Homework 2

Date Assigned: Friday, August 27, 2004 Date Due: Monday, August 30, 2004

Reading: Please continue to review your texts and notes from ELEC 120 and ELEC 225-226. In particular, review the concepts of phasors and impedance for circuits that contain capacitors, inductors, and resistors. Also review operational amplifiers and frequency response of filters. Please review Sections B.1-B.3 in the Lathi text on complex numbers and sketching signals.

Problems: Please work on the following problems for Monday. Do your best to solve the problems, and come to class with questions. We will review the solutions in class on Monday.

- 1. Consider the low-pass RC circuit filter that we discussed in class today.
 - (a) What is the formula for the "complex frequency response" $H(\omega)$?
 - (b) What are the formulas for the magnitude $|H(\omega)|$ and the phase $\angle H(\omega)$ of the frequency response?
 - (c) For the values $R = 1.1 \ k\Omega$ and $C = 0.22 \ \mu F$ considered in class, produce rough sketches of $|H(\omega)|$ and $\angle H(\omega)$ versus ω . What is the "amplitude gain" of the circuit at low frequencies?
 - (d) Use your formula for $|H(\omega)|$ and the definition of cutoff frequency ω_c to derive an expression for ω_c as a function of R and C. This is the expression that is required in order to design a filter (i.e., choose R and C) to achieve a specified cutoff frequency.

Hint: The cutoff frequency ω_c is defined as the value of frequency that produces amplitude gain $1/\sqrt{2}$, i.e., $|H(\omega_c)| = 1/\sqrt{2}$.