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PREFACE

When we started teaching the course Probability and Stochastic Processesto Rutgers
undergraduates in 1991, we never dreamed we would write a textbook on the subject.
Our bookshelves contain more than a dozen probability texts, many of them directed
at electrical engineering students. We respect most of them. However, we have yet to
find one that works well for Rutgers students. We discovered to our surprise that the
majority of our students have a hard time learning the subject. Beyond meeting degree
requirements, the main motivation of most of our students is to learn how to solve
practical problems. For the majority, the mathematical logic of probability theory is,
in itself, of minor interest. What the students want most is an intuitive grasp of the
basic concepts and lots of practice working on applications.

The students told us that the textbooks we assigned, for all their mathematical
elegance, didn’t meet their needs. To help them, we distributed copies of our lecture
notes, which gradually grew into this book. We also responded to student feedback by
administering a half-hour quiz every week. A quiz contains ten questions designed to
test a student’s grasp of the concepts presented that week. The quizzes provide rapid
feedback to students on whether they are catching on to the new material. This is es-
pecially important in probability theory because much of the math appears deceptively
simple to engineering students. Reading a text and attending lectures, they feel they
understand everything presented to them. However, when confronted with problems to
solve, they discover that it takes a lot of careful thought and practice to use the math-
ematics correctly. Although the equations and formulas are simple, knowing which
one to use is difficult. This is a reversal from some mathematics courses, where the
equations are given and the solutions are hard to obtain.

To meet the needs of our students, this book has several distinctive characteristics:

� The entire text adheres to a single model that begins with an experiment con-
sisting of a procedure and observations.

� The mathematical logic is apparent to readers. Every fact is identified clearly as
a definition, an axiom, or a theorem. There is an explanation, in simple English,
of the intuition behind every concept when it first appears in the text.

� The mathematics of discrete random variables are introduced separately from
the mathematics of continuous random variables.

� Stochastic processes fit comfortably within the unifying model of the text. They
are introduced in Chapter 6, immediately after the presentations of discrete and
continuous random variables. Subsequent material, including central limit the-
orem approximations, laws of large numbers, and statistical inference, then use
examples that reinforce stochastic process concepts.

� The text concludes with introductions to random signal processing and Markov
chains.
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� There is an abundance of exercises that put the theory to use. Many worked
out example problems are embedded in the text. Each section concludes with
a simple quiz to help students gauge their grasp of that section. An appendix
includes a complete solution for each quiz. At the end of each chapter, there are
problems that span a range of difficulty.

We estimate that the material in this book represents about 125% of a one semester
undergraduate course. We suppose that every introduction to probability to theory will
spend about two thirds of a semester covering the material in the first five chapters.
The remainder of a course will be devoted to about half of the material in the final
six chapters, with the selection depending on the preferences of the instructor and the
needs of the students. Rutgers electrical and computer engineering students take this
course in the first semester of junior year. The following semester they use much of
the material in Principles of Communications.

We have also used this book in an entry-level graduate course. That course covers
the entire book in one semester, placing more emphasis on mathematical derivations
and proofs than the undergraduate course. Although most of the early material in the
book is familiar in advance to many graduate students, the course as a whole brings
our diverse graduate student population up to a shared level of competence.

ORGANIZATION OF THE BOOK

The first five chapters carry the core material that is common to practically all in-
troductory engineering courses in probability theory. Chapter 1 examines probability
models defined on abstract sets. It introduces the set theory notation used throughout
the book and states the three axioms of probability and several theorems that follow di-
rectly from the axioms. It defines conditional probability, the Law of Total Probability,
Bayes’ theorem, and independence. The chapter concludes by presenting combinato-
rial principles and formulas that are used later in the book.

