ELEC 320
Prof. Rich Kozick

Steps in Computing Continuous-Time Convolution

$$
\begin{align*}
y(t)=x(t) * h(t) & =\int_{-\infty}^{\infty} x(\lambda) h(t-\lambda) d \lambda \tag{1}\\
& =\int_{-\infty}^{\infty} x(t-\lambda) h(\lambda) d \lambda \tag{2}
\end{align*}
$$

You can use either (1) or (2), whichever is more convenient. The following steps are used for (1). If you use (2), then "flip and shift" x rather than h.

1. Plot $x(\lambda)$ and $h(\lambda)$.
2. Plot $h(-\lambda)$ [time-reverse] and $h(t-\lambda)$ [add t to all ordinates] versus λ.
3. Do not skip this step: Plot $x(\lambda)$ and $h(t-\lambda)$ on the same graph, versus λ.

The location of $h(t-\lambda)$ on the λ-axis will be a function of t.
(Note that these functions appear inside the integral in (1).)
4. Repeat the following steps for every value of $t \in(-\infty, \infty)$:
(a) Form the product $x(\lambda) \cdot h(t-\lambda)$ at all λ values.
(You may want to plot this product on a graph versus λ. This product will often "look different" when t takes on values in different intervals.)
(b) Find the area under this product, i.e., evaluate $\int_{-\infty}^{\infty} x(\lambda) h(t-\lambda) d \lambda$. (In many problems, the integration limits will depend on t.)
(c) The area you computed in step $4(\mathrm{~b})$ is the value of $y(t)$ for a particular value of t (or, more often, the result is valid for an interval of t values.)
5. It is usually best to write the equation for $y(t)$ and to sketch a plot of $y(t)$ versus t.

