

We have studied this scenario in [16], where a framework is presented to identify situations

that have the potential for improved localization accuracy relative to the standard bearings-only

triangulation method. We proposed an algorithm that is bandwidth-efficient and nearly optimal

that uses beamforming at small-aperture sensor arrays and time-delay estimation (TDE) between

widely-separated sensors. Accurate TD estimates using widely-separated sensors are utilized to

achieve improved localization accuracy relative to bearings-only triangulation, and the scattering

of acoustic signals by the atmosphere significantly impacts the accuracy of TDE. We provide a

detailed study of TDE with scattered signals that are partially coherent at widely-spaced sensors in

[16]. Our results quantify the scenarios in which TDE is feasible as a function of signal coherence,

SNR per sensor, fractional bandwidth of the signal, and time-bandwidth product of the observed

data. The basic result is that for a given SNR, fractional bandwidth, and time-bandwidth product,

there exists a “threshold coherence” value that must be exceeded in order for TDE to achieve the

CRB. The analysis is based on Ziv-Zakai bounds for TDE, expanding upon the results in [72, 73].

Time synchronization is required between the arrays for TDE.
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Previous work on source localization with aeroacoustic arrays has focused on angle of arrival

estimation with a single array, e.g., [61]-[66], [74, 75], as discussed in Section 3.1. The problem

of imperfect spatial coherence in the context of narrowband angle-of-arrival estimation with a

single array was studied in [21], [22, 23], [32]–[40], as discussed in Section 3.1.1. The problem of

decentralized array processing was studied in [76]-[77]. Wax and Kailath [76] presented subspace

algorithms for narrowband signals and distributed arrays, assuming perfect spatial coherence across

each array but neglecting any spatial coherence that may exist between arrays. Stoica, Nehorai, and

Soderstrom [77] considered maximum likelihood angle of arrival estimation with a large, perfectly

coherent array that is partitioned into subarrays. Weinstein [78] presented performance analysis for

pairwise processing of the wideband sensor signals from a single array, and he showed that pairwise

processing is nearly optimal when the SNR is high. In [79], Moses et. al. studied autocalibration of

sensor arrays, where for aeroacoustic arrays the loss of signal coherence at widely-separated sensors

impacts the performance of autocalibration.

The results in [16] are distinguished from those cited in the previous paragraph in that the

primary focus is a performance analysis that explicitly models partial spatial coherence in the signals

at different sensor arrays in an array of arrays configuration, along with an analysis of decentralized

processing schemes for this model. The previous works have considered wideband processing of

aeroacoustic signals using a single array with perfect spatial coherence [61]-[66], [74, 75], imperfect

spatial coherence across a single array aperture [21], [22, 23], [32]–[40], and decentralized processing

with either zero coherence between distributed arrays [76] or full coherence between all sensors

[77, 78]. We summarize the key results from [16] in Sections 3.2.1–3.2.3.

Source localization using the method of travel-time tomography is described in [80, 81]. In

this type of tomography, TDEs are formed by cross correlating signals from widely spaced sensors.

The TDEs are incorporated into a general inverse procedure that provides information on the

atmospheric wind and temperature fields in addition to the source location. The tomography

thereby adapts to time delay shifts that result from the intervening atmospheric structure.

Ferguson [82] describes localization of small-arms fire using the near-field wavefront curvature.

The range and bearing of the source are estimated from two adjacent sensors. Ferguson’s experi-

mental results clearly illustrate random localization errors induced by atmospheric turbulence. In a

separate article, Ferguson [83] discusses time-scale compression to compensate TDEs for differential

Doppler resulting from fast-moving sources.
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3.2.1 Model for array of arrays

Our model for the array of arrays scenario in Figure 7 is a wideband extension of the single-array,

narrowband model in Section 2. Our array of arrays model includes two key assumptions.

1. The distance from the source to each array is sufficiently large so that the signals are fully

saturated, i.e., Ω(h)(ω) ≈ 1 for h = 1, . . . ,H and all ω. Therefore according to the model in

Section 2.3, the sensor signals have zero mean.

2. Each array aperture is sufficiently small so that the coherence loss is negligible between sensor

pairs in the array. For the example in Figure 5, this approximation is valid for array apertures

less than 1 m.

It may be useful to relax these assumptions in order to consider the effects of nonzero mean signals

and coherence losses across individual arrays. However, these assumptions allow us to focus on the

impact of coherence losses in the signals at different arrays.

As in Section 2.1, we let (xs, ys) denote the coordinates of a single non-moving source, and we

consider H arrays that are distributed in the same plane, as illustrated in Figure 7. Each array

h ∈ {1, . . . ,H} contains Nh sensors and has a reference sensor located at coordinates (xh, yh). The

location of sensor n ∈ {1, . . . , Nh} is at (xh + ∆xhn, yh + ∆yhn), where (∆xhn,∆yhn) is the relative

location with respect to the reference sensor. If c is the speed of propagation, then the propagation

time from the source to the reference sensor on array h is

τh =
dh

c
=

1
c

[
(xs − xh)2 + (ys − yh)2

]1/2
, (61)

where dh is the distance from the source to array h, as in (5). We model the wavefronts over

individual array apertures as perfectly coherent plane waves, so in the far-field approximation, the

propagation time from the source to sensor n on array h is expressed by τh + τhn, where

τhn ≈ −1
c

[
xs − xh

dh
∆xhn +

ys − yh

dh
∆yhn

]
= −1

c
[(cos φh)∆xhn + (sin φh)∆yhn] (62)

is the propagation time from the reference sensor on array h to sensor n on array h, and φh is the

bearing of the source with respect to array h. Note that while the far-field approximation (62) is

reasonable over individual array apertures, the wavefront curvature that is inherent in (61) must

be retained in order to model wide separations between arrays.