The second and third chapters apply this material to models of discrete random
variables, introducing expected values, functions of random variables, variance, co-
variance, and conditional probability mass functions. Chapter 2 examines the prop-
erties of a single discrete random variable and Chapter 3 covers multiple random
variables with the emphasis on pairs of discrete random variables. Chapters 4 and
5 present the same material for continuous random variables and mixed random vari-
ables. In studying Chapters 1–5, students encounter many of the same ideas three
times in the contexts of abstract events, discrete random variables, and continuous
random variables. We have found this repetition to be very helpful pedagogically. The
road map for the text indicates that there are three sets of subjects that follow from
the core material in the first five chapters. Chapter 6 introduces the basic principles of
stochastic processes. Chapters 10 and 11 build on this introduction to cover random
signal processing and Markov chains, respectively. Chapters 7 and 8 cover sums of
random variables, moment generating functions, the Central Limit Theorem, and laws
of large numbers. There is a dotted line connecting Chapters 6 and 7 because some of
the terminology introduced in Chapter 6 appears in Chapters 7 and 8. However, it is
also possible to skip Chapter 6 and go directly from Chapter 5 to Chapter 7.
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It is also possible to go directly from the core material in the first five chapters
to the material on statistical inference in Chapter 9. This chapter presents elementary
introductions to hypothesis testing, estimation of random variables, and parameter es-
timation. The broken lines from Chapter 6 to Chapter 9 and from Chapter 8 to Chapter
9 indicate that there are references in the statistical inference chapter to the earlier
material on limit theorems, large numbers, and stochastic processes.

In our most recent Rutgers course for undergraduates, we covered about 90% of
the material in Chapters 1–8 and about half of Chapter 9. The entry-level graduate
course covered virtually the entire book.

The text includes several hundred homework problems. We have tried to organize
the problems in a way that assists both instructors and students. Specifically, problems
are numbered by section such that Problem 3.4.5 requires material from Section 3.4
but can be solved without reading past Section 3.4. Within each section, problems are
ordered by increasing degree of difficulty. Of course, problem difficulty estimates will
vary. Each problem also is marked with a difficulty rating. From the skiing industry,
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we have borrowed the following marks:

� Easier.
� More Difficult.
� Most Difficult.
�� Experts Only.

We have tried to assign difficulty marks based on the perception of a typical under-
graduate engineering student. We expect that a course instructor is not likely to find a
�� problem a great challenge. Every ski area emphasizes that these designations are
relative to the trails at that area. Similarly, the difficulty of our problems is relative to
the other problems in this text.

HINTS ON STUDYING PROBABILITY

A lot of students find it hard to do well in this course. We think there are a few
reasons for this difficulty. One reason is that some people find the concepts hard to
use and understand. Many of them are successful students in other courses for whom
the ideas of probability are so “weird” (or different from others) that it is very hard
for them to catch on. Usually these students recognize that learning probability theory
is a struggle, and most of them work hard enough to do well. However, they find
themselves putting in more effort than in other courses to achieve similar results.

Other people have the opposite problem. The work looks easy to them, and they
understand everything they hear in class and read in the book. There are good reasons
for assuming this is easy material. There are very few basic concepts to absorb. The
terminology (like the word probability), in most cases, contains familiar words. With
a few exceptions, the mathematical manipulations are not complex. You can go a long
way solving problems with a four-function calculator.

For many people, this apparent simplicity is dangerously misleading. The problem
is that it is very tricky to apply the math to specific problems. A few of you will see
things clearly enough to do everything right the first time. However, most people who
do well in probability need to practice with a lot of examples to get comfortable with
the work and to really understand what the subject is about. Students in this course
end up like elementary school children who do well with multiplication tables and
long division but bomb out on “word problems.” The hard part is figuring out what to
do with the numbers, not actually doing it. Most of the work in this course is that way,
and the only way to do well is to practice a lot. We have the short quizzes to show
you how well you are doing. Taking the midterm and final are similar to running in
a five-mile race. Most people can do it in a respectable time, provided they train for
it. Some people look at the runners who do it and say, “I’m as strong as they are. I’ll
just go out there and join in.” Without the training, most of them are exhausted and
walking after a mile or two.

So, our advice to students is if this looks really weird to you, keep working at it.
You will probably catch on. If it looks really simple, don’t get too complacent. It may
be harder than you think. Get into the habit of doing the homework, and if you don’t
answer all the quiz questions correctly, go over them until you understand each one.



xi

I (DJG) will add one more personal remark. For many years, I have been paid to
solve probability problems. This has been a major part of my research at Bell Labs and
at Rutgers. Applying probability to engineering questions has been extremely helpful
to me in my career, and it has led me to a few practical inventions. I hope you will find
the material intrinsically interesting. I hope you will learn to work with it. I think you
will have many occasions to use it in future courses and throughout your career.

