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Signal Processing and
Propagation for Aeroacoustic
Sensor Networks

Richard J. Kozick, Brian M. Sadler, and D. Keith Wilson

13.1 Introduction
Passive sensing of acoustic sources is attractive in many respects, including the relatively low signal

bandwidth of sound waves, the loudness of most sources of interest, and the inherent difficulty of

disguising or concealing emitted acoustic signals. The availability of inexpensive, low-power sensing and

signal-processing hardware enables application of sophisticated real-time signal processing. Among the

many applications of aeroacoustic sensors, we focus in this chapter on detection and localization of

ground and air (both jet and rotary) vehicles from ground-based sensor networks. Tracking and

classification are briefly considered as well.

Elaborate, aeroacoustic systems for passive vehicle detection were developed as early as World War I

[1]. Despite this early start, interest in aeroacoustic sensing has generally lagged other technologies until

the recent packaging of small microphones, digital signal processing, and wireless communications into

compact, unattended systems. An overview of modern outdoor acoustic sensing is presented by Becker

and Güdesen [2]. Experiments in the early 1990s, such as those described by Srour and Robertson [3],

demonstrated the feasibility of network detection, array processing, localization, and multiple target

tracking via Kalman filtering. Many of the fundmental issues and challenges described by Srour and

Robertson [3] remain relevant today.

Except at very close range, the typical operating frequency range we consider is roughly 30 to 250Hz.

Below 30Hz (the infrasonic regime) the wavelengths are greater than 10m, so that rather large arrays

may be required. Furthermore, wind noise (random pressure fluctuations induced by atmospheric

turbulence) reduces the observed signal-to-noise ratio (SNR) [2]. At frequencies above several hundred

hertz, molecular absorption of sound and interference between direct and ground-reflected waves

attenuate received signals significantly [4]. In effect, the propagation environment acts as a low-pass

filter; this is particularly evident at longer ranges.
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Aeroacoustics is inherently an ultra-wideband array processing problem, e.g. operating in [30,

250]Hz yields a 157% fractional bandwidth centered at 140Hz. To process under the narrow

band array assumptions will require the fractional bandwidth to be on the order of a few percent or

less, limiting the bandwidth to perhaps a few hertz in this example. The wide bandwidth

significantly complicates the array signal processing, including angle-of-arrival (AOA) estimation,

wideband Doppler compensation, beamforming, and blind source separation (which becomes

convolutional).

The typical source of interest here has a primary contribution due to rotating machinery (engines),

and may include tire and/or exhaust noise, vibrating surfaces, and other contributions. Internal

combustion engines typically exhibit a strong sum of harmonics acoustic signature tied to the cylinder

firing rate, a feature that can be exploited in virtually all phases of signal processing. Tracked vehicles

also exhibit tread slap, which can produce very strong spectral lines, while helicopters produce strong

harmonic sets related to the blade rotation rates. Turbine engines, on the other hand, exhibit a much

more smoothly broad spectrum and, consequently, call for different algorithmic approaches in some

cases. Many heavy vehicles and aircraft are quite loud and can be detected from ranges of several

kilometers or more. Ground vehicles may also produce significant seismic waves, although we do not

consider multi-modal sensing or sensor fusion here.

The problem is also complicated by time-varying factors that are difficult to model, such as source

signature variations resulting from acceleration/deceleration of vehicles, changing meteorological

conditions, multiple soft and loud sources, aspect angle source signature dependency, Doppler shifts

(with 1Hz shifts at a 100Hz center frequency not unusual), multipath, and so on. Fortunately, at least

for many sources of interest, a piecewise stationary model is reasonable on time scales of 1 s or less,

although fast-moving sources may require some form of time-varying model.

Sensor networks of interest are generally connected with wireless links, and are battery powered.

Consequently, the node power budget may be dominated by the communications (radio). Therefore,

a fundamental design question is how to perform distributed processing in order to reduce

communication bandwidth, while achieving near optimal detection, estimation, and classification

performance. We focus on this question, taking the aeroacoustic environment into account.

In particular, we consider the impact of random atmospheric inhomogeneities (primarily thermal

and wind variations caused by turbulence) on the ability of an aeroacoustic sensor network to localize

sources. Given that turbulence induces acoustical index-of-refraction variations several orders of

magnitude greater than corresponding electromagnetic variations [5], this impact is quite significant.

Turbulent scattering of sound waves causes random fluctuations in signals, as observed at a single

sensor, with variations occurring on time scales from roughly one to hundreds of seconds in our

frequency range of interest [6–8]. Scattering is also responsible for losses in the observed spatial

coherence measured between two sensors [9–11]. The scattering may be weak or strong, which are

analogous to Rician and Rayleigh fading in radio propagation respectively.

The impact of spatial coherence loss is significant, and generally becomes worse with increasing

distance between sensors. This effect, as well as practical size constraints, limits individual sensor node

array apertures to perhaps a few meters. At the same time, the acoustic wavelengths l of interest are

about 1 to 10m (l¼ (330m/s)/(30Hz)¼ 11m at 30Hz, and l¼ 1.32m at 250Hz). Thus, the typical

array aperture will only span a fraction of a wavelength, and accurate AOA estimation requires

wideband superresolution methods. The source may generally be considered to be in the far field of

these small arrays. Indeed, if it is in the near field, then the rate of change of the AOA as the source

moves past the array must be considered.

The signal-coherence characteristics suggest deployment of multiple, small-baseline arrays as nodes

within an overall large-baseline array (see Figure 13.7). The source is intended to be in the near field of

the large-baseline array. Exploitation of this larger baseline is highly desirable, as it potentially leads to

very accurate localization. We characterize this problem in terms of the atmosphere-induced spatial

coherence loss, and show fundamental bounds on the ability to localize a source in such conditions.

This leads to a family of localization approaches, spanning triangulation (which minimizes inter-node
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communication), to time-delay estimation, to fully centralized processing (which maximizes

communication use and is therefore undesirable). The achievable localization accuracy depends on

both the propagation conditions and the time–bandwidth product of the source.

The chapter is organized as follows. In Section 13.2 we introduce the wideband source array signal

processing model, develop the atmospheric scattering model, and incorporate the scattering into the

array model. We consider array signal processing in Section 13.3, including narrowband AOA

estimation with scattering present. We review wideband AOA estimation techniques, and highlight

various aeroacoustic wideband AOA experiments. Next, we consider localization with multiple nodes

(arrays) in the presence of scattering. We develop fundamental and tight performance bounds on time

delay estimation in the turbulent atmosphere, as well as bounds on localization. Localization

performance is illustrated via simulation and experiments. We then briefly consider the propagation

impact on detection and classification. Finally, in Section 13.4 we consider some emerging aspects and

open questions.

13.2 Models for Source Signals and Propagation
In this section we present a general model for the signals received by an aeroacoustic sensor array.

We begin by briefly considering models for the signals emitted by ground vehicles and aircraft in

Section 13.2.1. Atmospheric phenomena affecting propagation of the signal are also summarized.

In Section 13.2.2 we consider the simplest possible case for the received signals: a single nonmoving

source emits a sinusoidal waveform, and the atmosphere induces no scattering (randomization of the

signal). Then in Section 13.2.3 we extend the model to include the effects of scattering; in Section 13.2.4,

approximate models for the scattering as a function of source range, frequency, and atmospheric

conditions are presented. The model is extended to multiple sources and multiple frequencies

(wideband) in Section 13.2.5.

13.2.1 Basic Considerations

As we noted in Section 13.1, the sources of interest typically have spectra that are harmonic lines, or

have relatively continuous broadband spectra, or some combination. The signal processing for

detection, localization, and classification is highly dependent on whether the source spectrum is

harmonic or broadband. For example, broadband sources allow time-difference of arrival processing for

localization, whereas harmonic sources allow differential Doppler estimation.

Various deterministic and random source models may be employed. Autoregressive (AR) processes

are well suited to modeling sums of harmonics, at least for the case of a single source, and may be

used for detection, Doppler estimation, filtering, AOA estimation, and so on [12–14]. Sum of

harmonic models, with unknown harmonic structure, lead naturally to detection tests in the frequency

domain [15].

More generally, a Gaussian random process model may be employed to describe both harmonic sets

and wideband sources [16]; we adopt such a point of view here. We also assume a piecewise stationary

(quasi-static) viewpoint: although the source may actually be moving, the processing interval is

assumed to be short enough that the signal characteristics are nearly constant.

Four phenomena are primarily responsible for modifying the source signal to produce the actual

signal observed at the sensor array:

1. The propagation delay from the source to the sensors.

2. Random fluctuations in the amplitude and phase of the signals caused by scattering from

random inhomogeneities in the atmosphere, such as turbulence.

3. Additive noise at the sensors caused by thermal noise, wind noise, and directional interference.

4. Transmission loss caused by spreading of the wavefronts, refraction by wind and temperature

gradients, ground interactions, and molecular absorption of sound energy.
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Thermal noise at the sensors is typically independent from sensor to sensor. In contrast, interference

from an undesired source produces additive noise that is (spatially) correlated from sensor to sensor.

Wind noise, which consists of low-frequency turbulent pressure fluctuations intrinsic to the

atmospheric flow (and, to a lesser extent, flow distortions induced by the microphone itself [2,17]),

exhibits high spatial correlation over distances of several meters [18].

The transmission loss (TL) is defined as the diminishment in sound energy from a reference value

Sref, which would hypothetically be observed in free space at 1m from the source, to the actual value

observed at the sensor S. To a first approximation, the sound energy spreads spherically; that is, it

diminishes as the inverse of the squared distance from the source. In actuality the TL for a sound wave

propagating near the ground involves many complex, interacting phenomena, so that the spherical

spreading condition is rarely observed in practice, except perhaps within the first 10 to 30m [4].

Fortunately, several well-refined and accurate numerical procedures for calculating TL have been

developed [19]. For simplicity, here we model S as a deterministic parameter, which is reasonable when

the state of the atmosphere does not change dramatically during the data collection.

Particularly significant to the present discussion is the second phenomenon in the above list, namely

scattering by turbulence. The turbulence consists of random atmospheric motions occurring on time

scales from seconds to several minutes. Scattering from these motions causes random fluctuations in the

complex signals at the individual sensors and diminishes the cross-coherence of signals between sensors.

The effects of scattering on array performance will be analyzed in Sections 13.2.2 and 13.2.4.

The sinusoidal source signal that is measured at the reference distance of 1m from the source is

written

Sref ðtÞ ¼
ffiffiffiffiffiffiffi
Sref

p
cosð2�fot þ �Þ ð13:1Þ

where the frequency of the tone is fo¼!o/(2�)Hz, the period is To s, the phase is �, and the amplitude

is
ffiffiffiffiffiffiffi
Sref

p
. The sound waves propagate with wavelength l¼ c/fo, where c is the speed of sound. The

wavenumber is k¼ 2�/l¼!o/c. We will represent sinusoidal and narrowband signals by their complex

envelope, which may be defined in two ways, as in (13.2):

Cfsref ðtÞg ¼essref ðtÞ ¼ sðIÞref ðtÞ þ jsðQÞref ðtÞ ¼ sref ðtÞ þ jHfsref ðtÞg
� �

expð�j2�fot
�

ð13:2Þ

¼
ffiffiffiffiffiffiffi
Sref

p
expð j�Þ ð13:3Þ

We will represent the complex envelope of a quantity with the notation Cf�g or eð�Þð�Þ, the in-phase

component with (�)(I), the quadrature component with (�)(Q), and the Hilbert transform with Hf�g. The

in-phase (I) and quadrature (Q) components of a signal are obtained by the processing in Figure 13.2.

The fast fourier transform (FFT) is often used to approximate the processing in Figure 13.2 for a finite

block of data, where the real and imaginary parts of the FFT coefficient at frequency fo are proportional

to the I and Q components respectively. The complex envelope of the sinusoid in (13.1) is given by

(13.3), which is not time-varying, so the average power is essref ðtÞ�� ��2¼ Sref .

It is easy to see for the sinusoidal signal in Equation (13.1) that shifting sref(t) in time causes a phase

shift in the corresponding complex envelope, i.e. Cfsref ðt � �oÞg ¼ expð�j2�fo�oÞessref ðtÞ. A similar

property is true for narrowband signals whose frequency spectrum is confined to a bandwidth BHz

around a center frequency foHz, where B� fo. For a narrowband signal z(t) with complex envelopeezzðtÞ, a shift in time is well approximated by a phase shift in the corresponding complex envelope:

Cfzðt � �oÞg � expð�j2�fo�oÞezzðtÞ (narrowband approximation) ð13:4Þ
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Equation (13.4) is the well-known Fourier transform relationship between shifts in time and phase

shifts that are linearly proportional to frequency. The approximation is accurate when the frequency

band is narrow enough so that the linearly increasing phase shift is close to exp (�j2�fo�o) over

the band.