The time signal received at sensor n on array h due to the source will be denoted as sh(t− τh −

τhn), where the vector s(t) = [s1(t), . . . , sH(t)]T contains the signals received at the reference sensors
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on the H arrays. The elements of s(t) are modeled as real-valued, continuous-time, zero-mean,

jointly wide-sense stationary, Gaussian random processes with −∞ < t < ∞. These processes are

fully specified by the H × H cross-correlation matrix

Rs(ξ) = E{s(t + ξ) s(t)T }. (63)

The (g, h) element in (63) is the cross-correlation function

rs,gh(ξ) = E{sg(t + ξ) sh(t)} (64)

between the signals received at arrays g and h. The correlation functions (63) and (64) are equiva-

lently characterized by their Fourier transforms, which are the cross-spectral density (CSD) func-

tions in (65) and CSD matrix in (66),

Gs,gh(ω) = F{rs,gh(ξ)} =
∫ ∞

−∞
rs,gh(ξ) exp(−jωξ) dξ (65)

Gs(ω) = F{Rs(ξ)}. (66)

The diagonal elements Gs,hh(ω) of (66) are the power spectral density (PSD) functions of the signals

sh(t), and hence they describe the distribution of average signal power with frequency. The model

allows the PSD to vary from one array to another to reflect differences in transmission loss and

source aspect angle.

The off-diagonal elements of (66), Gs,gh(ω), are the CSD functions for the signals sg(t) and

sh(t) received at distinct arrays g �= h. In general, the CSD functions have the form

Gs,gh(ω) = γs,gh(ω) [Gs,gg(ω)Gs,hh(ω)]1/2 , (67)

where γs,gh(ω) is the spectral coherence function for the signals, which has the property 0 ≤

|γs,gh(ω)| ≤ 1. Coherence magnitude |γs,gh(ω)| = 1 corresponds to perfect correlation between

the signals at arrays g and h, while the partially coherent case |γs,gh(ω)| < 1 models random scat-

tering in the propagation paths from the source to arrays g and h. Note that our assumption of

perfect spatial coherence across individual arrays implies that the scattering has negligible impact

on the intra-array delays τhn in (62) and the bearings φ1, . . . φH . The coherence γs,gh(ω) in (67)

is an extension of the narrowband, short-baseline coherence γmn in (39). However, the relation to

extinction coefficients in (40) is not necessarily valid for very large sensor separations.

The signal received at sensor n on array h is the delayed source signal plus noise,

zhn(t) = sh(t − τh − τhn) + whn(t), (68)
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where the noise signals whn(t) are modeled as real-valued, continuous-time, zero-mean, jointly wide-

sense stationary, Gaussian random processes that are mutually uncorrelated at distinct sensors, and

are uncorrelated from the signals. That is, the noise correlation properties are

E{wgm(t + ξ)whn(t)} = rw(ξ) δghδmn and E{wgm(t + ξ)sh(t)} = 0, (69)

where rw(ξ) is the noise autocorrelation function, and the noise PSD is Gw(ω) = F{rw(ξ)}. We

then collect the observations at each array h into Nh × 1 vectors zh(t) = [zh1(t), . . . , zh,Nh
(t)]T for

h = 1, . . . ,H, and we further collect the observations from the H arrays into a vector

Z(t) =
[

z1(t)T · · · zH(t)T
]T

. (70)

The elements of Z(t) in (70) are zero-mean, jointly wide-sense stationary, Gaussian random pro-

cesses. We can express the CSD matrix of Z(t) in a convenient form with the following definitions.

We denote the array steering vector for array h at frequency ω as

a(h)(ω) =

 exp(−jωτh1)
...

exp(−jωτh,Nh
)

 =

 exp
[
j ω

c ((cos φh)∆xh1 + (sin φh)∆yh1)
]

...
exp

[
j ω

c ((cos φh)∆xh,Nh
+ (sin φh)∆yh,Nh

)
]
 , (71)

using τhn from (62) and assuming that the sensors have omnidirectional response. Let us define

the relative time delay of the signal at arrays g and h as

Dgh = τg − τh, (72)

where τh is defined in (61). Then the CSD matrix of Z(t) in (70) has the form

GZ(ω) =

(73) a(1)(ω)a(1)(ω)†Gs,11(ω) · · · a(1)(ω)a(H)(ω)† exp(−jωD1H)Gs,1H(ω)
...

. . .
...

a(H)(ω)a(1)(ω)† exp(+jωD1H)Gs,1H(ω)∗ · · · a(H)(ω)a(H)(ω)†Gs,HH(ω)

+Gw(ω)I.

Recall that the source CSD functions Gs,gh(ω) in (73) depend on the signal PSDs and spectral

coherence γs,gh(ω) according to (67). Note that (73) depends on the source location parameters

(xs, ys) through the bearings φh in a(h)(ω) and the pairwise time-delay differences Dgh.

3.2.2 Cramér-Rao bounds (CRBs) and examples

The problem of interest is estimation of the source location parameter vector Θ = [xs, ys]T using T

independent samples of the sensor signals Z(0),Z(Ts), . . . ,Z((T − 1) ·Ts), where Ts is the sampling
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period. The total observation time is T = T ·Ts, and the sampling rate is fs = 1/Ts and ωs = 2πfs.

We will assume that the continuous-time random processes Z(t) are band-limited, and that the

sampling rate fs is greater than twice the bandwidth of the processes. Then it has been shown

[84, 85] that the Fisher information matrix (FIM) J for the parameters Θ based on the samples

Z(0),Z(Ts), . . . ,Z((T − 1) · Ts) has elements

Jij =
T
4π

∫ ωs

0
tr
{

∂ GZ(ω)
∂ θi

GZ(ω)−1 ∂ GZ(ω)
∂ θj

GZ(ω)−1

}
dω, i, j = 1, 2, (74)

where “tr” denotes the trace of the matrix. The CRB matrix C = J−1 then has the property that

the covariance matrix of any unbiased estimator Θ̂ satisfies Cov(Θ̂) − C ≥ 0, where ≥ 0 means

that Cov(Θ̂)−C is positive semidefinite. Equation (74) provides a convenient way to compute the

FIM for the array of arrays model as a function of the signal coherence between distributed arrays,

the signal and noise bandwidth and power spectra, and the sensor placement geometry.