We have worked hard to produce a text that will be useful to a large population of
students and instructors. We welcome comments, criticism, and suggestions. Feel free
to send us email at ryates@winlab.rutgers.eduor dgoodman@winlab.rutgers.edu. In
addition, a companion website, http://www.winlab.rutgers.edu/probability, provides a
variety of supplemental materials, including the MATLAB code used to produce many
of the text examples.

FURTHER READING

University libraries have hundreds of books on probability. Of course, each book
is written for a particular audience and has its own emphasis on certain topics. We
encourage you to spend an afternoon in the library examining a wide selection. For
students using this text, a short reference list on page 408 gives a sampling of the many
books that may be helpful.

Texts on a similar mathematical level to this text include [LG92, Dra67, Ros96].
For an emphasis on data analysis and statistics, [MR94] is very readable. For those
wishing to follow up on the random signal processing material introduced Chapter 10,
we can recommend [Pap91, SW94, Vin98]. The material in Chapter 11 can be found
in greatly expanded form in [Gal96, Ros96] and in a very accessible introduction in
[Dra67]. The two volumes by Feller, [Fel68] and [Fel66] are classic texts in probability
theory. For research engineers, [Pap91] is a valuable reference for stochastic processes.
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CHAPTER 1

EXPERIMENTS, MODELS,
AND PROBABILITIES

GETTING STARTED WITH PROBABILITY

You have read the “Hints on Studying Probability” in the Preface. Now you can be-
gin. The title of this book is Probability and Stochastic Processes. We say and hear
and read the word probabilityand its relatives (possible, probable, probably) in many
contexts. Within the realm of applied mathematics, the meaning of probability is a
question that has occupied mathematicians, philosophers, scientists, and social scien-
tists for hundreds of years.

Everyone accepts that the probability of an event is a number between 0 and 1.
Some people interpret probability as a physical property (like mass or volume or tem-
perature) that can be measured. This is tempting when we talk about the probability
that a coin flip will come up heads. This probability is closely related to the nature of
the coin. Fiddling around with the coin can alter the probability of heads.

Another interpretation of probability relates to the knowledge that we have about
something. We might assign a low probability to the truth of the statement It is raining
now in Phoenix, Arizona, because of our knowledge that Phoenix is in the desert. How-
ever, our knowledge changes if we learn that it was raining an hour ago in Phoenix.
This knowledge would cause us to assign a higher probability to the truth of the state-
ment It is raining now in Phoenix.

Both views are useful when we apply probability theory to practical problems.
Whichever view we take, we will rely on the abstract mathematics of probability,
which consists of definitions, axioms, and inferences (theorems) that follow from the
axioms. While the structure of the subject conforms to principles of pure logic, the
terminology is not entirely abstract. Instead, it reflects the practical origins of prob-
ability theory, which was developed to describe phenomena that cannot be predicted
with certainty. The point of view is different from the one we took when we started
studying physics. There we said that if you do the same thing in the same way over
and over again – send a space shuttle into orbit, for example – the result will always
be the same. To predict the result, you have to take account of all relevant facts.

The mathematics of probability begins when the situation is so complex that we
just can’t replicate everything important exactly – like when we fabricate and test

1



2 CHAPTER 1 EXPERIMENTS, MODELS, AND PROBABILITIES

an integrated circuit. In this case, repetitions of the same procedure yield different
results. The situation is not totally chaotic, however. While each outcome may be
unpredictable, there are consistent patterns to be observed when you repeat the proce-
dure a large number of times. Understanding these patterns helps engineers establish
test procedures to ensure that a factory meets quality objectives. In this repeatable
procedure (making and testing a chip) with unpredictable outcomes (the quality of in-
dividual chips), the probability is a number between 0 and 1 that states the proportion
of times we expect a certain thing to happen, such as the proportion of chips that pass
a test.

As an introduction to probability and stochastic processes, this book serves three
purposes:

� It introduces students to the logic of probability theory.

� It helps students develop intuition into how the theory applies to practical situ-
ations.

� It teaches students how to apply probability theory to solving engineering prob-
lems.