The source and array geometry is illustrated in Figure 13.1. The source is located at coordinates

(xs, ys) in the (x, y) plane. The array contains N sensors, with sensor n located at (xoþ�xn, yoþ�yn),

where (xo, yo) is the center of the array and (�xn,�yn) is the relative sensor location. The propagation

time from the source to the array center is

�o ¼
do
c
¼

1

c
ðxs � xoÞ

2
þ ðys � yoÞ

2
� �1=2

ð13:5Þ

where do is the distance from the source to the array center. The propagation time from the source to

sensor n is

�n ¼
dn
c
¼

1

c
ðxs � xo ��xnÞ

2
þ ð ys � yo ��ynÞ

2
� �1=2

ð13:6Þ

Let us denote the array diameter by L ¼ maxf�mng, where �mn is the separation between sensors m and

n, as shown in Figure 13.1. The source is in the far field of the array when the source distance satisfies

do � L2=�, in which case Equation (13.6) may be approximated with the first term in the Taylor series

ð1þ uÞ1=2 � 1þ u=2. Then �n � �o þ �o;n with error that is much smaller than the source period To,

where

�o;n ¼ �
1

c

xs � xo
do

�xn þ
ys � yo
do

�yn

� �
¼ �

1

c
ðcos �Þ�xn þ ðsin �Þ�yn
� �

ð13:7Þ

The angle � is the azimuth bearing, or AOA, as shown in Figure 13.1. In the far field, the spherical

wavefront is approximated as a plane wave over the array aperture, so the bearing � contains the

available information about the source location. For array diameters L< 2m and tone frequencies

fo < 200Hz so that � > 1:5m, the quantity L2=� < 2:7m. Thus the far field is valid for source distances

on the order of tens of meters. For smaller source distances and/or larger array apertures, the curvature

of the wavefront over the array aperture must be included in �n according to Equation (13.6). We

develop the model for the far-field case in the next section. However, the extension to the near field is

Figure 13.1. Geometry of source and sensor locations.
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easily accomplished by redefining the array response vector (a in Equation (13.20)) to include the

wavefront curvature with an ¼ expð�j2�fo�nÞ.

13.2.2 Narrowband Model with No Scattering

Here, we present the model for the signals impinging on the sensor array when there is no scattering.

Using the far-field approximation, the noisy measurements at the sensors are

znðtÞ ¼ sn ðt � �o � �o;nÞ þ wnðtÞ; n ¼ 1; . . . ;N ð13:8Þ

In the absence of scattering, the signal components are pure sinusoids:

snðtÞ ¼
ffiffiffi
S

p
cos 2�fot þ �

� �
ð13:9Þ

The wn(t) are additive, white, Gaussian noise (AWGN) processes that are real-valued, continuous-time,

zero-mean, jointly wide-sense stationary, and mutually uncorrelated at distinct sensors with power

spectral density (PSD) ðN o=2Þ W/Hz. That is, the noise correlation properties are

EfwnðtÞg ¼ 0; �1< t<1 n ¼ 1; . . . ;N ð13:10Þ

rw;mnð�Þ ¼ Efwmðt þ �ÞwnðtÞg ¼ rwð�Þ �mn ð13:11Þ

where Ef�g denotes expectation and rwð�Þ ¼ ðN o=2Þ �ð�Þ is the noise autocorrelation function that is

common at all sensors. The Dirac delta function is �ð�Þ, and the Kronecker delta function is �mn ¼ 1 if

m¼ n and 0 otherwise. As noted above, modeling the noise as spatially white may be inaccurate if wind

noise or interfering sources are present in the environment. The noise PSD is

Gwð f Þ ¼ Ffrwð�Þg ¼
No

2
ð13:12Þ

where Ff�g denotes Fourier transform. With no scattering, the complex envelope of zn(t) in Equations

(13.8) and (13.9) is, using Equation (13.4)

ezznðtÞ ¼ exp �j !o�o þ !o�o; nð Þ
� �essnðtÞ þ ewwnðtÞ

¼
ffiffiffi
S

p
exp jð�� !o�o

� �
� exp ½�j !o�o;n� þ ewwnðtÞ ð13:13Þ

where the complex envelope of the narrowband source component is

essnðtÞ ¼ ffiffiffi
S

p
e j�; n ¼ 1; . . . ;N ðno scatteringÞ ð13:14Þ

We assume that the complex envelope is low-pass filtered with bandwidth from ½�B=2; B=2�Hz,

e.g. as in Figure 13.2. Assuming that the low-pass filter is ideal, the complex envelope of the noise, ewwnðtÞ,

has PSD and correlation

G ~wwð f Þ ¼ ð2N oÞ rect
f

B

� �
ð13:15Þ
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r ~wwð�Þ ¼ Efewwnðt þ �ÞewwnðtÞ
�
g ¼ F�1 G ~wwð f Þ

	 

¼ ð2N oBÞ sinc ðB�Þ ð13:16Þ

r ~ww;mnð�Þ ¼ Efewwmðt þ �ÞewwnðtÞ
�
g ¼ r ~wwð�Þ �mn ð13:17Þ

where (�)* denotes complex conjugate, rectðuÞ ¼ 1 for �1=2 < u < 1=2 and 0 otherwise, and

sincðuÞ ¼ sinð�uÞ=ð�uÞ. Note that the noise samples are uncorrelated (and independent since Gaussian)

at sample times spaced by 1/B s. In practice, the noise PSD G ~wwð f Þ is neither flat nor perfectly band-

limited as in Equation (13.5). However, the low-pass filtering to bandwidth BHz implies that the noise

samples have decreasing correlation for time spacing greater than 1/B s.

Let us define the vectors

ezzðtÞ ¼ ezz1ðtÞ
..
.

ezzN ðtÞ
264

375; essðtÞ ¼ ess1ðtÞ
..
.

essN ðtÞ
264

375; ewwðtÞ ¼ eww1ðtÞ

..

.

ewwN ðtÞ

264
375 ð13:18Þ

Then, using (13.13) with (13.7):

ezzðtÞ ¼ ffiffiffi
S

p
exp j �� !o�oð Þ

� �
aþ ewwðtÞ ¼

ffiffiffi
S

p
e j	 aþ ewwðtÞ ð13:19Þ

where a is the array steering vector (or array manifold)

a ¼

exp jk ðcos �Þ�x1 þ ðsin�Þ�y1
� �� �

..

.

exp jk ðcos�Þ�xN þ ðsin�Þ�yN
� �� �

264
375 ð13:20Þ

with k ¼ !o=c. Note that the steering vector a depends on the frequency !o, the sensor locations

ð�xn; �ynÞ, and the source bearing �. The common phase factor at all of the sensors,

exp j �� !o�oð Þ
� �

¼ exp j �� kdoð Þ
� �

, depends on the phase of the signal emitted by the source (�)

and the propagation distance to the center of the array (kdo). We simplify the notation and define

	 ¼
�

�� kdo ð13:21Þ

which is a deterministic parameter.

Figure 13.2. Processing to obtain in-phase and quadrature components, zðIÞðtÞ and zðQÞðtÞ.
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In preparation for the introduction of scattering into the model, let us write expressions for the first-

and second-order moments of the vectors essðtÞ and ezzðtÞ. Let 1 be an N � 1 vector of ones,

R~zzð�Þ ¼ Efezzðt þ �ÞezzðtÞyg be the N � N cross-correlation function matrix with ðm; nÞ element

r ~zz;mnð�Þ ¼ Efezzmðt þ �ÞezznðtÞ�g, and G~zzð f Þ ¼ F R ~zzð�Þ
	 


be the cross-spectral density (CSD) matrix; then

EfessðtÞg ¼ ffiffiffi
S

p
e j�1 EfezzðtÞg ¼ ffiffiffi

S
p

e j	a ð13:22Þ

R~ssð�Þ ¼ S11T R ~zzð�Þ ¼ S aay þ r ~wwð�ÞI ð13:23Þ

G~ssð f Þ ¼ S11T�ð f Þ G ~zzð f Þ ¼ Saay�ð f Þ þ G ~wwð f ÞI ð13:24Þ

EfessðtÞessðtÞy ¼ R~ssð0Þ ¼ S11T EfezzðtÞezzðtÞy ¼ R ~zzð0Þ ¼ S aay þ 
2
~wwI ð13:25Þ

where ð�ÞT denotes transpose, ð�Þ� denotes complex conjugate, ð�Þy denotes complex conjugate transpose,

I is the N � N identity matrix, and 
2
~ww is the variance of the noise samples:


2
~ww ¼ E ewwðtÞ

�� ��2n o
¼ r ~wwð0Þ ¼ 2N oB ð13:26Þ

Note from Equation (13.24) that the PSD at each sensor contains a spectral line, since the source signal

is sinusoidal. Note from Equation (13.25) that, at each sensor, the average power of the signal

component is S, so the SNR at each sensor is

SNR ¼
S


2
~ww

¼
S

2N oB
ð13:27Þ

The complex envelope vectorezzðtÞ is typically sampled at a rate fs ¼ B samples/s, so the samples are

spaced by Ts ¼ 1=fs ¼ 1=B s:

ezzðiTsÞ ¼
ffiffiffi
S

p
ej	 aþ ewwðiTsÞ; i ¼ 0; . . . ;T � 1 ð13:28Þ

According to Equation (13.7), the noise samples are spatially independent as well as temporally

independent, since r ~wwðiTsÞ ¼ r ~wwði=BÞ ¼ 0. Thus the vectorsezzð0Þ; ezzðTsÞ; . . . ; ezzððT � 1ÞTsÞ in Equation

(13.28) are independent and identically distributed (iid) with complex normal distribution, which we

denote byezzðiTsÞ 	 CN m~zz; C ~zzð Þ, with mean and covariance matrix

m~zz ¼
ffiffiffi
S

p
e j	 a and C~zz ¼ 
2

~ww I ðno scatteringÞ ð13:29Þ

The joint probability density function for CN m~z;C~zð Þ is given by [20]

f ezzð Þ ¼
1

�N det C~zzð Þ
exp �ezz�m~zzð Þ

y C�1
~zz ezz�m~zzð Þ

h i
ð13:30Þ

where ‘‘det’’ denotes determinant. In the absence of scattering, the information about the source

location (bearing) is contained in the mean of the sensor observations. If the T time samples in Equation

(13.28) are coherently averaged, then the resulting SNR per sensor is T times that in Equation (13.27),
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so SNR0 ¼ TðS=
2
~wwÞ ¼ T½S=ð2N o=TsÞ� ¼ T S=ð2N oÞ, where T ¼ T Ts is the total observation time,

in seconds.

13.2.3 Narrowband Model with Scattering

Next, we include the effects of scattering by atmospheric turbulence in the model for the signals

measured at the sensors in the array. As mentioned earlier, the scattering introduces random

fluctuations in the signals and diminishes the cross-coherence between the array elements. The

formulation we present for the scattering effects was developed by Wilson, Collier and coworkers

[11,21–26]. The reader may refer to these studies for details about the physical modeling and references

to additional primary source material. Several assumptions and simplifications are involved in the

formulation: (1) the propagation is line-of-sight (no multipath), (2) the additive noise is independent

from sensor to sensor, and (3) the random fluctuations caused by scattering are complex, circular,

Gaussian random processes with partial correlation between the sensors.

The line-of-sight propagation assumption is consistent with Section 13.2.2 and is reasonable for

propagation over fairly flat, open terrain in the frequency range of interest here (below several hundred

hertz). A significant acoustic multipath may result from reflections off hard objects, such as buildings,

trees, and (sometimes) the ground. A multipath can also result from refraction of sound waves by

vertical gradients in the wind and temperature.

By assuming independent, additive noise, we ignore the potential spatial correlation of wind noise

and interference from other undesired sources. This restriction may be averted by extending the models

to include spatially correlated additive noise, although the signal processing may be more complicated

in this case.

Modeling of the scattered signals as complex, circular, Gaussian random processes is a substantial

improvement on the constant signal model (Section 13.2.2), but it is, nonetheless, rather idealized.

Waves that have propagated through a random medium can exhibit a variety of statistical behaviors,

depending on such factors as the strength of the turbulence, the propagation distance, and the ratio of

the wavelength to the predominant eddy size [5,27]. Experimental studies [8,28,29] conducted over

short horizontal propagation distances with frequencies below 1000Hz demonstrate that the effect of

turbulence is highly significant, with phase variations much larger than 2� radians and deep fades in

amplitude often developing. The measurements demonstrate that the Gaussian model is valid in many

conditions, although non-Gaussian scattering characterized by large phase but small amplitude

variations is observed at some frequencies and propagation distances. The Gaussian model applies in

many cases of interest, and we apply it in this chapter. The effect of non-Gaussian signal scattering on

aeroacoustic array performance remains to be determined.

The scattering modifies the complex envelope of the signals at the array by spreading a portion of the

power from the (deterministic) mean component into a zero-mean random process with a PSD

centered at 0Hz. We assume that the bandwidth of the scattered signal, which we denote by B, is much

smaller than the tone frequency fo. The saturation parameter [25,26], denoted by � 2 ½0; 1�, defines the

fraction of average signal power that is scattered from the mean into the random component. The

scattering may be weak (� � 0) or strong (� � 1), which are analogous to Rician and Rayleigh fading

respectively in the radio propagation literature. The modification of Equations (13.8), (13.9), (13.13),

and (13.14) to include scattering is as follows, where ezznðtÞ is the signal measured at sensor n:

ezznðtÞ ¼ exp �j !o�o þ !o�o;n
� �� � essnðtÞ þ ewwnðtÞ ð13:31Þ

~ssnðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��ð ÞS

p
e j� þevvnðtÞ e j�; n ¼ 1; . . . ;N ðwith scatteringÞ ð13:32Þ

In order to satisfy conservation of energy with EfjessnðtÞj2g ¼ S, the average power of the scattered

component must be EfjevvnðtÞj2g ¼ � S. The value of the saturation � and the correlation properties of

the vector of scattered processes, evvðtÞ ¼ ½evv1ðtÞ ; . . . ;evvN ðtÞ�T, depend on the source distance do and the

Signal Processing and Propagation for Aeroacoustic Sensor Networks 227

� 2004 by CRC Press LLC



File: {Books}4353-Iyengar&Brooks/Pageproofs/3d/4353-Chapter-13.3d
Creator: srinivas/cipl-u1-3b2-9.unit1.cepha.net Date/Time: 4.7.2004/10:57pm Page: 228/264

meteorological conditions. The vector of scattered processes evvðtÞ and the additive noise vector ewwðtÞ

contain zero-mean, jointly wide-sense stationary, complex, circular Gaussian random processes. The

scattered processes and the noise are modeled as independent, Efevvðt þ �ÞewwðtÞyg ¼ 0. The noise is

described by Equations (13.15)–(13.17), while the saturation � and statistics of evvðtÞ are determined

by the ‘‘extinction coefficients’’ of the first and second moments of essðtÞ. As will be discussed in

Section 13.2.4, approximate analytical models for the extinction coefficients are available from physical

modeling of the turbulence in the atmosphere. In the remainder of this section we define the extinction

coefficients and relate them to � and the statistics ofevvðtÞ, thereby providing models for the sensor array

data that include turbulent scattering by the atmosphere.