The CRB presented in (74) provides a performance bound on source location estimation methods

that jointly process all the data from all the sensors. Such processing provides the best attainable

results, but also requires significant communication bandwidth to transmit data from the individual

arrays to the fusion center. Next we develop approximate performance bounds on schemes that

perform bearing estimation at the individual arrays in order to reduce the required communication

bandwidth to the fusion center. These CRBs facilitate a study of the tradeoff between source

location accuracy and communication bandwidth between the arrays and the fusion center. The

methods that we consider are summarized as follows.

1. Each array estimates the source bearing, transmits the bearing estimate to the fusion center,

and the fusion processor triangulates the bearings to estimate the source location. This

approach does not exploit wavefront coherence between the distributed arrays, but it greatly

reduces the communication bandwidth to the fusion center.

2. The raw data from all sensors is jointly processed to estimate the source location. This is the

optimum approach that fully utilizes the coherence between distributed arrays, but it requires

large communication bandwidth.

3. Combination of methods 1 and 2, where each array estimates the source bearing and transmits

the bearing estimate to the fusion center. In addition, the raw data from one sensor in each

array is transmitted to the fusion center. The fusion center estimates the propagation time

delay between pairs of distributed arrays, and processes these time delay estimates with the

bearing estimates to localize the source.
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Next we evaluate CRBs for the three schemes for a narrowband source and a wideband source.

Consider H = 3 identical arrays, each of which contains N1 = · · · = NH = 7 sensors. Each array is

circular with 4-ft radius, and six sensors are equally spaced around the perimeter and one sensor is

in the center. We first evaluate the CRB for a narrowband source with a 1 Hz bandwidth centered

at 50 Hz and SNR = 10 dB at each sensor. That is, Gs,hh(ω)/Gw(ω) = 10 for h = 1, . . . ,H and

2π(49.5) < ω < 2π(50.5) rad/sec. The signal coherence γs,gh(ω) = γs(ω) is varied between 0 and 1.

We assume that T = 4000 time samples are obtained at each sensor with sampling rate fs = 2000

samples/sec. The source localization performance is evaluated by computing the ellipse in (x, y)

coordinates that satisfies the expression
[

x y
]
J
[

x
y

]
= 1, where J is the FIM in (74). If the

errors in (x, y) localization are jointly Gaussian distributed, then the ellipse represents the contour

at one standard deviation in root-mean-square (RMS) error. The error ellipse for any unbiased

estimator of source location cannot be smaller than this ellipse derived from the FIM.

The H = 3 arrays are located at coordinates (x1, y1) = (0, 0), (x2, y2) = (400, 400), and

(x3, y3) = (100, 0), where the units are meters. One source is located at (xs, ys) = (200, 300),

as illustrated in Figure 8a. The RMS error ellipses for joint processing of all sensor data for coher-

ence values γs(ω) = 0, 0.5, and 1 are also shown in Figure 8a. The coherence between all pairs of

arrays is assumed to be identical, i.e., γs,gh(ω) = γs(ω) for (g, h) = (1, 2), (1, 3), (2, 3). The largest

ellipse in Figure 8a corresponds to incoherent signals, i.e., γs(ω) = 0, and characterizes the per-

formance of the simple method of triangulation using the bearing estimates from the three arrays.

Figure 8b shows the ellipse radius =
[
(major axis)2 + (minor axis)2

]1/2 for various values of the

signal coherence γs(ω). The ellipses for γs(ω) = 0.5 and 1 are difficult to see in Figure 8a because

they fall on the lines of the × that marks the source location, illustrating that signal coherence be-

tween the arrays significantly improves the CRB on source localization accuracy. Note also that for

this scenario, the localization scheme based on bearing estimation with each array and time-delay

estimation using one sensor from each array has the same CRB as the optimum, joint processing

scheme. Figure 8c shows a closer view of the error ellipses for the scheme of bearing estimation

plus time-delay estimation with one sensor from each array. The ellipses are identical to those in

Figure 8a for joint processing.

Figures 8d– 8f present corresponding results for a wideband source with bandwidth 20 Hz

centered at 50 Hz and SNR 16 dB. That is, Gs,hh/Gw = 40 for 2π(40) < ω < 2π(60) rad/sec,

h = 1, . . . ,H. T = 2000 time samples are obtained at each sensor with sampling rate fs = 2000

samples/sec, so the observation time is 1 second. As in the narrowband case in Figures 8a– 8c,
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joint processing reduces the CRB compared with bearings-only triangulation, and bearing plus

time-delay estimation is nearly optimum.

The CRB provides a lower bound on the variance of unbiased estimates, so an important

question is whether an estimator can achieve the CRB. We show next in Section 3.2.3 that the

coherent processing CRBs for the narrowband scenario illustrated in Figures 8a– 8c are achievable

only when the the coherence is perfect, i.e. γs = 1. Therefore for that scenario, bearings-only

triangulation is optimum in the presence of even small coherence losses. However, for the wideband

scenario illustrated in Figures 8d– 8f, the coherent processing CRBs are achievable for coherence

values γs
∼
> 0.75.

3.2.3 TDE and examples

The CRB results presented in Section 3.2.2 indicate that time delay estimation between widely-

spaced sensors may be an effective way to improve the source localization accuracy with joint

processing. Fundamental performance limits for passive time delay and Doppler estimation have

been studied extensively for several decades, e.g., see the collection of papers in [86]. The funda-

mental limits are usually parameterized in terms of the signal-to-noise ratio (SNR) at each sensor,

the spectral support of the signals (fractional bandwidth), and the time-bandwidth product of

the observations. However, the effect of coherence loss on TDE accuracy has not been explicitly

considered.

In this section, we quantify the effect of partial signal coherence on time delay estimation. We

present Cramér-Rao and Ziv-Zakai bounds that are explicitly parameterized by the signal coherence,

along with the traditional parameters of SNR, fractional bandwidth, and time-bandwidth product.

This analysis of TDE is relevant to method 3 in Section 3.2.2. We focus on the case of H = 2

sensors here. The extension to H > 2 sensors is outlined in [16].