To exhibit the logic of the subject, we show clearly in the text three categories of
theoretical material: definitions, axioms, and theorems. Definitions establish the logic
of probability theory, while axioms are facts that we have to accept without proof.
Theorems are consequences that follow logically from definitions and axioms. Each
theorem has a proof that refers to definitions, axioms, and other theorems. Although
there are dozens of definitions and theorems, there are only three axioms of probability
theory. These three axioms are the foundation on which the entire subject rests. To
meet our goal of presenting the logic of the subject, we could set out the material as
dozens of definitions followed by three axioms followed by dozens of theorems. Each
theorem would be accompanied by a complete proof.

While rigorous, this approach would completely fail to meet our second aim of
conveying the intuition necessary to work on practical problems. To address this goal,
we augment the purely mathematical material with a large number of examples of
practical phenomena that can be analyzed by means of probability theory. We also
interleave definitions and theorems, presenting some theorems with complete proofs,
others with partial proofs, and omitting some proofs altogether. We find that most
engineering students study probability with the aim of using it to solve practical prob-
lems, and we cater mostly to this goal. We also encourage students to take an interest
in the logic of the subject – it is very elegant – and we feel that the material presented
will be sufficient to enable these students to fill in the gaps we have left in the proofs.

Therefore, as you read this book you will find a progression of definitions, axioms,
theorems, more definitions, and more theorems, all interleaved with examples and
comments designed to contribute to your understanding of the theory. We also include
brief quizzes that you should try to solve as you read the book. Each one will help
you decide whether you have grasped the material presented just before the quiz. The
problems at the end of each chapter give you more practice applying the material
introduced in the chapter. They vary considerably in their level of difficulty. Some of
them take you more deeply into the subject than the examples and quizzes do.
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1.1 SET THEORY

The mathematical basis of probability is the theory of sets. Most people who study
probability have already encountered set theory and are familiar with such terms as
set, element, union, intersection, and complement. For them, the following paragraphs
will review material already learned and introduce the notation and terminology we use
here. For people who have no prior acquaintance with sets, this material introduces
basic definitions and the properties of sets that are important in the study of probability.

A setis a collection of things. We use capital letters to denote sets. The things that
together make up the set are elements. When we use mathematical notation to refer to
set elements, we usually use small letters. Thus we can have a set A with elements x,
y, and z. The symbol � denotes set inclusion. Thus x� A means “x is an element of
set A.” The symbol �� is the opposite of �. Thus c �� A means “c is not an element of
set A.”

It is essential when working with sets to have a definition of each set. The def-
inition allows someone to consider anything conceivable and determine whether that
thing is an element of the set. There are many ways to define a set. One way is simply
to name the elements:

A� fRutgers University, Princeton University, the planet Mercuryg

Note that in stating the definition, we write the name of the set on one side of � and
the definition in curly brackets f g on the other side of �.

It follows that “the planet closest to the Sun�A” is a true statement. It is also true
that “Whitney Houston �� A.” Another way of writing the set is to give a mathematical
rule for generating all of the elements of the set:

B�
n

x2jx� 1�2�3� � � �
o

This notation tells us to form a set by performing the operation to the left of the vertical
bar, j, on the numbers to the right of the bar. The dots tell us to continue the sequence
to the left of the dots. Since there is no number to the right of the dots, we continue the
sequence indefinitely, forming an infinite set. The definition of B implies that 9 � B
and 10 �� B.

Yet another type of definition is a rule for testing something to determine whether
it is a member of the set:

C� fall Rutgers juniors who weigh more than 170 poundsg

In addition to set inclusion, we also have the notion of a subset, which describes a
possible relationship between two sets. By definition, A is a subset of B if every
member of A is also a member of B. We use the symbol � to denote subset. Thus
A� B is mathematical notation for the statement “the set A is a subset of the set B.” If

I � fall positive integers, negative integers, and 0g

it follows that B� I , where B is defined above.
The definition of set equality

A� B
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is

A� B if and only if B� A and A� B

This is the mathematical way of stating that A and B are identical if and only if every
element of A is an element of B and every element of B is an element of A. This
definition implies that a set is unaffected by the order of the elements in a definition.
For example, f0�17�46g� f17�0�46g� f46�0�17g are all the same set.