We denote the extinction coefficients for the first and second moments of essðtÞ by m and �ð�mnÞ

respectively, where �mn is the distance between sensors m and n (see Figure 13.1). The extinction

coefficients are implicitly defined as follows:

EfessnðtÞg ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��ð ÞS

p
e j� ¼

� ffiffiffi
S

p
e j� e��do ð13:33Þ

r~ss;mnð0Þ ¼ EfessmðtÞ~ssnðtÞ�g ¼ ð1��ÞSþ r ~vv;mnð0Þ¼
�
Se��ð�mnÞdo ð13:34Þ

where

r~ss;mnð�Þ ¼ Efessmðt þ �ÞessnðtÞ�g ¼ ð1��ÞSþ r ~vv;mnð�Þ ð13:35Þ

The right sides of Equations (13.33) and (13.34) are the first and second moments without scattering,

from Equations (13.22) and (13.23) respectively multiplied by a factor that decays exponentially with

increasing distance do from the source. From Equation (13.33), we obtainffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1��Þ

p
¼ e��do and � ¼ 1� e�2�do ð13:36Þ

Also, by conservation of energy with m¼ n in Equation (13.34), adding the average powers in the

unscattered and scattered components ofessnðtÞ must equal S, so

r~ssð0Þ ¼ EfessnðtÞ�� ��g ¼ e�2�doSþ r ~vvð0Þ ¼ S ð13:37Þ

¼)r ~vvð0Þ ¼ E evvnðtÞ�� ��	 

¼

Z 1

�1

G ~vvð f Þ df ¼ 1� e�2�do
� �

S ¼ �S ð13:38Þ

where r ~vvð�Þ ¼ Efevvnðt þ �ÞevvnðtÞ�g is the autocorrelation function (which is the same for all n) and G ~vvð f Þ

is the corresponding PSD. Therefore, for source distances do � 1=ð2�Þ, the saturation � � 0 and most

of the energy from the source arrives at the sensor in the unscattered (deterministic mean) component

ofessnðtÞ. For source distances do � 1=ð2�Þ, the saturation � � 1 and most of the energy arrives in the

scattered (random) component.

Next, we use Equation (13.34) to relate the correlation of the scattered signals at sensors m and n,

r ~vv;mnð�Þ, to the second moment extinction coefficient �ð�mnÞ. Since the autocorrelation of evvnðtÞ is

identical at each sensor n and equal to r ~vvð�Þ, and assuming that the PSD G ~vvð f Þ occupies a narrow

bandwidth centered at 0Hz, the cross-correlation and cross-spectral density satisfy

r ~vv;mnð�Þ ¼ 
mn r ~vvð�Þ and G ~vv;mnð f Þ ¼ Ffr ~vv;mnð�Þg ¼ 
mnG ~vvð f Þ ð13:39Þ

where j
mnj 
 1 is a measure of the coherence between evvmðtÞ and evvnðtÞ. The definition of 
mn as a

constant includes an approximation that the coherence does not vary with frequency, which is
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reasonable when the bandwidth of G ~vvð f Þ is narrow. Although systematic studies of the coherence time

of narrowband acoustic signals have not been made, data and theoretical considerations (such as in [27,

Sec. 8.4]) are consistent with values ranging from tens of seconds to several minutes in the frequency

range ½50; 250� Hz. Therefore, the bandwidth of G ~vvð f Þ may be expected to be less than 1Hz. The

bandwidth B in the low-pass filters for the complex amplitude in Figure 13.2 should be chosen to be

equal to the bandwidth of G ~vvð f Þ. We assume that 
mn in Equation (13.39) is real-valued and

nonnegative, which implies that phase fluctuations at sensor pairs are not biased toward positive or

negative values. Then, using Equation (13.39) with Equations (13.38) and (13.36) in Equation (13.34)

yields the following relation between 
mn and �; �:


mn ¼
e��ð �mnÞdo � e�2�do

1� e�2�do
; m; n ¼ 1; . . . ;N ð13:40Þ

We define � as the N � N matrix with elements 
mn. The second moment extinction coefficient �ð�mnÞ

is a monotonically increasing function, with �ð0Þ ¼ 0 and �ð1Þ ¼ 2�, so 
mn 2 ½0; 1�.

Combining Equations (13.31) and (13.32) into vectors, and using Equation (13.36) yields

ezzðtÞ ¼ ffiffiffi
S

p
e j	 e��do aþ e j	 aevvðtÞ þ ewwðtÞ ð13:41Þ

where 	 is defined in Equation (13.21) and a is the array steering vector in Equation (13.20). We define

the matrix B with elements

Bmn ¼ exp ��ð�mnÞ do½ � ð13:42Þ

and then we can extend the second-order moments in Equations (13.22)–(13.25) to the case with

scattering as

EfezzðtÞg ¼ e��do
ffiffiffi
S

p
e j	 a ¼

�
m~zz ð13:43Þ

R ~zzð�Þ ¼ e�2�doS aay þ S B � aay
� �

� e�2�doaay
� � r ~vvð�Þ

S 1� e�2�doð Þ
þ r ~wwð�ÞI ð13:44Þ

G ~zzð f Þ ¼ e�2�d0 S aay �ð f Þ þ S B � aay
� �

� e�2�doaay
� � G ~vvð f Þ

S 1� e�2�doð Þ
þ G ~wwð f ÞI ð13:45Þ

EfezzðtÞezzðtÞyg ¼ R~zzð0Þ ¼ SB � aay
� �

þ 
2
~wwI ¼ C ~zz þm~zzm

y

~zz ð13:46Þ

where � denotes element-wise product between matrices. The normalizing quantity S 1� e�2�do
� �

that

divides the autocorrelation r ~vvð�Þ and the PSD G ~vvð f Þ in Equations (13.44) and Equation (13.45) is equal

to r ~vvð0Þ ¼
R
G ~vvð f Þdf . Therefore, the maximum of the normalized autocorrelation is unity, and the area

under the normalized PSD is unity. The complex envelope samples ezzðtÞ have the complex normal

distribution CN m~zz; C~zzð Þ, which is defined in Equation (13.30). The mean vector and covariance

matrix are given in Equations (13.43) and (13.46), but we repeat them below for comparison with

Equation (13.29):

m~zz ¼ e��d0
ffiffiffi
S

p
e j	a ðwith scatteringÞ ð13:47Þ

C~zz ¼ S B � aay
� �

� e�2�doaay
� �

þ 
2
~wwI ðwith scatteringÞ ð13:48Þ

Signal Processing and Propagation for Aeroacoustic Sensor Networks 229

� 2004 by CRC Press LLC



File: {Books}4353-Iyengar&Brooks/Pageproofs/3d/4353-Chapter-13.3d
Creator: srinivas/cipl-u1-3b2-9.unit1.cepha.net Date/Time: 4.7.2004/10:57pm Page: 230/264

Note that the scattering is negligible if do � 1=ð2�Þ, in which case e�2�do � 1 and � � 0. Then most of

the signal energy is in the mean, withB � 11T and 
mn � 1 in Equation (13.40), since �ð�mnÞ< 2�. For

larger values of the source range do, more of the signal energy is scattered, and B may deviate from 11T

(and 
mn < 1 for m 6¼ n) due to coherence losses between the sensors. At full saturation (� ¼ 1),

B ¼ �.

The scattering model in Equation (13.41) may be formulated as multiplicative noise on the

steering vector.

ezzðtÞ ¼ ffiffiffi
S

p
e j	 a � e��do 1þ

evvðtÞffiffiffi
S

p

� �
þ ewwðtÞ ¼

� ffiffiffi
S

p
e j	 a � euuðtÞð Þ þ ewwðtÞ ð13:49Þ

The multiplicative noise process euuðtÞ is complex normal with m ~uu ¼ EfeuuðtÞg ¼ e��do 1 and

EfeuuðtÞeuuðtÞyg ¼ B, so the covariance matrix is C ~uu ¼ B� e�2�do 11T ¼ ��, where � has elements


mn in Equation (13.40). The mean vector and covariance matrix in Equations (13.47) and (13.48) may

be represented as m~zz ¼
ffiffiffi
S

p
ej	 ða �mu~Þ and C~zz ¼ S ½ðaayÞ �C ~uu� þ 
2

~ww I.

13.2.4 Model for Extinction Coefficients

During the past several decades, considerable effort has been devoted to the modeling of wave

propagation through random media. Theoretical models have been developed for the extinction

coefficients of the first and second moments, � and �ð�Þ, along nearly line-of-sight paths. For general

background, we refer the reader to Refs [5,10,27,30]. Here, we consider some specific results relevant to

turbulence effects on aeroacoustic arrays.

The extent that scattering affects array performance depends on many factors, including the

wavelength of the sound, the propagation distance from the source to the sensor array, the spacing

between the sensors, the strength of the turbulence (as characterized by the variance of the temperature

and wind-velocity fluctuations), and the size range of the turbulent eddies. Turbulence in the near-

ground atmosphere spans a vast range of spatial scales, from millimeters to hundreds of meters. If the

sensor spacing � is small compared with the size ‘ of the smallest eddies (a case highly relevant to optics

but not low-frequency acoustics), �ð�Þ is proportional to k2�2, where k ¼ !=c0 is the wavenumber of

the sound and c0 the ambient sound speed [27]. In this situation, the loss in coherence between sensors

results entirely from turbulence-induced variability in the AOA. Of greater practical importance in

acoustics are situations where � � ‘. The spacing � may be smaller or larger than L, the size of the

largest eddies.

When � � ‘ and � � L, the sensor spacing resides in the inertial subrange of the turbulence [5].

Because the strength of turbulence increases with the size of the eddies, this case has qualitative

similarities to � � ‘. The wavefronts impinging on the array have a roughly constant AOA over the

aperture and the apparent bearing of the source varies randomly about the actual bearing. Increasing

the separation between sensors can dramatically decrease the coherence. In contrast, when � � L is

large, the wavefront distortions induced by the turbulence produce nearly uncorrelated signal variations

at the sensors. In this case, further increasing separation does not affect coherence: it is ‘‘saturated’’ at a

value determined by the strength of the turbulence and, therefore, has an effect similar to additive,

uncorrelated noise. These two extreme cases are illustrated in Figure 13.3. The resulting behavior of �ð�Þ

and Bmn [Equation (13.42)] are shown in Figure 13.4.

The general results for the extinction coefficients of a spherically propagating wave, derived with

the parabolic (narrow-angle) and Markov approximations, and assuming � � ‘, are [Ref. [10]:

Equations (7.60) and (7.71); Ref. [30]: Equations (20)–(28)]:

� ¼
�2k2

2

Z 1

0

dK?K?�eff ðKk ¼ 0;K?Þ ¼ k2
2
effLeff=4 ð13:50Þ
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�ð�Þ ¼ �2k2
Z 1

0

dt

Z 1

0

dK?K? 1� J0ðK?�tÞ½ ��eff ðKk ¼ 0;K?Þ ð13:51Þ

in which J0 is the zeroth-order Bessel function of the first kind and K ¼ Kk þK? is the turbulence

wavenumber vector decomposed into components parallel and perpendicular to the propagation path.

Figure 13.3. Turbulence-induced distortions of acoustic wavefronts impinging on an array. The wavefronts are

initially smooth (left) and become progressively more distorted until they arrive at the array (right). Top: sensor

separations within the inertial subrange of the turbulence (� � ‘ and � � L). The wavefronts are fairly smooth

but the AOA (and therefore the apparent source bearing) varies. Bottom: sensor separations much larger than the

scale of the largest turbulent eddies (� � L). The wavefronts have a very rough appearance and the effect of the

scattering is similar to uncorrelated noise.

Figure 13.4. Left: characteristic behavior of the second-moment extinction coefficient �ð�Þ. It initially increases

with increasing sensor separation �, and then saturates at a fixed value 2� (where m is the first-moment extinction

coefficient) when � is large compared with the size of the largest turbulent eddies. Right: resulting behavior of the

total signal coherence Bmn, Equation (13.42), for several values of the propagation distance do.

Signal Processing and Propagation for Aeroacoustic Sensor Networks 231

� 2004 by CRC Press LLC



File: {Books}4353-Iyengar&Brooks/Pageproofs/3d/4353-Chapter-13.3d
Creator: srinivas/cipl-u1-3b2-9.unit1.cepha.net Date/Time: 4.7.2004/10:57pm Page: 232/264

The quantities �eff ðKÞ, 
eff , and Leff are the effective turbulence spectrum, effective variance, and

effective integral length scale. (The integral length scale is a quantitative measure of the size of the

largest eddies.) The spectrum is defined as

�eff ðKÞ ¼
�TðKÞ

T2
0

þ
4��ðKÞ

c20
ð13:52Þ

where T0 is the ambient temperature, and the subscripts T and � indicate the temperature and wind-

velocity fields respectively. The definition of the effective variance is the same, except with 
2 replacing

�ðKÞ. The effective integral length scale is defined as

Leff ¼
1


eff
LT


2
T

T2
0

þ L�
4
2

�

c20

� �
ð13:53Þ

For the case �=Leff � 1, the contribution from the term in Equation (13.51) involving the Bessel

function is small and one has �ð�Þ ! 2�, as anticipated from the discussion after Equation (13.40).