Let us specialize (68) to the case of two sensors, with H = 2 and N1 = N2 = 1, so

z1(t) = s1(t) + w1(t) and z2(t) = s2(t − D) + w2(t), (75)

where D = D21 is the differential time delay. Following (73), the CSD matrix is

CSD
[

z1(t)
z2(t)

]
= GZ(ω) = (76)[

Gs,11(ω) + Gw(ω) e+jωDγs,12(ω) [Gs,11(ω)Gs,22(ω)]1/2

e−jωDγs,12(ω)∗ [Gs,11(ω)Gs,22(ω)]1/2 Gs,22(ω) + Gw(ω)

]
.

The signal coherence function γs,12(ω) describes the degree of correlation that remains in the signal

emitted by the source at each frequency ω after propagating to sensors 1 and 2.
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We consider the following simplified scenario. The signal and noise spectra are flat over a

bandwidth of ∆ω rad/sec centered at ω0 rad/sec, the observation time is T sec, and the propagation

is fully saturated, so the signal mean is zero. Further, the signal PSDs are identical at each sensor,

and we define the following constants for notational simplicity:

Gs,11(ω0) = Gs,22(ω0) = Gs, Gw(ω0) = Gw, and γs,12(ω0) = γs. (77)

Then we can use (76) in (74) to find the CRB for TDE with H = 2 sensors, yielding

CRB(D) =
1

2ω2
0

(
∆ω T

2π

) [
1 + 1

12

(
∆ω
ω0

)2
] [ 1

|γs|2
(

1 +
1

(Gs/Gw)

)2

− 1

]
(78)

>
1

2ω2
0

(
∆ω T

2π

) [
1 + 1

12

(
∆ω
ω0

)2
] [ 1

|γs|2
− 1
]

. (79)

The quantity
(

∆ω·T
2π

)
is the time-bandwidth product of the observations,

(
∆ω
ω0

)
is the fractional

bandwidth of the signal, and Gs/Gw is the SNR at each sensor. Note from the high-SNR limit

in (79) that when the signals are partially coherent, so that |γs| < 1, increased source power

does not reduce the CRB. Improved TDE accuracy is obtained with partially coherent signals

by increasing the observation time T or changing the spectral support of the signal, which is

[ω0 − ∆ω/2, ω0 + ∆ω/2]. The spectral support of the signal is not controllable in passive TDE

applications, so increased observation time is the only means for improving the TDE accuracy with

partially coherent signals. Source motion becomes more important during long observation times,

as we discuss in Section 3.3.

We have shown in [16] that the CRB on TDE is achievable only when the coherence, γs,

exceeds a threshold. The analysis is based on Ziv-Zakai bounds as in [72, 73], and the result is

that the coherence must satisfy the following inequality in order for the CRB on TDE in (78) to

be achievable:

|γs|2 ≥

(
1 + 1

(Gs/Gw)

)2

1 + 1
SNRthresh

, so |γs|2 ≥ 1
1 + 1

SNRthresh

as
Gs

Gw
→ ∞. (80)

The quantity SNRthresh is

SNRthresh =
6

π2
(

∆ωT
2π

) ( ω0

∆ω

)2
[
ϕ−1

(
1
24

(
∆ω

ω0

)2
)]2

(81)

where ϕ(y) = 1/
√

2π
∫∞
y exp(−t2/2) dt. Since |γs|2 ≤ 1, (80) is useful only if Gs/Gw > SNRthresh.

Note that the threshold coherence value in (80) is a function of the time-bandwidth product,(
∆ω·T

2π

)
, and the fractional bandwidth,

(
∆ω
ω0

)
, through the formula for SNRthresh in (81).
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Figure 9a contains a plot of (80) for a particular case in which the signals are in a band centered

at ω0 = 2π50 rad/sec and the time duration is T = 2 seconds. Figure 9a shows the variation in

threshold coherence as a function of signal bandwidth, ∆ω. Note that nearly perfect coherence

is required when the signal bandwidth is less than 5 Hz (or 10% fractional bandwidth). The

threshold coherence drops sharply for values of signal bandwidth greater than 10 Hz (20% fractional

bandwidth). Thus for sufficiently wideband signals, e.g., ∆ω ≥ 2π10 rad/sec, a certain amount of

coherence loss can be tolerated while still allowing unambiguous time delay estimation. Figure 9b

shows corresponding results for a case with twice the center frequency and half the observation

time. Figure 9c shows the threshold coherence as a function of the time-bandwidth product and

the fractional bandwidth for large SNR, Gs
Gw

→ ∞. Note that very large time-bandwidth product

is required to overcome coherence loss when the fractional bandwidth is small. For example, if the

fractional bandwidth is 0.1, then the time-bandwidth product must exceed 100 if the coherence

is 0.9. For threshold coherence values in the range from about 0.1 to 0.9, each doubling of the

fractional bandwidth reduces the required time-bandwidth product by a factor of 10.

Let us examine a scenario that is typical in aeroacoustics, with center frequency fo = ωo/(2π) =

50 Hz and bandwidth ∆f = ∆ω/(2π) = 5 Hz, so the fractional bandwidth is ∆f/fo = 0.1. From

Figure 9c, signal coherence |γs| = 0.8 requires time-bandwidth product ∆f · T > 200, so the

necessary time duration T = 40 sec for TDE is impractical for moving sources.

Larger time-bandwidth products of the observed signals are required in order to make TDE

feasible in environments with signal coherence loss. As discussed previously, only the observation

time is controllable in passive applications, thus leading us to consider source motion models in

Section 3.3 for use during long observation intervals.

We can evaluate the threshold coherence for the narrowband and wideband scenarios considered

in Section 3.2.2 for the CRB examples in Figure 8. The results are as follows, using (80) and (81).

• Narrowband case: Gs/Gw = 10, ω0 = 2π50 rad/sec, ∆ω = 2π rad/sec, T = 2 sec

=⇒ Threshold coherence ≈ 1

• Wideband case: Gs/Gw = 40, ω0 = 2π50 rad/sec, ∆ω = 2π · 20 rad/sec, T = 1 sec

=⇒ Threshold coherence ≈ 0.75

Therefore for the narrowband case, joint processing of the data from different arrays will not achieve

the CRBs in Figures 8a– 8c when there is any loss in signal coherence. For the wideband case, joint

processing can achieve the CRBs in Figures 8d– 8f for coherence values ≥ 0.75.
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We have presented simulation examples in [16] that confirm the accuracy of the CRB in (78)

and threshold coherence in (80). In particular, the simulations show that TDE based on cross-

correlation processing achieves the CRB only when the threshold coherence is exceeded.