To work with sets mathematically it is necessary to define a universal set. This
is the set of all things that we could possibly consider in a given context. In any
study, all set operations relate to the universal set for that study. The members of the
universal set include all of the elements of all of the sets in the study. We will use
the letter S to denote the universal set. For example, the universal set for A could
be S� fall universities in New Jersey�all planetsg. The universal set for B could be
S� I � f0�1�2� � � �g. By definition, every set is a subset of the universal set. That is,
for any set X, X � S.

The null set, which is also important, may seem like it is not a set at all. By
definition it has no elements. The notation for the null set is φ. By definition φ is a
subset of every set. For any set A, φ� A.

It is customary to refer to Venn diagrams to display relationships among sets. By
convention, the region enclosed by the large rectangle is the universal set S. Closed
surfaces within this rectangle denote sets. A Venn diagram depicting the relationship
A� B is

A
B

When we do set algebra, we form new sets from existing sets. There are three op-
erations for doing this: union, intersection, and complement. Union and intersection
combine two existing sets to produce a third set. The complement operation forms a
new set from one existing set. The notation and definitions are

A B
The union of sets Aand B is the set of all elements
that are either in A or in B, or in both. The union of
A and B is denoted by A�B. In this Venn diagram,
A�B is the complete shaded area. Formally, the
definition states

x� A�B if and only if x� A or x� B

The set operation union corresponds to the logical
“or” operation.
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A B
The intersectionof two sets A and B is the set of all
elements which are contained both in A and B. The
intersection is denoted by A�B. Another notation
for intersection is AB. Formally, the definition is

x� A�B if and only if x� A and x� B

The set operation intersection corresponds to the
logical “and” function.

A

A
c

The complement of a set A, denoted by Ac, is the
set of all elements in S that are not in A. The com-
plement of S is the null set φ. Formally,

x� Ac if and only if x �� A

A fourth set operation is called the difference. It is a combination of intersection and
complement.

A-B The differencebetween A and B is a set A�B that
contains all elements of A that are not elements of
B. Formally,

x� A�B if and only if x� A and x �� B

Note that A�B� A�Bc and Ac � S�A.

In working with probability we will frequently refer to two important properties
of collections of sets. Here are the definitions.

A

B

A collection of sets A1� � � � �AN is mutually exclu-
siveif and only if

Ai �Aj � φ i �� j

When there are only two sets in the collection, we
say that these sets are disjoint. Formally, A and B
are disjoint if and only if

A�B� φ
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A1

A3
A2

A collection of sets A1� � � � �AN is collectively ex-
haustiveif and only if

A1�A2�� � ��AN � S

In the definition of collectively exhaustive, we used the somewhat cumbersome
notation A1 �A2 � � � � �AN for the union of N sets. Just as ∑n

i�1 xi is a shorthand for
x1 �x2 � � � ��xn, we will use a shorthand for unions and intersections of n sets:

n�

i�1

Ai � A1�A2�� � ��An

n�

i�1

Ai � A1�A2�� � ��An

From the definition of set operations, we can derive many important relationships be-
tween sets and other sets derived from them. One example is

A�B� A

To prove that this is true, it is necessary to show that if x� A�B, then it is also true
that x� A. A proof that two sets are equal, for example, X �Y, requires two separate
proofs: X �Y and Y�X. As we see in the following theorem, this can be complicated
to show.

Theorem 1.1. De Morgan’s law relates all three basic operations:

�A�B�c � Ac�Bc

Proof There are two parts to the proof:

� To show �A�B�c � Ac�Bc, suppose x � �A�B�c. That implies x �� A�B. Hence,
x �� A and x �� B, which together imply x� Ac and x� Bc. That is, x� Ac�Bc.

� To show Ac�Bc � �A�B�c, suppose x � Ac�Bc. In this case, x � Ac and x � Bc.
Equivalently, x �� A and x �� B so that x �� A�B. Hence, x� �A�B�c.

Quiz 1.1.

A slice of pizza sold by Gerlanda’s Pizza is either regular (R) or Sicil-
ian (T as in Thick) In addition, each slice may have mushrooms (M) or
onions (O) as described by the Venn diagram at right. For the sets spec-
ified in parts (a)–(g) below, shade the corresponding region of the Venn
diagram.