When �=Leff � 1, the inertial-subrange properties of the turbulence come into play and one finds

[Ref. [10], Equation (7.87)]

�ð�Þ ¼ 0:137
C2
T

T2
0

þ
22

3

C2
�

c20

� �
k2�5=3 ð13:54Þ

where C2
T and C2

� are the structure-function parameters for the temperature and wind fields respectively.

The structure-function parameters represent the strength of the turbulence in the inertial subrange.

Note that the extinction coefficients for both moments depend quadratically on the frequency of the

tone, regardless of the separation between the sensors. The quantities m, C2
T , C

2
�, and Leff each depend

strongly on atmospheric conditions. Table 13.1 provides estimated values for typical atmospheric

conditions based on the turbulence models in Refs. [11,24]. These calculations were performed for a

propagation path height of 2m.

It is evident from Table 13.1 that the entire range of saturation parameter values from � � 0 to

� � 1 may be encountered in aeroacoustic applications, which typically have source ranges from

meters to kilometers. Also, saturation occurs at distances several times closer to the source in sunny

Table 13.1. Modeled turbulence quantities and inverse extinction coefficients for various atmospheric conditions.

The atmospheric conditions are described quantitatively in [24]. The second and third columns give the inverse

extinction coefficients at 50Hz and 200Hz, respectively. These values indicate the distance at which random

fluctuations in the complex signal become strong. The fourth and fifth columns represent the relative contributions

of temperature and wind fluctuations to the field coherence. The sixth column is the effective integral length scale

for the scattered sound field; at sensor separations greater than this value, the coherence is ‘‘saturated’’

Atmospheric condition m�1 (m)

at 50Hz

m�1 (m)

at 200Hz

C2
T=T

2
0 ðm

�2=3Þ ð22=3ÞC2
v=C

2
0 ðm

�2=3Þ Leff ðmÞ

Mostly sunny, light wind 990 62 2.0� 10�5 8.0� 10�6 100

Mostly sunny, moderate wind 980 61 7.6� 10�6 2.8� 10�5 91

Mostly sunny, strong wind 950 59 2.4� 10�6 1.3� 10�4 55

Mostly cloudy, light wind 2900 180 1.5� 10�6 4.4� 10�6 110

Mostly cloudy, moderate wind 2800 180 4.5� 10�7 2.4� 10�5 75

Mostly cloudy, strong wind 2600 1160 1.1� 10�7 11.2� 10�4 28
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conditions than in cloudy ones. In a typical scenario in aeroacoustics involving a sensor standoff

distance of several hundred meters, saturation will be small only for frequencies of about 100Hz and

lower. At frequencies above 200Hz or so, the signal is generally saturated and random fluctuations

dominate.

Based on the values for C2
T and C2

� in Table 13.1, coherence of signals is determined primarily by

wind-velocity fluctuations (as opposed to temperature), except for mostly sunny, light wind conditions.

It may at first seem a contradiction that the first-moment extinction coefficient m is determined mainly

by cloud cover (which affects solar heating of the ground), as opposed to the wind speed. Indeed, the

source distance do at which a given value of � is obtain is several times longer in cloudy conditions than

in sunny ones. This can be understood from the fact that cloud cover damps strong thermal plumes

(such as those used by hang gliders and seagulls to stay aloft), which are responsible for wind-velocity

fluctuations that strongly affect acoustic signals.

Interestingly, the effective integral length scale for the sound field usually takes on a value

intermediate between the microphone separations within small arrays (around 1m) and the spacing

between typical network nodes (which may be 100m or more). As a result, high coherence can be

expected within small arrays. However, coherence between nodes in a widely spaced network will be

quite small, particularly at frequencies above 200Hz or so.

Figure 13.5 illustrates the coherence of the scattered signals, 
mn in Equation (13.40), as a function of

the sensor separation �. The extinction coefficient in Equation (13.54) is computed at frequency

f¼ 50Hz and source range do ¼ 1500m, with mostly sunny, light wind conditions from Table 13.1, so

� ¼ 0:95. Note that the coherence is nearly perfect for sensor separations �< 1m; the coherence then

declines steeply for larger separations.

Figure 13.5. Evaluation of the coherence of the scattered signals at sensors with separation �, using f¼ 50Hz,

do ¼ 1500m, mostly sunny, light wind conditions (Table 13.1), �ð�Þ is computed with Equation (13.54), and the

coherence 
ð�Þ is computed with Equation (13.40).
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13.2.5 Multiple Frequencies and Sources

The model in Equation (13.49) is for a single source that emits a single frequency, ! ¼ 2�fo rad/s. The

complex envelope processing in Equation (13.2) and Figure 13.2 is a function of the source frequency.

We can extend the model in Equation (13.49) to the case of K sources that emit tones at L frequencies

!1; . . . ; !L, as follows:

ezzðiTs;!lÞ ¼
XK
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
Skð!lÞ

p
e j	k;l akð!lÞ �euukðiTs;!lÞ½ � þ ewwðiTs;!lÞ

i ¼ 1; . . . ;T

l ¼ 1; . . . ; L
ð13:55Þ

¼ a1ð!lÞ . . . aKð!lÞ½ � � euu1ðiTs;!lÞ . . .euuKðiTs;!lÞ½ �
	 
 ffiffiffiffiffiffiffiffiffiffiffiffi

S1ð!lÞ
p

e j	1;l

..

.ffiffiffiffiffiffiffiffiffiffiffiffiffi
SKð!lÞ

p
e j	K;l

2664
3775þ ewwðiTs;!lÞ

¼
�

Að!lÞ � eUUðiTs;!lÞ


 �eppð!lÞ þ ewwðiTs!lÞ ð13:56Þ

In Equation (13.55), Skð!lÞ is the average power of source k at frequency !l, akð!lÞ is the steering vector

for source k at frequency !l as in Equation (13.20),euukðiTs;!lÞ is the scattering of source k at frequency

!l at time sample i, and T is the number of time samples. In Equation (13.56), the steering vector

matrices Að!lÞ, the scattering matrices eUUðiTs;!lÞ, and the source amplitude vectors eppð!lÞ for

l ¼ 1; . . . ; L and i ¼ 1; . . . ; T, are defined by the context. If the sample spacing Ts is chosen

appropriately, then the samples at a given frequency !l are independent in time. We will also model the

scattered signals at different frequencies as independent. Cross-frequency coherence has been previously

studied theoretically and experimentally, with Refs [8,31] presenting experimental studies in the

atmosphere. However, models for cross-frequency coherence in the atmosphere are at a very

preliminary stage. It may be possible to revise the assumption of independent scattering at different

frequencies as better models become available.

The covariance matrix at frequency !l is, by extending the discussion following Equation(13.49),

C~zzð!lÞ ¼
XK
k¼1

Skð!lÞ�kð!lÞ �kð!lÞ � akð!lÞakð!lÞ
y

� �� �
þ 
 ~wwð!lÞ

2 I ð13:57Þ

where the scattered signals from different sources are assumed to be independent. If we assume full

saturation (�kð!lÞ ¼ 1) and negligible coherence loss across the array aperture (�kð!lÞ ¼ 11T), then

the sensor signals in Equation (13.55) have zero mean, and the covariance matrix in Equation (13.57)

reduces to the familiar correlation matrix of the form

R~zzð0;!lÞ ¼ E ezzðiTs;!lÞezzðiTs;!lÞ
y

	 

¼ Að!lÞSð!lÞAð!lÞ

y
þ 
 ~wwð!lÞ

2I ð�kð!lÞ ¼ 1 and no coherence lossÞ ð13:58Þ

where Sð!lÞ is a diagonal matrix with S1ð!lÞ; . . . ; SK ð!lÞ along the diagonal.1

13.3 Signal Processing
In this section, we discuss signal processing methods for aeroacoustic sensor networks. The signal

processing takes into account the source and propagation models presented in the previous section, as

well as minimization of the communication bandwidth between sensor nodes connected by a wireless

1For the fully saturated case with no coherence loss, we can relax the assumption that the scattered signals from

different sources are independent by replacing the diagonal matrix Sð!lÞ in Equation (13.58) with a positive

semidefinite matrix with ðm; nÞ element
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Smð!lÞSnð!lÞ

p
EfeuumðiTs;!lÞeuunðiTs;!lÞ*g, whereeuumðiTs;!lÞ is the scattered

signal for source m.
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link. We begin with of arrival AOA estimation using a single sensor array in Section 13.3.1. Then we

discuss source localization with multiple sensor arrays in Section 13.3.2, and we briefly describe

implications for tracking, detection, and classification algorithms in Sections 13.3.3 and 13.3.4.

13.3.1 AOA Estimation

We discuss narrowband AOA estimation with scattering in Section 13.3.1.1, and then we discuss

wideband AOA estimation without scattering in Section 13.3.1.2.

13.3.1.1 Narrowband AOA Estimation with Scattering

In this section, we review some performance analyses and algorithms that have been investigated for

narrowband AOA estimation with scattering. Most of the methods are based on scattering models that

are similar to the single-source model in Section 13.2.3 or the multiple-source model in Section 13.2.5

at a single frequency. Many of the references cited below are formulated for radio frequency (RF)

channels, so the equivalent channel effect is caused by multipath propagation and Doppler. The models

for the RF case are similar to those presented in Section 13.2.

Wilson [21] analyzed the Cramér–Rao bound (CRB) on AOA estimation for a single source using

several models for atmospheric turbulence. Rayleigh signal fading was assumed. Collier and Wilson

[22,23] extended the work to include unknown turbulence parameters in the CRB, along with the

source AOA. Their CRB analysis provides insight into the combinations of atmospheric conditions,

array geometry, and source location that are favorable for accurate AOA estimation. They note that

refraction effects make it difficult to estimate the elevation angle accurately when the source and sensors

are near the ground, so aeroacoustic sensor arrays are most effective for azimuth estimation.

Other researchers [32–40] have investigated the problem of imperfect spatial coherence in the

context of narrowband AOA estimation. Paulraj and Kailath [32] presented a MUSIC algorithm that

incorporates nonideal spatial coherence, assuming that the coherence losses are known. Song and Ritcey

[33] provided maximum-likelihood (ML) methods for estimating the AOAs and the parameters in a

coherence model. Gershman et al. [34] provided a procedure to jointly estimate the spatial coherence

loss and the AOAs. Gershman and co-workers [35–38] studied stochastic and deterministic models for

imperfect spatial coherence, and the performance of various AOA estimators was analyzed. Ghogho

et al. [39] presented an algorithm for AOA estimation with multiple sources in the fully saturated case.

Their algorithm exploits the Toeplitz structure of the B matrix in Equation (13.42) for a uniform linear

array (ULA).

None of the Refs [32–39] handles range of scattering scenarios from weak (� ¼ 0) to strong (� ¼ 1).

Fuks et al. [40] treat the case of Rician scattering on RF channels, so this approach does include the

entire range from weak to strong scattering. Indeed, the ‘‘Rice factor’’ in the Rician fading model is

related to the saturation parameter through ð1��Þ=�. The main focus Fuks et al. [40] is on CRBs

for AOA estimation.

13.3.1.2 Wideband AOA Estimation without Scattering

Narrowband processing in the aeroacoustic context will limit the bandwidth to perhaps a few hertz, and

the large fractional bandwidth encountered in aeroacoustics significantly complicates the array signal

processing. A variety of methods are available for wideband AOA estimation, with varying complexity

and applicability. Application of these to specific practical problems leads to a complicated task of

appropriate procedure choice. We outline some of these methods and various tradeoffs, and describe

some experimental results. Basic approaches include: classical delay-and-sum beamformer, incoherent

averaging over narrowband spatial spectra, ML, coherent signal subspace methods, steered matrix

techniques, spatial resampling (array interpolation), and frequency-invariant beamforming. Useful

overviews include Boehme [41], and Van Trees [42]. Significant progress in this area has occurred in the

previous 15 years or so; major earlier efforts include the underwater acoustics area, e.g. see Owsley [43].
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Using frequency decomposition at each sensor, we obtained the array data model in Equation

(13.55). For our discussion of wideband AOA methods, we will ignore the scattering, and so assume the

spatial covariance can be written as in Equation (13.58). Equation (13.58) may be interpreted as the

covariance matrix of the Fourier-transformed (narrowband) observations of Equation (13.55). The

noise is typically assumed to be Gaussian and spatially white, although generalizations to spatially

correlated noise are also possible, which can be useful for modeling unknown spatial interference.

Working with an estimate R̂R~zzð0; !lÞ, we may apply covariance-based high resolution AOA

estimators (MUSIC, MLE, etc.), although this results in many frequency-dependent angle estimates that

must be associated in some way for each source. A simple approach is to sum the resulting narrowband

spatial spectra, e.g. see [44]; this is referred to as noncoherent averaging. This approach has the

advantages of straightforward extension of narrowband methods and relatively low complexity, but it

can produce artifacts. And noncoherent averaging requires that the SNRs after channelization be

adequate to support the chosen narrow band AOA estimator; in effect the method does not take strong

advantage of the wideband nature of the signal. However, loud harmonic sources can be processed in

this manner with success.