We conclude this section with a TDE example based on data that was measured by BAE Systems

using a synthetically-generated, non-moving, wideband acoustic source. The source bandwidth is

approximately 50 Hz with center frequency 100 Hz, so the fractional bandwidth is 0.5. Four nodes

are labeled and placed in the locations shown in Figure 9a. The nodes are arranged in a triangle,

with nodes on opposite vertices separated by about 330 ft, and adjacent vertices separated by about

230 ft. The source is at node 0, and receiving sensors are located at nodes 1, 2, and 3.

The PSDs estimated at sensors 1 and 3 are shown in Figure 10b, and the estimated coherence

magnitude between sensors 1 and 3 is shown in Figure 10c. The PSDs and coherence are estimated

using data segments of duration 1 second. Note that the PSDs are not identical due to differences

in the propagation paths. The coherence magnitude exceeds 0.8 over an appreciable band centered

at 100 Hz. The threshold coherence value from (80) for the parameters in this experiment is 0.5,

so the actual coherence of 0.8 exceeds the threshold. Thus accurate TDE should be feasible, and

indeed, we found that generalized cross-correlation yielded accurated TDE estimates. Differential

time delays were estimated using the signals measured at nodes 1, 2, and 3, and the TDEs were

hyperbolically triangulated to estimate the location of the source (which is at node 0). Figure 10d

shows the hyperbolas obtained from the three differential time delay estimates, and Figure 10e

shows an expanded view near the intersection point. The triangulated location is within 1 foot of

the true source location, which is at (−3, 0) feet.

This example shows the feasibility of TDE with acoustic signals measured at widely-separated

sensors, provided that the SNR, fractional bandwidth, time-bandwidth product, and coherence

meet the required thresholds. If the signal properties do not satisfy the thresholds, then then

accurate TDE is not feasible and triangulation of AOAs is optimum.

3.3 Tracking moving sources

In this section, we summarize past work and key issues for tracking moving sources. A widely-

studied approach for estimating the locations of moving sources with an array of arrays involves

bearing estimation at the individual arrays, communication of the bearings to the fusion center,

and processing of the bearing estimates at the fusion center with a tracking algorithm (e.g., see

[67, 68, 69, 70, 71]).

As discussed in Section 3.2, jointly processing data from widely-spaced sensors has the poten-
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tial for improved source localization accuracy, compared with incoherent triangulation/tracking of

bearing estimates. The potential for improved accuracy depends directly on TDE between the sen-

sors, which is feasible only with an increased time-bandwidth product of the sensor signals. This

leads to a constraint on the minimum observation time, T , in passive applications where the signal

bandwidth is fixed. If the source is moving, then approximating it as non-moving becomes poorer

as T increases, so modeling the source motion becomes more important.

Approximate bounds are known [87, 88] that specify the maximum time interval over which

moving sources are may be approximated as nonmoving for TDE. We have applied the bounds

to a typical scenario in aeroacoustics [89]. Let us consider H = 2 sensors, and a vehicle moving

at 15 m/sec (about 5% the speed of sound), with radial motion that is in opposite directions at

the two sensors. If the highest frequency of interest is 100 Hz, then the time interval over which

the source is well-approximated as nonmoving is T � 0.1 sec. According to the TDE analysis in

Section 3.2, this yields insufficient time-bandwidth product for partially coherent signals that are

typically encountered. Thus motion modeling and Doppler estimation/compensation are critical,

even for aeroacoustic sources that move more slowly than in this example.

We have extended the model for a nonmoving source presented in Section 3.2 to a moving source

with a first-order motion model in [89]. We have also presented an algorithm for estimating the

motion parameters for multiple moving sources in [89], and the algorithm is tested with measured

aeroacoustic data. The algorithm is initialized using the local polynomial approximation (LPA)

beamformer [90] at each array to estimate the bearings and bearing rates. If the signals have

sufficient coherence and bandwidth at the arrays, then the differential TDEs and Doppler shifts

may be estimated. The maximum likelihood solution involves wideband ambiguity function search

over Doppler and TDE [87], but computationally simpler alternatives have been investigated [91].

If TDE is not feasible, then the source may be localized by triangulating bearing, bearing rate, and

differential Doppler. Interestingly, differential Doppler provides sufficient information for source

localization, even without TDE, as long as five or more sensors are available [92]. Thus the source

motion may be exploited via Doppler estimation in scenarios where TDE is not feasible, such as

narrowband or harmonic signals.

Recent work on tracking multiple sources with aeroacoustic sensors include the penalized maxi-

mum likelihood approach in [75], and the α-β/Kalman tracking algorithms in [94]. It may be feasible

to use source aspect angle differences and Doppler estimation to help solve the data association

problem in multiple target tracking based on data from multiple sensor arrays.
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3.4 Detection and classification

It is necessary to detect the presence of a source before carrying out the localization processing

discussed in Sections 3.1, 3.2, and 3.3. Detection is typically performed by comparing the energy

at a sensor with a threshold. The acoustic propagation model presented in Section 2 implies that

the energy fluctuates due to scattering, so the scattering has a significant impact on detection

algorithms and their performance.

In addition to detecting a source and localizing its position, it is desirable to identify (or classify)

the type of vehicle from its acoustic signature. The objective is to broadly classify into categories

such as “ground, tracked,” “ground, wheeled,” “airborne, fixed wing,” “airborne, rotary wing,” and

to further identify the particular vehicle type within these categories. Most classification algorithms

that have been developed for this problem use the relative amplitudes of harmonic components in the

acoustic signal as features to distinguish between vehicle types [95]–[102]. However, the harmonic

amplitudes for a given source may vary significantly due to several factors. The scattering model

presented in Section 2 implies that the energy in each harmonic will randomly fluctuate due to

scattering, and the fluctuations will be stronger at higher frequencies. The harmonic amplitudes

may also vary with engine speed and the orientation of the source with respect to the sensor (aspect

angle).