M O

T
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(a) R (b) M�O

(c) M�O (d) R�M

(e) R�M (f) Tc�M

(g) M�Tc (h) Are T and M mutually exclusive?

(i) Are R, T, and M collectively exhaustive? (j) Are T and O mutually exclusive? State
this condition in words.

1.2 APPLYING SET THEORY TO PROBABILITY

The mathematics we study is a branch of measure theory. Probability is a number that
describes a set. The higher the number, the more probability there is. In this sense
probability is like a quantity that measures a physical phenomenon, for example, a
weight or a temperature. However, it is not necessary to think about probability in
physical terms. We can do all the math abstractly, just as we defined sets and set
operations in the previous paragraphs without any reference to physical phenomena.

Fortunately for engineers, the language of probability (including the word prob-
ability itself) makes us think of things that we experience. The basic model is a re-
peatable experiment. An experiment consists of a procedureand observations. There
is some uncertainty in what will be observed; otherwise, performing the experiment
would be unnecessary. Some examples of experiments include

1. Flip a coin. Did it land on heads or tails?
2. Walk to a bus stop. How long do you wait for the arrival of a bus?
3. Give a lecture. How many students are seated in the fourth row?
4. Transmit one of a collection of waveforms over a channel. What waveform

arrives at the receiver?
5. Transmit one of a collection of waveforms over a channel. Which waveform

does the receiver identify as the transmitted waveform?

For the most part, we will analyze modelsof actual physical experiments. We create
models because real experiments generally are too complicated to analyze. For exam-
ple, to describe all of the factors affecting your waiting time at a bus stop, you may
consider

� The time of day. (Is it rush hour?)
� The speed of each car that passed by while you waited.
� The weight, horsepower, and gear ratios of each kind of bus used by the bus

company.
� The psychological profile and work schedule of each bus driver. (Some drivers

drive faster than others.)
� The status of all road construction within 100 miles of the bus stop.

It should be apparent that it would be difficult to analyze the effect of each of these fac-
tors on the likelihood that you will wait less than five minutes for a bus. Consequently,
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it is necessary to study a modelof the experiment that captures the important part of
the actual physical experiment. Since we will focus on the model of the experiment
almost exclusively, we often will use the word experimentto refer to the model of an
experiment.

Example 1.1. An experiment consists of the following procedure, observation and model:

� Procedure: Flip a coin and let it land on a table.

� Observation: Observe which side (head or tail) faces you after the coin lands.

� Model: Heads and tails are equally likely. The result of each flip is unrelated to the results of
previous flips.

As we have said, an experiment consists of both a procedure and observations. It is im-
portant to understand that two experiments with the same procedure but with different
observations are different experiments. For example, consider these two experiments:

Example 1.2. Flip a coin three times. Observe the sequence of heads and tails.

Example 1.3. Flip a coin three times. Observe the number of heads.

These two experiments have the same procedure: flip a coin three times. They are
different experiments because they require different observations. We will describe
models of experiments in terms of a set of possible experimental outcomes. In the
context of probability, we give precise meaning to the word outcome.

Definition 1.1. Outcome: An outcomeof an experiment is any possible
observation of that experiment.

Implicit in the definition of an outcome is the notion that each outcome is distinguish-
able from any other outcome. As a result, we define the universal set of all possible
outcomes. In probability terms, we call this universal set the sample space.

Definition 1.2. Sample Space: The sample spaceof an experiment is the
finest-grain, mutually exclusive, collectively exhaustive set of all possible
outcomes.

The finest-grainproperty simply means that all possible distinguishable outcomes
are identified separately. The requirement that outcomes be mutually exclusive says
that if one outcome occurs, then no other outcome also occurs. For the set of outcomes
to be collectively exhaustive, every outcome of the experiment must be in the sample
space.

Example 1.4. The sample space in Example 1.1 is S� fh�tg where h is the outcome “observe
head,” and t is the outcome “observe tail.” The sample space in Example 1.2 is

S� fhhh�hht�hth�htt�thh�tht�tth�tttg
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The sample space in Example 1.3 is S� f0�1�2�3g.

Example 1.5. Manufacture an integrated circuit and test it to determine whether it meets quality
objectives. The possible outcomes are “accepted” �a� and “rejected” �r�. The sample space is S�
fa� rg.

