Steps in Computing Continuous-Time Convolution

$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\lambda) h(t - \lambda) d\lambda$$
(1)

$$= \int_{-\infty}^{\infty} x(t-\lambda) h(\lambda) d\lambda$$
 (2)

You can use either (1) or (2), whichever is more convenient. The following steps are used for (1). If you use (2), then "flip and shift" x rather than h.

- 1. Plot $x(\lambda)$ and $h(\lambda)$.
- 2. Plot $h(-\lambda)$ [time-reverse] and $h(t \lambda)$ [add t to all ordinates] versus λ .
- 3. Do not skip this step: Plot $x(\lambda)$ and $h(t \lambda)$ on the same graph, versus λ .

The location of $h(t - \lambda)$ on the λ -axis will be a function of t. (Note that these functions appear inside the integral in (1).)

- 4. Repeat the following steps for every value of $t \in (-\infty, \infty)$:
 - (a) Form the product $x(\lambda) \cdot h(t-\lambda)$ at all λ values.

(You may want to plot this product on a graph versus λ . This product will often "look different" when t takes on values in different intervals.)

- (b) Find the area under this product, i.e., evaluate $\int_{-\infty}^{\infty} x(\lambda) h(t-\lambda) d\lambda$. (In many problems, the integration limits will depend on t.)
- (c) The area you computed in step 4(b) is the value of y(t) for a particular value of t (or, more often, the result is valid for an *interval* of t values.)
- 5. It is usually best to write the equation for y(t) and to sketch a plot of y(t) versus t.