In this section, we specialize the scattering model from Section 2 to describe the probability

distribution for the energy at a single sensor for a source with a harmonic spectrum. We then

discuss the implications for detection and classification performance. More detailed discussions

may be found in [25] for detection and [93] for classification.

The source spectrum is assumed to be harmonic, with energy at frequencies ω1, . . . , ωL. Follow-

ing the notation in Section 2.5 and specializing to the case of one source and one sensor, S(ωl),Ω(ωl),

and σ2
w̃(ωl) represent the average source power, the saturation, and the average noise power at fre-

quency ωl, respectively. The complex envelope samples at each frequency ωl are then modeled

with the first element of the vector in (55) with K = 1 source, and they have a complex Gaussian

distribution,

z̃(iTs;ωl) ∼ CN
(√

[1 − Ω(ωl)] S(ωl) ejθ(i;ωl), Ω(ωl)S(ωl) + σ2
w̃(ωl)

)
,

i = 1, . . . , T
l = 1, . . . , L

. (82)

The number of samples is T , and the phase θ(i;ωl) is defined in (21) and depends on the source

phase and distance. We allow θ(i;ωl) to vary with the time sample index, i, in case the source

phase (χ) or the source distance (do) changes. As discussed in Section 2.5, we model the complex

Gaussian random variables in (82) as independent.
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As discussed in Sections 2.3 and 2.4, the saturation (Ω) is related to the extinction coefficient

of the first moment (µ) according to Ω(ωl) = 1 − exp(−2µ(ωl) do), where do is the distance from

the source to the sensor. The dependence of the saturation on frequency and weather conditions is

modeled by the following approximate formula for µ,

µ(ω) ≈
{

4.03 × 10−7
(

ω
2π

)2
, mostly sunny

1.42 × 10−7
(

ω
2π

)2
, mostly cloudy

,
ω

2π
∈ [30, 200] Hz, (83)

which is obtained by fitting (50) to the values for µ−1 in Table 1. A contour plot of the saturation

as a function of frequency and source range is shown in Figure 11a using (83) for mostly sunny

conditions. Note that the saturation varies significantly with frequency for ranges > 100 m. Larger

saturation values imply more scattering, so the energy in the higher harmonics will fluctuate more

widely than the lower harmonics.

We will let P (ω1), . . . , P (ωL) denote the estimated energy at each frequency. The energy may

be estimated from the complex envelope samples in (82) by coherent or incoherent combining,

PC(ωl) =

∣∣∣∣∣ 1T
T∑

i=1

z̃(iTs;ωl)e−jθ(i;ωl)

∣∣∣∣∣
2

, l = 1, . . . , L (84)

PI(ωl) =
1
T

T∑
i=1

|z̃(iTs;ωl)|2 , l = 1, . . . , L. (85)

Coherent combining is feasible only if the phase shifts θ(i;ωl) are known or are constant with i.

Our assumptions imply that the random variables in (84) are independent over l, as are the random

variables in (85). The probability distribution functions (pdfs) for PC and PI are noncentral chi-

squared distributions3. We let χ2(D, δ) denote the standard noncentral chi-squared distribution

with D degrees of freedom and noncentrality parameter δ. Then the random variables in (84) and

(85) may be scaled so that their pdfs are standard noncentral chi-squared distributions,

PC(ωl)[
Ω(ωl)S(ωl) + σ2

w̃(ωl)
]
/(2T )

∼ χ2 (2, δ(ωl)) (86)

PI(ωl)[
Ω(ωl)S(ωl) + σ2

w̃(ωl)
]
/(2T )

∼ χ2 (2T, δ(ωl)) , (87)

where the noncentrality parameter is

δ(ωl) =
[1 − Ω(ωl)] S(ωl)[

Ω(ωl)S(ωl) + σ2
w̃(ωl)

]
/(2T )

. (88)

3The random variable
√

PC in (84) has a Rician distribution, which is widely used to model fading RF communi-
cation channels.
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The only difference in the pdfs for coherent and incoherent combining is the number of degrees of

freedom in the noncentral chi-squared pdf: 2 degrees of freedom for coherent, and 2T degrees of

freedom for incoherent.

The noncentral chi-squared pdf is readily available in analytical form and in statistical software

packages, so the performance of detection algorithms may be evaluated as a function of SNR = S/σ2
w̃

and saturation Ω. To illustrate the impact of Ω on the energy fluctuations, Figure 11b shows plots

of the pdf of 10 log10(P ) for T = 1 sample (so coherent and incoherent are identical), S = 1, and

SNR = 1/σ2
w̃ = 103 = 30 dB. Note that a small deviation in the saturation from Ω = 0 causes a

significant spread in the distribution of P around the unscattered signal power, S = 1 (0 dB). This

variation in P affects detection performance and limits the performance of classification algorithms

that use P as a feature.

Figure 12 illustrates signal saturation effects on detection probabilities. In this example, the

Neyman-Pearson detection criterion [103] with false-alarm probability of 0.01 was used. The noise

is zero-mean Gaussian, as in Section 2.2. When Ω = 0, the detection probability is nearly zero

for SNR= 2 dB but quickly changes to one when the SNR increases by about 6 dB. When Ω = 1,

however, the transition is much more gradual: even at SNR= 15 dB, the detection probability is

less than 0.9.

The impact of scattering on classification performance can be illustrated by comparing the fluc-

tuations in the measured harmonic signature, P = [P (ω1), . . . , P (ωL)]T , with the “true” signature,

S = [S(ω1), . . . , S(ωL)]T , that would be measured in the absence of scattering and additive noise.

Figures 11c and 11d illustrate this variability in the harmonic signature as the range to the target

increases. Figure 11c shows the “ideal” harmonic signature for this example (no scattering and no

noise). Figure 11d shows ± one standard deviation error bars on the harmonics for ranges 5, 10, 20,

40, 80, 160 m under “mostly sunny” conditions, using (83). For ranges beyond 80 m, the harmonic

components display significant variations, and rank ordering of the harmonic amplitudes would

exhibit variations also. The higher frequency harmonics experience larger variations, as expected.