A more general approach was first developed by Wang and Kaveh [45], based on the following

additive composition of transformed narrowband covariance matrices:

Rscmð�iÞ ¼
X
l

Tð�i; !lÞR ~zzð0; !lÞTð�i; !lÞ
y

ð13:59Þ

where �i is the ith AOA. Rscmð�iÞ is referred to as the steered covariance matrix or the focused wideband

covariance matrix. The transformation matrix Tð�i; !lÞ, sometimes called the focusing matrix, can be

viewed as selecting delays to coincide with delay-sum beamforming, so that the transformation depends

on both AOA and frequency. Viewed in another way, the transformation matrix acts to align the signal

subspaces, so that the resulting matrix Rscmð�iÞ has a rank one contribution from a wideband source at

angle �i. Now, narrowband covariance-based AOA estimation methods may be applied to the matrix

Rscmð�iÞ. This approach is generally referred to as the coherent subspace method (CSM). The CSM has

significant advantages: it can handle correlated sources (due to the averaging over frequencies), it

averages over the entire source bandwidth, and has good statistical stability. On the other hand, it

requires significant complexity and, as originally proposed, requires pre-estimation of the AOAs, which

can lead to biased estimates [46]. (Valaee and Kabal [47] present an alternative formulation of focusing

matrices for the CSM using a two-sided transformation, attempting to reduce the bias associated with

the CSM.)

A major drawback to the CSM is the dependence of T on the the AOA. The most general form

requires generation and eigendecomposition of Rscmð�iÞ for each look angle; this is clearly undesirable

from a computational standpoint.2 The dependence of T on �i can be removed in some cases by

incorporating spatial interpolation, thereby greatly reducing the complexity. The basic ideas are

established by Krolik and Swingler in [48]; for an overview (including CSMs) see Krolik [49].

As an example, consider a ULA [48,49], with d ¼ �i=2 spacing. In order to process over another

wavelength choice �j (�j > �i), we could spatially interpolate the physical array to a virtual array with

the desired spacing ðdj ¼ �j=2Þ. The spatial resampling approach adjusts the spatial sampling interval d

as a function of source wavelength �j. The result is a simplification of Equation (13.59) to

Rsr ¼
X
l

Tð!lÞR ~zzð0; !lÞTð!lÞ
y

ð13:60Þ

where the angular dependence is now removed. The resampling acts to align the signal subspace

contributions over frequency, so that a single wideband source results in a rank one contribution toRsr.

Note that the spatial resampling is implicit in Equation (13.60) via the matrices Tð!lÞ. Conventional

2In their original work, Wang and Kaveh [45] relied on pre-estimates of the AOAs to lower the computational

burden.
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narrowband AOA estimation methods may now be applied to Rsr, and, in contrast to CSM, this

operation is conducted once for all angles.

Extensions of [48] from ULAs to arbitrary array geometries can be undertaken, but the dependence

on look angle returns, and the resulting complexity is then similar to the CSM approaches. To avoid

this, Friedlander and Weiss [50] considered spatial interpolation of an arbitrary physical array to virtual

arrays that are uniform and linear, thereby returning to a formulation like Equation (13.60). Doron

et al. [51] developed a spatial interpolation method for forming a focused covariance matrix with

arbitrary arrays. The formulation relies on a truncated series expansion of plane waves in polar

coordinates. The array manifold vector is now separable, allowing focusing matrices that are not a

function of angle. The specific case of a circular array leads to an FFT-based implementation that is

appealing due to its relatively low complexity.

While the spatial resampling methods are clearly desirable from a complexity standpoint,

experiments indicate that they break down as the fractional bandwidth grows (see the examples that

follow). This depends on the particular method, and the original array geometry. This may be due to

accumulated interpolation error, undersampling, and calibration error. As we have noted, and

show in our examples, fractional bandwidths of interest in aeroacoustics may easily exceed 100%: Thus,

the spatial resampling methods should be applied with some caution in cases of large fractional

bandwidth.

Alternatives to the CSM approach are also available. Many of these methods incorporate time

domain processing, and so may avoid the frequency decomposition (discrete fourier transform)

associated with CSM. Buckley and Griffiths [52] and Agrawal and Prasad [53] have developed methods

based on wideband correlation matrices. (The work of Agrawal and Prasad [53] generally relies on a

white or near-white source spectrum assumption, and so might not be appropriate for harmonic

sources.) Sivanand and co-workers [54–56] have shown that the CSM focusing can be achieved in the

time domain, and treat the problem from a multichannel finite impulse response (FIR) filtering

perspective. Another FIR-based method employs frequency-invariant beamforming, e.g. see Ward et al.

[57] and references therein.

13.3.1.3 Performance Analysis and Wideband Beamforming

CRBs on wideband AOA estimation can be established using either a deterministic or random Gaussian

source model, in additive Gaussian noise. The basic results were shown by Bangs [58]; see also Swingler

[59]. The deterministic source case in (possibly colored) Gaussian noise is described by Kay [20].

Performance analysis of spatial resampling methods is considered by Friedlander and Weiss [50], who

also provide CRBs, as well as a description of ML wideband AOA estimation.

These CRBs typically require known source statistics, apply to unbiased estimates, and assume no

scattering, whereas prior spectrum knowledge is usually not available, and the above wideband methods

may result in biased estimates. Nevertheless, the CRB provides a valuable fundamental performance

bound.

Basic extensions of narrowband beamforming methods are reviewed by Van Trees [42, chapter 6],

including delay-sum and wideband minimum variance distortionless response (MVDR) techniques.

The CSM techniques also extend to wideband beamforming, e.g. see Yang and Kaveh [60].

13.3.1.4 AOA Experiments

Next, we highlight some experimental examples and results, based on extensive aeroacoustic

experiments carried out since the early 1990s [3,61–66]. These experiments were designed to test

wideband superresolution AOA estimation algorithms based on array apertures of a few meters or less.

The arrays were typically only approximately calibrated, roughly operating in ½50; 250�Hz, primarily

circular in geometry, and planar (on the ground). Testing focused on military vehicles, and low-flying

rotary and fixed-wing aircraft, and ground truth was typically obtained from global positioning satellite

(GPS) receivers on the sources.
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Early results showed that superresolution AOA estimates could be achieved at ranges of 1 to 2 km

[61], depending on the various propagation conditions and source loudness, and that noncoherent

summation of narrowband MUSIC spatial signatures significantly outperforms conventional wideband

delay-sum beamforming [62]. When the sources had strong harmonic structure, it was a

straightforward matter to select the spectral peaks for narrowband AOA estimation. These experiments

also verified that a piecewise stationary assumption was valid over intervals approximately below 1 s,

that the observed spatial coherence was good over apertures of a few meters or less, and that only rough

calibration was required with relatively inexpensive microphones. Outlier AOA estimates were also

observed, even in apparently high SNR and good propagation conditions. In some cases the outliers

composed 10% of the AOA estimates, but these were infrequent enough that a robust tracking

algorithm could reject them.

Tests of the CSM method (CSM-MUSIC) were conducted with diesel-engine vehicles exhibiting

strong harmonic signatures [63], as well as turbine engines exhibiting broad, relatively flat spectral

signatures [64]. The CSM-MUSIC approach was contrasted with noncoherent MUSIC. In both cases

the M largest spectral bins were selected adaptively for each data block. CSM-MUSIC was implemented

with a focusing matrix T diagonal. For harmonic source signatures, the noncoherent MUSIC method

was shown to outperform CSM-MUSIC in many cases, generally depending on the observed

narrowband SNRs [63]. On the other hand, the CSM-MUSIC method displays good statistical stability

at a higher computational cost. And inclusion of lower SNR frequency bins in noncoherent MUSIC

can lead to artifacts in the resulting spatial spectrum.

For the broadband turbine source, the CSM-MUSIC approach generally performed better than

noncoherent MUSIC, due to the ability of CSM to capture the broad spectral spread of the source

energy [64]. Figure 13.6 depicts a typical experiment with a turbine vehicle, showing AOA estimates

over a 250 s span, where the vehicle traverses approximately a� 1 km path past the array. The largest

M¼ 20 frequency bins were selected for each estimate. The AOA estimates (circles) are overlaid on GPS

ground truth (solid line). The AOA estimators break down at the farthest ranges (the beginning and end

Figure 13.6. Experimental wideband AOA estimation over 250 s, covering a range of approximately �1 km.

Three methods are depicted with M highest SNR frequency bins: (a) narrowband MUSIC ðM ¼ 1Þ, (b) incoherent

MUSIC ðM ¼ 20Þ, and (c) CSM-MUSIC ðM ¼ 20Þ. Solid lines depict GPS-derived AOA ground truth.
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of the data). Numerical comparison with the GPS-derived AOAs reveals CSM-MUSIC to have slightly

lower mean-square error. While the three AOA estimators shown in Figure 13.6 for this single-source

case have roughly the same performance, we emphasize that examination of the beam patterns

reveals that the CSM-MUSIC method exhibits the best statistical stability and lower sidelobe behavior

over the entire data set [64]. In addition, the CSM-MUSIC approach exhibited better performance in

multiple-source testing.

Experiments with the spatial resampling approaches reveal that they require spatial oversampling to

handle large fractional bandwidths [65,66]. For example, the array manifold interpolation (AMI)

method of Doron et al. [51] was tested experimentally and via simulation using a 12-element uniform

circular array. While the CSM-MUSIC approach was asymptotically efficient in simulation, the AMI

technique did not achieve the CRB. The AMI algorithm performance degraded as the fractional

bandwidth was increased for a fixed spatial sampling rate. While the AMI approach is appealing from a

complexity standpoint, effective application of AMI requires careful attention to the fractional

bandwidth, maximum source frequency, array aperture, and degree of oversampling. Generally, the

AMI approach required higher spatial sampling when compared with CSM-type methods, and so AMI

lost some of its potential complexity savings in both hardware and software.

13.3.2 Localization with Distributed Sensor Arrays

The previous subsection was concerned with AOA estimation using a single-sensor array. The ðx; yÞ

location of a source in the plane may be estimated efficiently using multiple-sensor arrays that are

distributed over a wide area. We consider source localization in this section using a network of sensors

that are placed in an ‘‘array of arrays’’ configuration, as illustrated in Figure 13.7. Each array contains

local processing capability and a wireless communication link with a fusion center. A standard approach

for estimating the source locations involves AOA estimation at the individual arrays, communication of

the bearings to the fusion center, and triangulation of the bearing estimates at the fusion center (e.g. see

Refs [67–71]). This approach is characterized by low communication bandwidth and low complexity,

but the localization accuracy is generally inferior to the optimal solution in which the fusion center

jointly processes all of the sensor data. The optimal solution requires high communication bandwidth

and high processing complexity. The amount of improvement in localization accuracy that is enabled

by greater communication bandwidth and processing complexity is dependent on the scenario, which

we characterize in terms of the power spectra (and bandwidth) of the signals and noise at the sensors,

the coherence between the source signals received at widely separated sensors, and the observation time

(amount of data).

We have studied this scenario previously [16], where a framework is presented to identify situations

that have the potential for improved localization accuracy relative to the standard bearings-only

Figure 13.7. Geometry of nonmoving source location and an array of arrays. A communication link is available

between each array and the fusion center. (Originally published in [16], �2003 IEEE, reprinted with permission.)
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triangulation method. We proposed an algorithm that is bandwidth-efficient and nearly optimal that

uses beamforming at small-aperture sensor arrays and time-delay estimation (TDE) between widely

separated sensors. Accurate time-delay estimates using widely separated sensors are utilized to achieve

improved localization accuracy relative to bearings-only triangulation, and the scattering of acoustic

signals by the atmosphere significantly impacts the accuracy of TDE. We provide a detailed study of

TDE with scattered signals that are partially coherent at widely-spaced sensors in [16]. Our results

quantify the scenarios in which TDE is feasible as a function of signal coherence, SNR per sensor,

fractional bandwidth of the signal, and time–bandwidth product of the observed data. The basic result

is that, for a given SNR, fractional bandwidth, and time–bandwidth product, there exists a ‘‘threshold

coherence’’ value that must be exceeded in order for TDE to achieve the CRB. The analysis is based on

Ziv–Zakai bounds for TDE, expanding upon the results in [72,73]. Time synchronization is required

between the arrays for TDE.

Previous work on source localization with aeroacoustic arrays has focused on AOA estimation with a

single array, e.g. [61–66,74,75], as discussed in Section 13.3.1. The problem of imperfect spatial

coherence in the context of narrowband angle-of-arrival estimation with a single array was studied in

[21], [22,23], [32–40], as discussed in Section 3.1.1. The problem of decentralized array processing was

studied in Refs [76,77]. Wax and Kailath [76] presented subspace algorithms for narrowband signals

and distributed arrays, assuming perfect spatial coherence across each array but neglecting any spatial

coherence that may exist between arrays. Stoica et al. [77] considered ML AOA estimation with a large,

perfectly coherent array that is partitioned into subarrays. Weinstein [78] presented performance

analysis for pairwise processing of the wideband sensor signals from a single array, and he showed that

pairwise processing is nearly optimal when the SNR is high. Moses and Patterson [79] studied

autocalibration of sensor arrays, where for aeroacoustic arrays the loss of signal coherence at widely

separated sensors impacts the performance of autocalibration.

The results in [16] are distinguished from those cited in the previous paragraph in that the primary

focus is a performance analysis that explicitly models partial spatial coherence in the signals at different

sensor arrays in an array of arrays configuration, along with an analysis of decentralized processing

schemes for this model. The previous studies have considered wideband processing of aeroacoustic

signals using a single array with perfect spatial coherence [61–66,74,75], imperfect spatial coherence

across a single-array aperture [21–23,32–40], and decentralized processing with either zero coherence

between distributed arrays [76] or full coherence between all sensors [77,78]. We summarize the key

results from [16] in Sections 13.3.2.1–13.3.2.3.

