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Least Squares Modeling of Systems

1 Introduction

The first part of this project is to design a Matlab program to obtain the frequency response
of a series RLC circuit and add noise to it to simulate laboratory measurements. Your
program should plot the frequency response, the frequency response plus noise (simulated
laboratory measurements), and also estimate the resonant frequency, bandwidth, and quality
factor of the filter from the noisy measurements. Try various noise distributions and noise
power. Your design should allow the user to compare the estimated results with the true
values, based on the nominal element values in the circuit. You should also do a least-squares
fit between your noisy frequency response and a model for the frequency response.

The series RLC circuit that we will work with is shown below. The resistance r is the
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Figure 1: Series RLC circuit.

Please verify that the transfer function of the circuit is
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The resonant frequency wyg, the bandwidth B, and the quality factor @ for this circuit are
related to the element values according to
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As a minimum, you should understand how wy, B, and () are related to the shape of the

frequency response. In order to really understand these equations, we suggest that you derive

them from H(w).



2 Least Squares Modeling

Suppose that your circuit is in a box, and all you can do is make input/output measurements.
From the bell-shaped appearance of the frequency response, you might hypothesize that the
circuit can be modeled by a second-order transfer function of the form
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Equation (2) is a frequency-domain model for the system with parameters X, Y, and Z. You
should be able to verify that the theoretical transfer function for the RLC circuit has the
form in (2), and is
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Our objective in this section is to develop a procedure for choosing the parameters X,Y,
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and Z in (1) so that the model |Hmodel(w)|2 is a good approximation to the noisy frequency
response |1"-[meas((,u)|2 that would be obtained through laboratory measurements. Then, once
X, Y, and Z are known, you should be able to to combine (2), (3), and the equations for
W,, B, and @ in (1) to derive w,, B, and @ from X, Y, and Z.

Soving for the optimum X, Y, and Z directly from (2) is difficult, because |Hmodel(w)|2 is
a nonlinear function of X, Y, and Z. Note, however, that the reciprocal is a linear function
of the parameters:
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Thus it is simpler to find X, Y, and Z that make G,,,401(w) a “best approximation” to the

reciprocal of the measured data, Geas(w) = 1/ |Hpeas (w)|2.

By “best approximation” we mean that the total squared error between the experimental
data Geqas(w) and the model Goger(w) is as small as possible. The measured frequency
response is only available at N frequency values, and let us denote those (radian) frequency

values by wy,ws,...,wy. Then total squared error is defined as follows:
€n = Guodel(wn) — Geas(wy) = error at frequency w, (5)
e2 = [Groder(wn) — Gmeas(wn)]2 = squared error at frequency w, (6)
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The parameters X, Y, and Z are chosen to make F in (7) as small as possible.

Solving for the best X, Y, and Z is a multivariable optimization problem. However, it is
the simplest type of such problems, since F in (7) is a three-dimensional parabola with a
single, global minimum. We must find the X, Y, and Z that correspond to the minimum of
the parabola in (7). This is easily done by setting the partial derivatives equal to zero:
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Now (8), (9), and (10) are a set of three linear equations in the three unknowns X, Y, and 7.
One way to solve them is Gaussian elimination. Matlab will solve the equations very easily
if we first formulate (8), (9), and (10) as the following equivalent matrix equation:
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Equation (11) has the general form
Mx = b, (12)

where M is a 3 x 3 matrix computed from the measured data, x is the 3 x 1 vector of
unknowns X, Y, 7, and b is the 3 x 1 vector on the right side of (11), which is also computed
from the measured data. Once M and b are defined in Matlab, you can solve for x by
Gaussian elimination with the simple Matlab command

>>X=M\b

Then you can plot the least-squares fit |H,,oq0(w)|* = 1/ G noder (w) using the values of X, Y, Z
obtained by solving (11).

A practical problem arises when you try to compute the least-squares solution according

to (11). Note that the formulation involves quantities of the form w?

~ as well as quantities

of the form w;*. For w = 10*, which is quite reasonable in your measured data, this leads
to magnitudes on the order of w* = 10'® and w™* = 107, Computers find it hard to
manipulate very large numbers and very small numbers in the same problem.

A way out of this numerical difficulty is to normalize your frequency values so they span
a smaller range. Choose a normalizing frequency k, and define v = w/k. Then substitute
w = vk in (2) and define new variables X', Y’ and Z' so that (2) can be written in the form
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Then use exactly the same solution as given above, with w replaced by v and X, Y, Z
replaced by X', Y, and Z’. Once X', Y', and 7' are computed, relate them back to X, Y,
7. Then the desired quantities wg, B, and ) can be calculated from X, Y, Z.

3 Project Report Guidelines

Details will be provided later about specific tasks for this project.