Classification based on relative harmonic amplitudes may experience significant performance degra-

dations at these ranges, particularly for sources that have similar harmonic signatures.

4 Concluding Remarks

Aeroacoustics has a demonstrated capability for sensor networking applications, providing a low

bandwidth sensing modality that leads to relatively low cost nodes. In battery operated conditions,
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where long lifetime in the field is expected, the node power budget is dominated by the cost of the

communications. Consequently, the interplay between the communications and distributed signal

processing is critical. We seek optimal network performance while minimizing the communication

overhead.

We have considered the impact of the propagation phenomena on our ability to detect, localize,

track, and classify acoustic sources. The strengths and limitations of acoustic sensing become

clear in this light. Detection ranges and localization accuracy may be reasonably predicted. The

turbulent atmosphere introduces spatial coherence losses that impact the ability to exploit large

baselines between nodes for increased localization accuracy. The induced statistical fluctuations in

amplitude place limits on the ability to classify sources at longer ranges. Very good performance

has been demonstrated in many experiments; the analysis and experiments described here and

elsewhere bound the problem and its solution space.

Because it is passive, and depends on the current atmospheric conditions, acoustic sensing

may be strongly degraded in some cases. Passive sensing with high performance in all conditions

will very likely require multiple sensing modalities, as well as hierarchical networks. This leads

to interesting problems in fusion, sensor density and placement, as well as distributed processing

and communications. For example, when very simple acoustic nodes with the limited capability of

measuring loudness are densely deployed, they provide inherent localization capability [104, 105].

Such a system, operating at relatively short ranges, provides significant robustness to many of the

limitations described here, and may act to queue other sensing modalities for classification or even

identification.

Localization based on accurate angle of arrival estimation with short baseline arrays has been

carefully analyzed, leading to well known triangulation strategies. Much more accurate localization,

based on cooperative nodes, is possible in some conditions. These conditions depend fundamentally

on the time-bandwidth of the observed signal, as well as the spatial coherence. For moving harmonic

sources, these conditions are not likely to be supported, whereas sources that are more continuously

broadband may be handled in at least some cases. It is important to note that the spatial coherence

over a long baseline may be passively estimated in a straightforward way, leading to adaptive

approaches that exploit the coherence when it is present. Localization updates, coupled with

tracking, leads to an accurate picture of the nonstationary source environment.

Acoustic-based classification is the most challenging signal processing task, due to the source

nonstationarities, inherent similarities between the sources, and propagation-induced statistical

39



fluctuations. While the propagation places range limitations on present algorithms, it appears

that the source similarities and nonstationarities may be the ultimate limiting factors in acoustic

classification. Highly accurate classification will likely require the incorporation of other sensing

modalities because of the challenging source characteristics.

Other interesting signal acoustic signal processing includes exploitation of Doppler, hierarchi-

cal and multi-modal processing, and handling multipath effects. Complex environments, such as

indoor, urban, and forest, create multipath and diffraction that greatly complicate sensor signal

processing and performance modeling. Improved understanding of the impact of these effects, and

robust techniques for overcoming them, are needed. Exploitation of the very long range propagation

distances possible with infrasound (frequencies below 20 Hz) [106] also requires further study and

experimentation. Finally, we note that strong linkages between the communications network and

the sensor signal processing are very important for overall resource utilization, especially including

the multi-access protocol (MAC) networking layer.
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Table and Figure Captions

Table 1: Modeled turbulence quantities and inverse extinction coefficients for various atmo-

spheric conditions. The atmospheric conditions are described quantitatively in [24]. The second

and third columns give the inverse extinction coefficients at 50 Hz and 200 Hz, respectively. These

values indicate the distance at which random fluctuations in the complex signal become strong. The

fourth and fifth columns represent the relative contributions of temperature and wind fluctuations

to the field coherence. The sixth column is the effective integral length scale for the scattered sound

field; at sensor separations greater than this value, the coherence is “saturated.”

Figure 1: Geometry of source and sensor locations.

Figure 2: Processing to obtain in-phase and quadrature components, z(I)(t) and z(Q)(t).

Figure 3: Turbulence-induced distortions of acoustic wavefronts impinging on an array. The

wavefronts are initially smooth (left) and become progressively more distorted until they arrive at

the array (right). Top: Sensor separations within the inertial subrange of the turbulence (ρ � �

and ρ � L). The wavefronts are fairly smooth but the AOA (and therefore the apparent source

bearing) varies. Bottom: Sensor separations much larger than the scale of the largest turbulent

eddies (ρ � L). The wavefronts have a very rough appearance and the effect of the scattering is

similar to uncorrelated noise.

Figure 4: Left: Characteristic behavior of the second-moment extinction coefficient, ν(ρ).

It initially increases with increasing sensor separation ρ, and then saturates at a fixed value 2µ

(where µ is the first-moment extinction coefficient) when ρ is large compared to the size of the

largest turbulent eddies. Right: Resulting behavior of the total signal coherence, Bmn, (42), for

several values of the propagation distance do.

Figure 5: Evaluation of the coherence of the scattered signals at sensors with separation ρ,

using f = 50 Hz, do = 1, 500 m, mostly sunny, light wind conditions (Table 1), ν(ρ) is computed

with (54), and the coherence, γ(ρ), is computed with (40).

Figure 6: Experimental wideband AOA estimation over 250 seconds, covering a range of

approximately ±1 kilometers. Three methods are depicted with M highest SNR frequency bins: (a)

narrowband MUSIC (M = 1), (b) incoherent MUSIC (M = 20), and (c) CSM-MUSIC (M = 20).

Solid lines depict GPS-derived AOA ground truth.
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Figure 7: Geometry of non-moving source location and an array of arrays. A communication

link is available between each array and the fusion center.

(Originally published in [16], c©2003 IEEE, reprinted with permission.)