Source localization using the method of travel-time tomography is described in Refs [80,81]. In this

type of tomography, TDEs are formed by cross-correlating signals from widely spaced sensors. The

TDEs are incorporated into a general inverse procedure that provides information on the atmospheric

wind and temperature fields in addition to the source location. The tomography thereby adapts to time-

delay shifts that result from the intervening atmospheric structure.

Ferguson [82] describes localization of small-arms fire using the near-field wavefront curvature. The

range and bearing of the source are estimated from two adjacent sensors. Ferguson’s experimental

results clearly illustrate random localization errors induced by atmospheric turbulence. In a separate

article, Ferguson [83] discusses time-scale compression to compensate TDEs for differential Doppler

resulting from fast-moving sources.

13.3.2.1 Model for Array of Arrays

Our model for the array of arrays scenario in Figure 13.7 is a wideband extension of the single-array,

narrowband model in Section 13.2. Our array of arrays model includes two key assumptions:

1. The distance from the source to each array is sufficiently large so that the signals are fully

saturated, i.e. �ðhÞð!Þ � 1 for h ¼ 1; . . . ; H and all !. Therefore, according to the model in

Section 13.2.3, the sensor signals have zero mean.
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2. Each array aperture is sufficiently small so that the coherence loss is negligible between sensor

pairs in the array. For the example in Figure 13.5, this approximation is valid for array apertures

less than 1m.

It may be useful to relax these assumptions in order to consider the effects of nonzero mean signals and

coherence losses across individual arrays. However, these assumptions allow us to focus on the impact

of coherence losses in the signals at different arrays.

As in Section 13.2.1, we let ðxs; ysÞ denote the coordinates of a single nonmoving source, and we

consider H arrays that are distributed in the same plane, as illustrated in Figure 13.7. Each array

h 2 f1; . . . ;Hg contains Nh sensors and has a reference sensor located at coordinates ðxh; yhÞ. The

location of sensor n 2 f1; . . . ;Nhg is at ðxh þ�xhn; yh þ�yhnÞ, where ð�xhn; �yhnÞ is the relative

location with respect to the reference sensor. If c is the speed of propagation, then the propagation time

from the source to the reference sensor on array h is

�h ¼
dh
c
¼

1

c
ðxs � xhÞ

2
þ ðys � yhÞ

2
� �1=2

ð13:61Þ

where dh is the distance from the source to array h, as in Equation (13.5). We model the wavefronts over

individual array apertures as perfectly coherent plane waves; so, in the far-field approximation, the

propagation time from the source to sensor n on array h is expressed by �h þ �hn, where

�hn � �
1

c

xs � xh
dh

�xhn þ
ys � yh
dh

�yhn

� �
¼ �

1

c
ðcos �hÞ�xhn þ ðsin �hÞ�yhn
� �

ð13:62Þ

is the propagation time from the reference sensor on array h to sensor n on array h, and �h is the

bearing of the source with respect to array h. Note that while the far-field approximation of Equation

(13.62) is reasonable over individual array apertures, the wavefront curvature that is inherent in

Equation (13.61) must be retained in order to model wide separations between arrays.

The time signal received at sensor n on array h due to the source will be denoted as shðt � �h � �hnÞ,

where the vector sðtÞ ¼ ½s1ðtÞ; . . . ; sHðtÞ�
T contains the signals received at the reference sensors on the H

arrays. The elements of sðtÞ are modeled as real-valued, continuous-time, zero-mean, jointly wide-sense

stationary, Gaussian random processes with �1< t<1. These processes are fully specified by the

H �H cross-correlation matrix

Rsð�Þ ¼ Efsðt þ �Þ sðtÞTg ð13:63Þ

The ðg; hÞ element in Equation (13.63) is the cross-correlation function

rs;ghð�Þ ¼ Efsgðt þ �Þ shðtÞg ð13:64Þ

between the signals received at arrays g and h. The correlation functions (13.63) and (13.64) are

equivalently characterized by their Fourier transforms, which are the CSD functions in Equation (13.65)

and a CSD matrix in Equation (13.66):

Gs;ghð!Þ ¼ Ffrs;ghð�Þg ¼

Z 1

�1

rs;ghð�Þ expð�j!�Þ d� ð13:65Þ

Gsð!Þ ¼ FfRsð�Þg ð13:66Þ
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The diagonal elements Gs;hhð!Þ of Equation (13.66) are the PSD functions of the signals sh(t), and hence

they describe the distribution of average signal power with frequency. The model allows the PSD to vary

from one array to another to reflect differences in transmission loss and source aspect angle.

The off-diagonal elements of Equation (13.66), Gs;ghð!Þ, are the CSD functions for the signals sg(t)

and sh(t) received at distinct arrays g 6¼ h. In general, the CSD functions have the form

Gs;ghð!Þ ¼ 
s;ghð!Þ Gs;ggð!ÞGs;hhð!Þ
� �1=2

ð13:67Þ

where 
s;ghð!Þ is the spectral coherence function for the signals, which has the property

0 
 j
s;ghð!Þj 
 1. Coherence magnitude j
s;ghð!Þj ¼ 1 corresponds to perfect correlation between

the signals at arrays g and h, while the partially coherent case j
s;ghð!Þj< 1 models random scattering in

the propagation paths from the source to arrays g and h. Note that our assumption of perfect spatial

coherence across individual arrays implies that the scattering has negligible impact on the intra-array

delays �hn in Equation (13.62) and the bearings �1; . . . ; �H . The coherence 
s;ghð!Þ in Equation (13.67)

is an extension of the narrowband, short-baseline coherence 
mn in Equation (13.39). However, the

relation to extinction coefficients in Equation (13.40) is not necessarily valid for very large sensor

separations.

The signal received at sensor n on array h is the delayed source signal plus noise.

zhnðtÞ ¼ shðt � �h � �hnÞ þ whnðtÞ ð13:68Þ

where the noise signals whnðtÞ are modeled as real-valued, continuous-time, zero-mean, jointly wide-

sense stationary, Gaussian random processes that are mutually uncorrelated at distinct sensors, and are

uncorrelated from the signals. That is, the noise correlation properties are

Efwgmðt þ �ÞwhnðtÞg ¼ rwð�Þ �gh�mn and Efwgmðt þ �ÞshðtÞg ¼ 0 ð13:69Þ

where rwð�Þ is the noise autocorrelation function, and the noise PSD is Gwð!Þ ¼ Ffrwð�Þg. We then

collect the observations at each array h into Nh � 1 vectors zhðtÞ ¼ ½zh1ðtÞ; . . . ; zh;Nh
ðtÞ�T for

h ¼ 1; . . . ;H, and we further collect the observations from the H arrays into a vector

ZðtÞ ¼ z1ðtÞ
T . . . zHðtÞ

T
� �T

: ð13:70Þ

The elements of ZðtÞ in Equation (13.70) are zero-mean, jointly wide-sense stationary, Gaussian

random processes. We can express the CSD matrix of ZðtÞ in a convenient form with the following

definitions. We denote the array steering vector for array h at frequency ! as

aðhÞð!Þ ¼

expð�j!�h1Þ

..

.

expð�j!�h;Nh
Þ

264
375 ¼

exp j !c ðcos�hÞ�xh1 þ ðsin�hÞ�yh1
� �� �

..

.

exp j !c ðcos�hÞ�xh;Nh
þ ðsin�hÞ�yh;Nh

� �� �
264

375 ð13:71Þ

using �hn from Equation (13.62) and assuming that the sensors have omnidirectional response. Let us

define the relative time delay of the signal at arrays g and h as

Dgh ¼ �g � �h ð13:72Þ
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where �h is defined in Equation (13.61). Then the CSD matrix of ZðtÞ in Equation (13.70) has the form

GZð!Þ

¼

að1Þð!Það1Þð!ÞyGs;11ð!Þ � � � að1Þð!ÞaðHÞð!Þy expð�j!D1HÞGs;1Hð!Þ

..

. . .
. ..

.

aðH Þð!Það1Þð!Þy expðþj!D1HÞGs;1Hð!Þ
�

� � � aðHÞð!ÞaðHÞð!ÞyGs;HHð!Þ

2664
3775þGwð!ÞI

ð13:73Þ

Recall that the source CSD functions Gs;ghð!Þ in Equation (13.73) depend on the signal PSDs and

spectral coherence 
s;ghð!Þ according to Equation (13.67). Note that Equation (13.73) depends on the

source location parameters ðxs; ysÞ through the bearings �h in aðhÞð!Þ and the pairwise time-delay

differences Dgh.

13.3.2.2 CRBs and Examples

The problem of interest is estimation of the source location parameter vector � ¼ ½xs; ys�
T using T

independent samples of the sensor signals Zð0Þ;ZðTsÞ; . . . ;ZððT � 1ÞTsÞ, where Ts is the sampling

period. The total observation time is T ¼ T Ts, and the sampling rate is fs ¼ 1=Ts and !s ¼ 2�fs. We

will assume that the continuous-time random processes ZðtÞ are band-limited, and that the

sampling rate fs is greater than twice the bandwidth of the processes. Then it has been shown [84,85]

that the Fisher information matrix (FIM) J for the parameters � based on the samples Zð0Þ;

ZðTsÞ; . . . ; ZððT � 1ÞTsÞ has elements

Jij ¼
T

4�

Z !s

0

tr
@GZð!Þ

@ 	i
GZð!Þ

�1 @GZð!Þ

@ 	j
GZð!Þ

�1

� �
d!; i; j ¼ 1; 2 ð13:74Þ

where ‘‘tr’’ denotes the trace of the matrix. The CRB matrix C ¼ J�1 then has the property that the

covariance matrix of any unbiased estimator �̂� satisfies Covð�̂�Þ �C 
 0, where 
 0 means that

Covð�̂�Þ �C is positive semidefinite. Equation (13.74) provides a convenient way to compute the FIM

for the array of arrays model as a function of the signal coherence between distributed arrays, the signal

and noise bandwidth and power spectra, and the sensor placement geometry.

The CRB presented in Equation (13.74) provides a performance bound on source location estimation

methods that jointly process all the data from all the sensors. Such processing provides the best

attainable results, but also requires significant communication bandwidth to transmit data from the

individual arrays to the fusion center. Next, we develop approximate performance bounds on schemes

that perform bearing estimation at the individual arrays in order to reduce the required communication

bandwidth to the fusion center. These CRBs facilitate a study of the tradeoff between source location

accuracy and communication bandwidth between the arrays and the fusion center. The methods that

we consider are summarized as follows:

1. Each array estimates the source bearing, transmits the bearing estimate to the fusion center, and

the fusion processor triangulates the bearings to estimate the source location. This approach does

not exploit wavefront coherence between the distributed arrays, but it greatly reduces the

communication bandwidth to the fusion center.

2. The raw data from all sensors are jointly processed to estimate the source location. This is the

optimum approach that fully utilizes the coherence between distributed arrays, but it requires

large communication bandwidth.

3. Combination of methods 1 and 2, where each array estimates the source bearing and transmits

the bearing estimate to the fusion center. In addition, the raw data from one sensor in each array

is transmitted to the fusion center. The fusion center estimates the propagation time delay

between pairs of distributed arrays, and processes these time delay estimates with the bearing

estimates to localize the source.
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Next we evaluate CRBs for the three schemes for a narrowband source and a wideband source.

Consider H¼ 3 identical arrays, each of which contains N1 ¼ � � � ¼ NH ¼ 7 sensors. Each array is

circular with 4 ft radius, and six sensors are equally spaced around the perimeter and one sensor is in

the center. We first evaluate the CRB for a narrowband source with a 1Hz bandwidth centered

at 50Hz and SNR¼ 10 dB at each sensor. That is, Gs;hhð!Þ=Gwð!Þ ¼ 10 for h ¼ 1; . . . ;H and

2�ð49:5Þ<!lt2� ð50:5Þ rad/s. The signal coherence 
s;ghð!Þ ¼ 
sð!Þ is varied between 0 and 1. We

assume that T¼ 4000 time samples are obtained at each sensor with sampling rate fs ¼ 2000 samples/s.

The source localization performance is evaluated by computing the ellipse in ðx; yÞ coordinates that

satisfies the expression

x y
� �

J
x
y

� �
¼ 1

where J is the FIM in Equation (13.74). If the errors in ðx; yÞ localization are jointly Gaussian

distributed, then the ellipse represents the contour at one standard deviation in root-mean-square

(RMS) error. The error ellipse for any unbiased estimator of source location cannot be smaller than this

ellipse derived from the FIM.

The H¼ 3 arrays are located at coordinates ðx1; y1Þ ¼ ð0; 0Þ, ðx2; y2Þ ¼ ð400; 400Þ, and

ðx3; y3Þ ¼ ð100; 0Þ, where the units are meters. One source is located at ðxs; ysÞ ¼ ð200; 300Þ, as

illustrated in Figure 13.8(a). The RMS error ellipses for joint processing of all sensor data for coherence

values 
sð!Þ ¼ 0; 0:5, and 1 are also shown in Figure 13.8(a). The coherence between all pairs of arrays

is assumed to be identical, i.e. 
s;ghð!Þ ¼ 
sð!Þ for ðg; hÞ ¼ ð1; 2Þ; ð1; 3Þ; ð2; 3Þ. The largest ellipse in

Figure 13.8(a) corresponds to incoherent signals, i.e. 
sð!Þ ¼ 0, and characterizes the performance of

the simple method of triangulation using the bearing estimates from the three arrays. Figure 13.8(b)

shows the ellipse radius ¼ ðmajor axisÞ2 þ ðminor axisÞ2
� �1=2

for various values of the signal coherence


sð!Þ. The ellipses for 
sð!Þ ¼ 0:5 and 1 are difficult to see in Figure 13.8(a) because they fall on the

lines of the � that marks the source location, illustrating that signal coherence between the arrays

significantly improves the CRB on source localization accuracy. Note also that, for this scenario, the

localization scheme based on bearing estimation with each array and TDE using one sensor from each

array has the same CRB as the optimum, joint processing scheme. Figure 13.8(c) shows a closer view

of the error ellipses for the scheme of bearing estimation plus TDE with one sensor from each array.