In common speech, an event is just something that occurs. In an experiment, we
may say that an event occurs when a certain phenomenon is observed. To define an
event mathematically, we must identify all outcomes for which the phenomenon is
observed. That is, for each outcome, either the particular event occurs or it does not.
In probability terms, we define an event in terms of the outcomes of the sample space.

Definition 1.3. Event: An eventis a set of outcomes of an experiment.

The following table relates the terminology of probability to set theory:

Set Algebra Probability
set event

universal set sample space
element outcome

All of this is so simple that it is boring. While this is true of the definitions them-
selves, applying them is a different matter. Defining the sample space and its outcomes
are key elements of the solution of any probability problem. A probability problem
arises from some practical situation that can be modeled as an experiment. To work
on the problem, it is necessary to define the experiment carefully and then derive the
sample space. Getting this right is a big step toward solving the problem.

Example 1.6. Suppose we roll a six sided die and observe the number of dots on the side facing
upwards. We can label these outcomes i � 1� � � � �6 where i denotes the outcome that i dots appear on
the up face. The sample space is S� f1�2� � � � �6g. Each subset of S is an event. Examples of events
are

� The event E1 � fRoll 4 or higherg� f4�5�6g.

� The event E2 � fThe roll is eveng� f2�4�6g.

� E3 � fThe roll is the square of an integerg� f1�4g.

Example 1.7. Wait for someone to make a phone call and observe the duration of the call in
minutes. An outcome x is a nonnegative real number. The sample space is S� fxjx� 0g. The event
“the phone call lasts longer than five minutes” is fxjx� 5g.

Example 1.8. Consider three traffic lights encountered driving down a road. We say a light was
red if the driver was required to come to a complete stop at that light; otherwise we call the light
green. For the sake of simplicity, these definitions were carefully chosen to exclude the case of the
yellow light. An outcome of the experiment is a description of whether each light was red or green.
We can denote the outcome by a sequence of r and g such as rgr , the outcome that the first and third
lights were red but the second light was green. We denote the event that light n was red or green
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by Rn or Gn. The event R2 would be the set of outcomes fgrg�grr� rrg� rrr g. We can also denote an
outcome as an intersection of events Ri and Gj . For example, the event R1G2R3 is the set containing
the single outcome frgrg.

In Example 1.8, suppose we were interested only in the status of light 2. In this case,
the set of events fG2�R2g describes the events of interest. Moreover, for each possible
outcome of the three light experiment, the second light was either red or green, so the
set of events fG2�R2g is both mutually exclusive and collectively exhaustive. How-
ever, fG2�R2g is not a sample space for the experiment because the elements of the
set do not completely describe the set of possible outcomes of the experiment. The set
fG2�R2g does not have the finest-grain property. Yet sets of this type are sufficiently
useful to merit a name of their own.

Definition 1.4. Event Space: An event spaceis a collectively exhaustive,
mutually exclusive set of events.

An event space and a sample space have a lot in common. The members of both are
mutually exclusive and collectively exhaustive. They differ in the finest-grain property
that applies to a sample space but not to an event space. Because it possesses the
finest-grain property, a sample space contains all the details of an experiment. The
members of a sample space are outcomes. By contrast, the members of an event space
are events. The event space is a set of events (sets), while the sample space is a set of
outcomes (elements). Usually, a member of an event space contains many outcomes.
Consider a simple example:

Example 1.9. Flip four coins, a penny, a nickel, a dime, and a quarter. Examine the coins in order
(penny, then nickel, then dime, then quarter) and observe whether each coin shows a head (h) or a
tail (t). What is the sample space? How many elements are in the sample space?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The sample space consists of 16 four-letter words, with each letter either h or t. For example, the
outcome tthh refers to the penny and the nickel showing tails and the dime and quarter showing
heads. There are 16 members of the sample space.

Example 1.10. For the four coins experiment of Example 1.9, let Bi � foutcomes with i headsg
for i � 0�1�2�3�4. Each Bi is an event containing one or more outcomes. For example, B1 �
fttth�ttht�thtt�htttg contains four outcomes. The set B � fB0�B1�B2�B3�B4g is an event space.
Its members are mutually exclusive and collectively exhaustive. It is not a sample space because it
lacks the finest-grain property. Learning that an experiment produces an event B1 tells you that one
coin came up heads, but it doesn’t tell you which coin it was.