Figure 8: RMS source localization error ellipses based on the CRB for H = 3 arrays and one

narrowband source in (a)-(c) and one wideband source in (d)-(f).

(Originally published in [16], c©2003 IEEE, reprinted with permission.)

Figure 9: Threshold coherence versus bandwidth based on (80) for (a) ω0 = 2π50 rad/sec,

T = 2 sec and (b) ω0 = 2π100 rad/sec, T = 1 sec for SNRs Gs/Gw = 0, 10, and ∞ dB. (c)

Threshold coherence value from (80) versus time-bandwidth product
(

∆ω·T
2π

)
for several values of

fractional bandwidth
(

∆ω
ω0

)
and high SNR, Gs/Gw → ∞.

(Originally published in [16], c©2003 IEEE, reprinted with permission.)

Figure 10: (a) Location of nodes. (b) PSDs at nodes 1 and 3 when transmitter is at node 0.

(c) Coherence between nodes 1 and 3. (d) Intersection of hyperbolas obtained from differential

time delays estimated at nodes 1, 2, and 3. (e) Expanded view of part (d).

(Originally published in [16], c©2003 IEEE, reprinted with permission.)

Figure 11: (a) Variation of saturation Ω with frequency f and range do. (b) Probability

density function (pdf) of average power 10 log10(P ) measured at the sensor for T = 1 sample of a

signal with S = 1 (0 dB), SNR = 1/σ2
w̃ = 103 = 30 dB, and various values of the saturation, Ω.

(c) Harmonic signature with no scattering. (d) Error bars for harmonic signatures ± one standard

deviation caused by scattering at different source ranges.

Figure 12: Probability of detection as a function of SNR for several values of the saturation

parameter Ω. The Neyman-Pearson criterion is used with probability of false-alarm PFA = 0.01.
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µ−1 (m) µ−1 (m) C2
T /T 2

0 (22/3)C2
υ/c2

0 Leff

Atmospheric condition at 50 Hz at 200 Hz (m−2/3) (m−2/3) (m)
Mostly sunny, light wind 990 62 2.0 × 10−5 8.0 × 10−6 100
Mostly sunny, moderate wind 980 61 7.6 × 10−6 2.8 × 10−5 91
Mostly sunny, strong wind 950 59 2.4 × 10−6 1.3 × 10−4 55
Mostly cloudy, light wind 2900 180 1.5 × 10−6 4.4 × 10−6 110
Mostly cloudy, moderate wind 2800 180 4.5 × 10−7 2.4 × 10−5 75
Mostly cloudy, strong wind 2600 160 1.1 × 10−7 1.2 × 10−4 28

Table 1: Modeled turbulence quantities and inverse extinction coefficients for various atmospheric
conditions. The atmospheric conditions are described quantitatively in [24]. The second and third
columns give the inverse extinction coefficients at 50 Hz and 200 Hz, respectively. These values
indicate the distance at which random fluctuations in the complex signal become strong. The fourth
and fifth columns represent the relative contributions of temperature and wind fluctuations to the
field coherence. The sixth column is the effective integral length scale for the scattered sound field;
at sensor separations greater than this value, the coherence is “saturated.”
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Figure 1: Geometry of source and sensor locations.
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Figure 2: Processing to obtain in-phase and quadrature components, z(I)(t) and z(Q)(t).

** See files fig3.jpg, fig3.tif, or fig3.pdf, and the pictures on the next page **

Figure 3: Turbulence-induced distortions of acoustic wavefronts impinging on an array. The wave-
fronts are initially smooth (left) and become progressively more distorted until they arrive at the
array (right). Top: Sensor separations within the inertial subrange of the turbulence (ρ � � and
ρ � L). The wavefronts are fairly smooth but the AOA (and therefore the apparent source bear-
ing) varies. Bottom: Sensor separations much larger than the scale of the largest turbulent eddies
(ρ � L). The wavefronts have a very rough appearance and the effect of the scattering is similar
to uncorrelated noise.
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Figure 4: Left: Characteristic behavior of the second-moment extinction coefficient, ν(ρ). It initially
increases with increasing sensor separation ρ, and then saturates at a fixed value 2µ (where µ is the
first-moment extinction coefficient) when ρ is large compared to the size of the largest turbulent
eddies. Right: Resulting behavior of the total signal coherence, Bmn, (42), for several values of the
propagation distance do.
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Figure 6: Experimental wideband AOA estimation over 250 seconds, covering a range of approx-
imately ±1 kilometers. Three methods are depicted with M highest SNR frequency bins: (a)
narrowband MUSIC (M = 1), (b) incoherent MUSIC (M = 20), and (c) CSM-MUSIC (M = 20).
Solid lines depict GPS-derived AOA ground truth.
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Figure 9: Threshold coherence versus bandwidth based on (80) for (a) ω0 = 2π50 rad/sec, T = 2 sec
and (b) ω0 = 2π100 rad/sec, T = 1 sec for SNRs Gs/Gw = 0, 10, and ∞ dB. (c) Threshold coherence
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and high SNR, Gs/Gw → ∞. (Originally published in [16], c©2003 IEEE, reprinted with
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Figure 10: (a) Location of nodes. (b) PSDs at nodes 1 and 3 when transmitter is at node 0. (c)
Coherence between nodes 1 and 3. (d) Intersection of hyperbolas obtained from differential time
delays estimated at nodes 1, 2, and 3. (e) Expanded view of part (d). (Originally published in [16],
c©2003 IEEE, reprinted with permission.) 57
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Figure 11: (a) Variation of saturation Ω with frequency f and range do. (b) Probability density
function (pdf) of average power 10 log10(P ) measured at the sensor for T = 1 sample of a signal with
S = 1 (0 dB), SNR = 1/σ2

w̃ = 103 = 30 dB, and various values of the saturation, Ω. (c) Harmonic
signature with no scattering. (d) Error bars for harmonic signatures ± one standard deviation
caused by scattering at different source ranges.
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Figure 12: Probability of detection as a function of SNR for several values of the saturation pa-
rameter Ω. The Neyman-Pearson criterion is used with probability of false-alarm PFA = 0.01.
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