The ellipses are identical to those in Figure 13.8(a) for joint processing.

Figure 13.8 (d)–(f) present corresponding results for a wideband source with bandwidth

20Hz centered at 50Hz and SNR16 dB. That is, Gs;hh=Gw ¼ 40 for 2�ð40Þ<!< 2�ð60Þ rad/s,

h ¼ 1; . . . ;H .T¼ 2000 time samples are obtained at each sensor with sampling rate fs ¼ 2000 samples/

s, so the observation time is 1 s. As in the narrowband case in Figure 13.8 (a)–(c), joint processing

reduces the CRB compared with bearings-only triangulation, and bearing plus TDE is nearly optimum.

The CRB provides a lower bound on the variance of unbiased estimates, so an important question is

whether an estimator can achieve the CRB. We show next in Section 13.3.2.3 that the coherent

processing CRBs for the narrowband scenario illustrated in Figure 13.8 (a)–(c) are achievable only when

the the coherence is perfect, i.e. 
s ¼ 1. Therefore, for that scenario, bearings-only triangulation is

optimum in the presence of even small coherence losses. However, for the wideband scenario illustrated

in Figure 13.8 (d)–(f), the coherent processing CRBs are achievable for coherence values 
s > 0:75.

13.3.2.3 TDE and Examples

The CRB results presented in Section 13.3.2.2 indicate that TDE between widely spaced sensors may be

an effective way to improve the source localization accuracy with joint processing. Fundamental

performance limits for passive time delay and Doppler estimation have been studied extensively for

several decades, e.g. see the collection of papers in Ref. [86]. The fundamental limits are usually

parameterized in terms of the SNR at each sensor, the spectral support of the signals (fractional
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bandwidth), and the time–bandwidth product of the observations. However, the effect of coherence loss

on TDE accuracy has not been considered explicitly.

In this section, we quantify the effect of partial signal coherence on TDE. We present Cramér–Rao

and Ziv–Zakai bounds that are explicitly parameterized by the signal coherence, along with the

Figure 13.8. RMS source localization error ellipses based on the CRB for H¼ 3 arrays and one narrowband

source in (a)–(c) and one wideband source in (d)–(f). (Originally published in [16], �2003 IEEE, reprinted with

permission.)
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traditional parameters of SNR, fractional bandwidth, and time–bandwidth product. This analysis of

TDE is relevant to method 3 in Section 13.3.2.2. We focus on the case of H¼ 2 sensors here. The

extension to H > 2 sensors is outlined in Ref. [16].

Let us specialize Equation (13.68) to the case of two sensors, with H¼ 2 and N1 ¼ N2 ¼ 1, so

z1ðtÞ ¼ s1ðtÞ þ w1ðtÞ and z2ðtÞ ¼ s2ðt � DÞ þ w2ðtÞ ð13:75Þ

Figure 13.8. Continued.
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where D ¼ D21 is the differential time delay. Following (73), the CSD matrix is

CSD
z1ðtÞ

z2ðtÞ

� �
¼ GZð!Þ ¼

Gs;11ð!Þ þ Gwð!Þ eþj!D
s;12ð!Þ Gs;11ð!ÞGs;22ð!Þ
� �1=2

e�j!D
s;12ð!Þ
� Gs;11ð!ÞGs;22ð!Þ
� �1=2

Gs;22ð!Þ þ Gwð!Þ

" #
ð13:76Þ

Figure 13.8. Continued.
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The signal coherence function 
s;12ð!Þ describes the degree of correlation that remains in the signal

emitted by the source at each frequency ! after propagating to sensors 1 and 2.

We consider the following simplified scenario. The signal and noise spectra are flat over a bandwidth

of �! rad/s centered at !0 rad/s, the observation time is T seconds, and the propagation is fully

saturated, so the signal mean is zero. Further, the signal PSDs are identical at each sensor, and we define

the following constants for notational simplicity:

Gs;11ð!0Þ ¼ Gs;22ð!0Þ ¼ Gs; Gwð!0Þ ¼ Gw; 
s;12ð!0Þ ¼ 
s ð13:77Þ

Then we can use Equation (13.76) in Equation (13.74) to find the CRB for TDE with H¼ 2 sensors,

yielding

CRBðDÞ ¼
1

2!2
0 ð�!T =2�Þ 1þ ð1=12Þð�!=!0Þ

2
� � 1

j
sj
2 1þ

1

ðGs=GwÞ

� �2

�1

" #
ð13:78Þ

>
1

2!2
0 �! T =2�ð Þ 1þ ð1=12Þð�!=!0Þ

2
� � 1

j
sj
2 � 1

� �
ð13:79Þ

The quantity �!T =2�ð Þ is the time–bandwidth product of the observations, �!=!0ð Þ is the fractional

bandwidth of the signal, and Gs=Gw is the SNR at each sensor. Note from the high-SNR limit in

Equation (13.79) that when the signals are partially coherent, so that j
sj< 1, increased source power

does not reduce the CRB. Improved TDE accuracy is obtained with partially coherent signals by

increasing the observation time T or changing the spectral support of the signal, which is

½!0 ��!=2; !0 þ�!=2�. The spectral support of the signal is not controllable in passive TDE

applications, so increased observation time is the only means for improving the TDE accuracy with

partially coherent signals. Source motion becomes more important during long observation times, as we

discuss in Section 13.3.3.

We have shown [16] that the CRB on TDE is achievable only when the coherence 
s exceeds a

threshold. The analysis is based on Ziv–Zakai bounds, as in [72,73], and the result is that the coherence

must satisfy the following inequality in order for the CRB on TDE in Equation (13.78) to be achievable:

j
sj
2 


1þ ð1=ðGs=GwÞÞð Þ
2

1þ ð1=SNRthreshÞ
; so j
sj

2 

1

1þ ð1=SNRthreshÞ
as

Gs

Gw
! 1 ð13:80Þ

The quantity SNRthresh is

SNRthresh ¼
6

�2 �!T =2�ð Þ

!0

�!


 �2
’�1 1

24

�!

!0

� �2
" #( )2

ð13:81Þ

where ’ð yÞ ¼ 1=
ffiffiffiffiffiffi
2�

p R1

y expð�t2=2Þ dt. Since j
sj
2 
 1, Equation (13.80) is useful only if

Gs=Gw > SNRthresh. Note that the threshold coherence value in Equation (13.80) is a function of the

time–bandwidth product �!T =2�ð Þ, and the fractional bandwidth �!=!0ð Þ through the formula for

SNRthresh in Equation (13.81).

Figure 13.9(a) contains a plot of Equation (13.80) for a particular case in which the signals are in a

band centered at !0 ¼ 2� � 50 rad/s and the time duration is T ¼ 2 s. Figure 13.9(a) shows the

variation in threshold coherence as a function of signal bandwidth �!. Note that nearly perfect

coherence is required when the signal bandwidth is less than 5Hz (or 10% fractional bandwidth). The

threshold coherence drops sharply for values of signal bandwidth greater than 10Hz (20% fractional
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bandwidth). Thus, for sufficiently wideband signals, e.g. �! 
 2� � 10 rad/s, a certain amount of

coherence loss can be tolerated while still allowing unambiguous TDE. Figure 13.9(b) shows

corresponding results for a case with twice the center frequency and half the observation time.

Figure 13.9(c) shows the threshold coherence as a function of the time–bandwidth product and the

Figure 13.9. Threshold coherence versus bandwidth based on Equation (13.80) for (a) !0 ¼ 2� � 50 rad/s,

T ¼ 2 s and (b) !0 ¼ 2�� 100 rad/s, T ¼ 1 s for SNRs Gs=Gw ¼ 0; 10, and 1 dB. (c) Threshold coherence value

from Equation (13.80) versus time–bandwidth product �!T =2�ð Þ for several values of fractional bandwidth

�!=!0ð Þ and high SNR, Gs=Gw ! 1. (Originally published in [16], �2003 IEEE, reprinted with permission.)
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fractional bandwidth for large SNR, Gs=Gw ! 1. Note that very large time–bandwidth product is

required to overcome coherence loss when the fractional bandwidth is small. For example, if the

fractional bandwidth is 0:1, then the time–bandwidth product must exceed 100 if the coherence is 0:9.

For threshold coherence values in the range from about 0:1 to 0:9, each doubling of the fractional

bandwidth reduces the required time–bandwidth product by a factor of 10.

Let us examine a scenario that is typical in aeroacoustics, with center frequency

fo ¼ !o=ð2�Þ ¼ 50Hz and bandwidth �f ¼ �!=ð2�Þ ¼ 5Hz, so the fractional bandwidth is

�f =fo ¼ 0:1. From Figure 13.9(c), signal coherence j
sj ¼ 0:8 requires time–bandwidth product

�f T > 200, so the necessary time duration T ¼ 40 s for TDE is impractical for moving sources.

Larger time–bandwidth products of the observed signals are required in order to make TDE feasible

in environments with signal coherence loss. As discussed previously, only the observation time is

controllable in passive applications, thus leading us to consider source motion models in Section 13.3.3

for use during long observation intervals.

We can evaluate the threshold coherence for the narrowband and wideband scenarios considered in

Section 13.3.2.2 for the CRB examples in Figure 13.8. The results are as follows, using Equations (13.80)

and (13.81):

1. Narrowband case. Gs=Gw ¼ 10, !0 ¼ 2� � 50 rad/s, �! ¼ 2� rad/s, T ¼ 2 s¼)Threshold

coherence � 1:

2. Wideband case. Gs=Gw ¼ 40, !0 ¼ 2� � 50 rad/s, �! ¼ 2� � 20 rad/s, T ¼ 1 s¼)Threshold

coherence � 0:75:

Therefore, for the narrowband case, joint processing of the data from different arrays will not achieve

the CRBs in Figure 13.8 (a)–(c) when there is any loss in signal coherence. For the wideband case, joint

processing can achieve the CRBs in Figure 13.8 (d)–(f) for coherence values 
 0:75.

We have presented simulation examples in [16] that confirm the accuracy of the CRB in

Equation (13.78) and threshold coherence in Equation (13.80). In particular, the simulations show that

TDE based on cross-correlation processing achieves the CRB only when the threshold coherence is

exceeded.

Figure 13.9. Continued.
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We conclude this section with a TDE example based on data that were measured by BAE Systems

using a synthetically generated, nonmoving, wideband acoustic source. The source bandwidth is

approximately 50Hz with center frequency 100Hz, so the fractional bandwidth is 0:5. Four nodes are

labeled and placed in the locations shown in Figure 13.10(a). The nodes are arranged in a triangle, with

nodes on opposite vertices separated by about 330 ft, and adjacent vertices separated by about 230 ft.

The source is at node 0, and receiving sensors are located at nodes 1, 2, and 3.

Figure 13.10. (a) Location of nodes. (b) PSDs at nodes 1 and 3 when transmitter is at node 0. (c) Coherence

between nodes 1 and 3. (d) Intersection of hyperbolas obtained from differential time delays estimated at nodes 1, 2,

and 3. (e) Expanded view of part (d). (Originally published in [16], �2003 IEEE, reprinted with permission.)
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The PSDs estimated at sensors 1 and 3 are shown in Figure 13.10(b), and the estimated coherence

magnitude between sensors 1 and 3 is shown in Figure 13.10(c). The PSDs and coherence are estimated

using data segments of duration 1 s. Note that the PSDs are not identical due to differences in the

propagation paths. The coherence magnitude exceeds 0.8 over an appreciable band centered at 100Hz.

The threshold coherence value from Equation (13.80) for the parameters in this experiment is 0.5, so

the actual coherence of 0.8 exceeds the threshold. Thus, an accurate TDE should be feasible; indeed, we

found that generalized cross-correlation yielded accurated TDEs. Differential time delays were

estimated using the signals measured at nodes 1, 2, and 3, and the TDEs were hyperbolically

triangulated to estimate the location of the source (which is at node 0). Figure 13.10(d) shows the

Figure 13.10. Continued.
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hyperbolas obtained from the three differential TDE, and Figure 13.10(e) shows an expanded view

near the intersection point. The triangulated location is within 1 ft of the true source location, which

is at (�3, 0) ft.

This example shows the feasibility of TDE with acoustic signals measured at widely separated sensors,

provided that the SNR, fractional bandwidth, time–bandwidth product, and coherence meet the

required thresholds. If the signal properties do not satisfy the thresholds, then accurate TDE is not

feasible and triangulation of AOAs is optimum.

13.3.3 Tracking Moving Sources

In this section we summarize past work and key issues for tracking moving sources. A widely studied

approach for estimating the locations of moving sources with an array of arrays involves bearing

estimation at the individual arrays, communication of the bearings to the fusion center, and processing

of the bearing estimates at the fusion center with a tracking algorithm (e.g. see Refs [67–71]).

As discussed in Section 13.3.2, jointly processing data from widely spaced sensors has the potential

for improved source localization accuracy, compared with incoherent triangulation/tracking of bearing

estimates. The potential for improved accuracy depends directly on the TDE between the sensors, which

is feasible only with an increased time–bandwidth product of the sensor signals. This leads to a

constraint on the minimum observation time T in passive applications where the signal bandwidth is

fixed. If the source is moving, then approximating it as nonmoving becomes poorer as T increases; so,

modeling the source motion becomes more important.

Approximate bounds are known [87,88] that specify the maximum time interval over which moving

sources may be approximated as nonmoving for TDE. We have applied the bounds to a typical scenario

in aeroacoustics [89]. Let us consider H¼ 2 sensors, and a vehicle moving at 15m/s (about 5% the

speed of sound), with radial motion that is in opposite directions at the two sensors. If the highest

frequency of interest is 100Hz, then the time interval over which the source is well approximated as

nonmoving is T � 0:1 s. According to the TDE analysis in Section 13.3.2, this yields insufficient time–

bandwidth product for partially coherent signals that are typically encountered. Thus, motion modeling

Figure 13.10. Continued.
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and Doppler estimation/compensation are critical, even for aeroacoustic sources that move more slowly

than in this example.

We have extended the model for a nonmoving source presented in Section 13.3.2 to a moving source

with a first-order motion model [89]. We have also presented an algorithm for estimating the motion

parameters for multiple moving sources [89], and the algorithm is tested with measured aeroacoustic

data. The algorithm is initialized using the local polynomial approximation (LPA) beamformer [90] at

each array to estimate the bearings and bearing rates. If the signals have sufficient coherence and

bandwidth at the arrays, then the differential TDEs and Doppler shifts may be estimated. The ML

solution involves a wideband ambiguity function search over Doppler and TDE [87], but

computationally simpler alternatives have been investigated [91]. If TDE is not feasible, then the

source may be localized by triangulating bearing, bearing rate, and differential Doppler. Interestingly,

differential Doppler provides sufficient information for source localization, even without TDE, as long

as five or more sensors are available [92]. Thus, the source motion may be exploited via Doppler

estimation in scenarios where TDE is not feasible, such as narrowband or harmonic signals.

Recent work on tracking multiple sources with aeroacoustic sensors includes the penalized ML

approach [75] and the �–�/Kalman tracking algorithms [94]. It may be feasible to use source aspect

angle differences and Doppler estimation to help solve the data association problem in multiple target

tracking based on data from multiple sensor arrays.

13.3.4 Detection and Classification

It is necessary to detect the presence of a source before carrying out the localization processing discussed

in Sections 13.3.1, 13.3.2, and 13.3.3. Detection is typically performed by comparing the energy at a

sensor with a threshold. The acoustic propagation model presented in Section 13.2 implies that the

energy fluctuates due to scattering, so the scattering has a significant impact on detection algorithms

and their performance.

In addition to detecting a source and localizing its position, it is desirable to identify (or classify) the

type of vehicle from its acoustic signature. The objective is to classify broadly into categories such as

‘‘ground, tracked,’’ ‘‘ground, wheeled,’’ ‘‘airborne, fixed wing,’’ ‘‘airborne, rotary wing,’’ and to further

identify the particular vehicle type within these categories. Most classification algorithms that have been

developed for this problem use the relative amplitudes of harmonic components in the acoustic signal

as features to distinguish between vehicle types [95–102]. However, the harmonic amplitudes for a

given source may vary significantly due to several factors. The scattering model presented in Section 13.2

implies that the energy in each harmonic will randomly fluctuate due to scattering, and the fluctuations

will be stronger at higher frequencies. The harmonic amplitudes may also vary with engine speed and

the orientation of the source with respect to the sensor (aspect angle).

In this section, we specialize the scattering model from Section 13.2 to describe the probability

distribution for the energy at a single sensor for a source with a harmonic spectrum. We then discuss

the implications for detection and classification performance. More detailed discussions may be found

in [25] for detection and [93] for classification.

The source spectrum is assumed to be harmonic, with energy at frequencies !1; . . . ; !L. Following

the notation in Section 13.2.5 and specializing to the case of one source and one sensor, Sð!lÞ;�ð!lÞ,

and 
2
~wwð!lÞ represent the average source power, the saturation, and the average noise power at frequency

!l respectively. The complex envelope samples at each frequency !l are then modeled with the first

element of the vector in Equation (13.55) with K¼ 1 source, and they have a complex Gaussian

distribution:

ezzðiTs;!lÞ 	 CN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��ð!lÞ½ �Sð!lÞ

p
e j	ði;!lÞ; �ð!lÞSð!lÞ þ 
2

~wwð!lÞ


 �
;

i ¼ 1; . . . ;T
l ¼ 1; . . . ; L

ð13:82Þ

The number of samples is T, and the phase 	ði; !lÞ is defined in Equation (13.21) and depends on the

source phase and distance. We allow 	ði; !lÞ to vary with the time sample index i in case the source
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phase � or the source distance do changes. As discussed in Section 13.2.5, we model the complex

Gaussian random variables in Equation (13.82) as independent.

As discussed in Sections 13.2.3 and 13.2.4, the saturation � is related to the extinction coefficient of

the first moment m according to �ð!lÞ ¼ 1� expð�2�ð!lÞ doÞ, where do is the distance from the source

to the sensor. The dependence of the saturation on frequency and weather conditions is modeled by the

following approximate formula for m:

�ð!Þ �
4:03� 10�7 !

2�


 �2
; mostly sunny

1:42� 10�7 !

2�


 �2
; mostly cloudy

8><>: !

2�
2 ½30; 200� Hz ð13:83Þ

which is obtained by fitting Equation (13.50) to the values for ��1 in Table 13.1. A contour plot of the

saturation as a function of frequency and source range is shown in Figure 13.11(a) using Equation

(13.83) for mostly sunny conditions. Note that the saturation varies significantly with frequency for

ranges > 100m. Larger saturation values imply more scattering, so the energy in the higher harmonics

will fluctuate more widely than the lower harmonics.

We will let Pð!1Þ; . . . ; Pð!LÞ denote the estimated energy at each frequency. The energy may be

estimated from the complex envelope samples in Equation (13.82) by coherent or incoherent

combining:

PCð!lÞ ¼
1

T

XT
i¼1

ezzðiTs;!lÞe
�j	ði;!lÞ

�����
�����
2

l ¼ 1; . . . ; L ð13:84Þ

PIð!lÞ ¼
1

T

XT
i¼1

ezzðiTs; !lÞ
�� ��2 l ¼ 1; . . . ; L ð13:85Þ

Coherent combining is feasible only if the phase shifts 	ði;!lÞ are known or are constant with i. Our

assumptions imply that the random variables in Equations (13.84) are independent over l, as are the

random variables in Equation (13.85). The probability distribution functions (pdfs) for PC and PI are

noncentral chi-squared distributions.3 We let �2ðD; �Þ denote the standard noncentral chi-squared

distribution with D degrees of freedom and noncentrality parameter �. Then the random variables in

Equations (13.84) and (13.85) may be scaled so that their pdfs are standard noncentral chi-squared

distributions:

PCð!lÞ

½�ð!lÞSð!lÞ þ 
2
~ww!lÞ�=2T

	 �2ð2; �ð!lÞÞ ð13:86Þ

PIð!lÞ

½�ð!lÞSð!lÞ þ 
2
~wwð!lÞ�=2T

	 �2 2T; �ð!lÞð Þ ð13:87Þ

where the noncentrality parameter is

�ð!lÞ ¼
1��ð!lÞ½ �Sð!lÞ

�ð!lÞSð!lÞ þ 
2
~wwð!lÞ

� �
=2T

ð13:88Þ

3The random variable
ffiffiffiffiffiffi
PC

p
in Equation (13.84) has a Rician distribution, which is widely used to model fading

RF communication channels.
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The only difference in the pdfs for coherent and incoherent combining is the number of degrees of

freedom in the noncentral chi-squared pdf: two degrees of freedom for coherent and 2T degrees of

freedom for incoherent.

The noncentral chi-squared pdf is readily available in analytical form and in statistical software

packages, so the performance of detection algorithms may be evaluated as a function of SNR ¼ S=
2
~ww

Figure 13.11. (a) Variation of saturation � with frequency f and range do. (b) Pdf of average power 10 log10ðPÞ

measured at the sensor for T¼ 1 sample of a signal with S¼ 1 (0 dB), SNR ¼ 1=
2
~ww ¼ 103 ¼ 30 dB, and various

values of the saturation, �. (c) Harmonic signature with no scattering. (d) Error bars for harmonic signatures � one

standard deviation caused by scattering at different source ranges.
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and saturation �. To illustrate the impact of � on the energy fluctuations, Figure 13.11(b) shows plots

of the pdf of 10 log10ðPÞ for T¼ 1 sample (so coherent and incoherent are identical), S¼ 1, and

SNR ¼ 1=
2
~ww ¼ 103 ¼ 30 dB. Note that a small deviation in the saturation from � ¼ 0 causes a

significant spread in the distribution of P around the unscattered signal power, S¼ 1 (0 dB). This

variation in P affects detection performance and limits the performance of classification algorithms that

use P as a feature.

Figure 13.12 illustrates signal saturation effects on detection probabilities. In this example, the

Neyman–Pearson detection criterion [103] with false-alarm probability of 0:01 was used. The noise is

Figure 13.11. Continued.
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zero-mean Gaussian, as in Section 13.2.2. When � ¼ 0, the detection probability is nearly zero for

SNR¼ 2 dB, but it quickly changes to one when the SNR increases by about 6 dB. When � ¼ 1,

however, the transition is much more gradual: even at SNR¼ 15 dB, the detection probability is less

than 0:9.

The impact of scattering on classification performance can be illustrated by comparing the

fluctuations in the measured harmonic signature, P ¼ ½Pð!1Þ; . . . ; Pð!LÞ�
T, with the ‘‘true’’ signature,

S ¼ ½Sð!1Þ; . . . ; Sð!LÞ�
T, that would be measured in the absence of scattering and additive noise.

Figure 13.11(c) and (d) illustrate this variability in the harmonic signature as the range to the target

increases. Figure 13.11(c) shows the ‘‘ideal’’ harmonic signature for this example (no scattering and no

noise). Figure 13.11(d) shows plus/minus one standard deviation error bars on the harmonics for

ranges 5, 10, 20, 40, 80, 160 m under ‘‘mostly sunny’’ conditions, using Equation (13.83). For ranges

beyond 80m, the harmonic components display significant variations, and rank ordering of the

harmonic amplitudes would exhibit variations also. The higher frequency harmonics experience larger

variations, as expected. Classification based on relative harmonic amplitudes may experience significant

performance degradations at these ranges, particularly for sources that have similar harmonic

signatures.

13.4 Concluding Remarks
Aeroacoustics has a demonstrated capability for sensor networking applications, providing a low-

bandwidth sensing modality that leads to relatively low-cost nodes. In battery-operated conditions,

where long lifetime in the field is expected, the node power budget is dominated by the cost of the

communications. Consequently, the interplay between the communications and distributed signal

processing is critical. We seek optimal network performance while minimizing the communication

overhead.

We have considered the impact of the propagation phenomena on our ability to detect, localize,

track, and classify acoustic sources. The strengths and limitations of acoustic sensing become clear in

this light. Detection ranges and localization accuracy may be reasonably predicted. The turbulent

atmosphere introduces spatial coherence losses that impact the ability to exploit large baselines between

nodes for increased localization accuracy. The induced statistical fluctuations in amplitude place limits

on the ability to classify sources at longer ranges. Very good performance has been demonstrated in

Figure 13.12. Probability of detection as a function of SNR for several values of the saturation parameter �.

The Neyman–Pearson criterion is used with probability of false alarm PFA ¼ 0:01.
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many experiments; the analysis and experiments described here and elsewhere bound the problem and

its solution space.

Because it is passive, and depends on the current atmospheric conditions, acoustic sensing may be

strongly degraded in some cases. Passive sensing with high performance in all conditions will very likely

require multiple sensing modalities, as well as hierarchical networks. This leads to interesting problems

in fusion, sensor density and placement, as well as in distributed processing and communications. For

example, when very simple acoustic nodes with the limited capability of measuring loudness are densely

deployed, they provide inherent localization capability [104,105]. Such a system, operating at relatively

short ranges, provides significant robustness to many of the limitations described here, and may act to

queue other sensing modalities for classification or even identification.

Localization based on accurate AOA estimation with short baseline arrays has been carefully

analyzed, leading to well-known triangulation strategies. Much more accurate localization, based on

cooperative nodes, is possible in some conditions. These conditions depend fundamentally on the time–

bandwidth of the observed signal, as well as the spatial coherence. For moving harmonic sources, these

conditions are not likely to be supported, whereas sources that are more continuously broadband may

be handled in at least some cases. It is important to note that the spatial coherence over a long baseline

may be passively estimated in a straightforward way, leading to adaptive approaches that exploit the

coherence when it is present. Localization updates, coupled with tracking, lead to an accurate picture of

the nonstationary source environment.

Acoustic-based classification is the most challenging signal processing task, due to the source

nonstationarities, inherent similarities between the sources, and propagation-induced statistical

fluctuations. While the propagation places range limitations on present algorithms, it appears that

the source similarities and nonstationarities may be the ultimate limiting factors in acoustic

classification. Highly accurate classification will likely require the incorporation of other sensing

modalities because of the challenging source characteristics.

Other interesting signal acoustic signal processing includes exploitation of Doppler, hierarchical and

multi-modal processing, and handling multipath effects. Complex environments, such as indoor,

urban, and forest, create multipaths and diffraction that greatly complicate sensor signal processing and

performance modeling. Improved understanding of the impact of these effects, and robust techniques

for overcoming them, are needed. Exploitation of the very long-range propagation distances possible

with infrasound (frequencies below 20Hz) [106] also requires further study and experimentation.

Finally, we note that strong linkages between the communications network and the sensor signal

processing are very important for overall resource utilization, especially including the multi-access

protocol networking layer.
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