The experiment in Example 1.9 and Example 1.10 refers to a “toy problem,” one that
is easily visualized but isn’t something we would do in the course of our professional
work. Mathematically, however, it is equivalent to many real engineering problems.
For example, observe a modem transmit four bits from one telephone to another. For
each bit, observe whether the receiving modem detects the bit correctly (c), or makes
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an error (e). Or, test four integrated circuits. For each one, observe whether the circuit
is acceptable (a), or a reject (r). In all of these examples, the sample space contains
16 four-letter words formed with an alphabet containing two letters. If we are only
interested in the number of times one of the letters occurs, it is sufficient to refer only to
the event space B, which does not contain all of the information about the experiment
but does contain all of the information we need. The event space is simpler to deal
with than the sample space because it has fewer members (there are five events in the
event space and 16 outcomes in the sample space). The simplification is much more
significant when the complexity of the experiment is higher; for example, testing 10
circuits. The sample space has 210 � 1024 members, while the corresponding event
space has only 11 members.

The concept of an event space is useful because it allows us to express any event
as a union of mutually exclusive events. We will observe in the next section that the
entire theory of probability is based on unions of mutually exclusive events.

Theorem 1.2. For an event space B� fB1�B2� � � �g and any event A in the
sample space, let Ci � A�Bi. For i �� j, the events Ci and Cj are mutually
exclusive and

A�C1�C2�� � �

Example 1.11. In the coin tossing experiment of Example 1.9, let A equal the set of outcomes with
less than three heads.

A� ftttt�httt�thtt�ttht�ttth�hhtt�htht�htth�tthh�thth�thht�hhttg

From Example 1.10, let fB0� � � � �B4g denote the event space in which Bi � foutcomes with i headsg.
Theorem 1.2 states that

A� �A�B0�� �A�B1�� �A�B2�� �A�B3�� �A�B4�

In this example, Bi � A, for i � 0�1�2. Therefore A�Bi � Bi for i � 0�1�2. Also, for i � 3 and i � 4,
A�Bi � φ so that A� B0�B1�B2, a union of disjoint sets. In words, this example states that the
event “less than three heads” is the union of events “zero heads,” “one head,” and “two heads.”

We advise you to make sure you understand Example 1.11 and Theorem 1.2.
Many practical problems use the mathematical technique contained in the theorem.
For example, find the probability that there are three or more bad circuits in a batch
that come from a fabrication machine.

Quiz 1.2. Monitor three consecutive phone calls going through a telephone switching office. Clas-
sify each one as a voice call �v�, if someone is speaking or a data call �d� if the call is carrying a
modem or fax signal. Your observation is a sequence of three letters (each letter is either v or d). For
example, two voice calls followed by one data call corresponds to vvd. Write the elements of the
following sets:
(a) A1 � ffirst call is a voice callg (b) B1 � ffirst call is a data callg
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(c) A2 � fsecond call is a voice callg (d) B2 � fsecond call is a data callg

(e) A3 � fall calls are the sameg (f) B3 � fvoice and data alternateg

(g) A4 � fone or more voice callsg (h) B4 � ftwo or more data callsg
For each pair of events A1 and B1, A2 and B2 and so on, please identify whether the pair of events is
either mutually exclusive or collectively exhaustive.

1.3 PROBABILITY AXIOMS

Thus far our model of an experiment consists of a procedure and observations. This
leads to a set-theory representation with a sample space (universal set S), outcomes (s
that are elements of S) and events (A that are sets of elements). To complete the model,
we assign a probability P�A� to every event, A, in the sample space. With respect to
our physical idea of the experiment, the probability of an event is the proportion of
the time that event is observed in a large number of runs of the experiment. This is
the relative frequency notion of probability. Mathematically, this is expressed in the
following axioms.

Axioms of Probability: A probability measure P��� is a function that maps
events in the sample space to real numbers such that

Axiom 1. For any event A, P�A�� 0.
Axiom 2. P�S� � 1.
Axiom 3. For any countable collection A1�A2� � � � of mutually exclusive

events

P�A1�A2�� � �� � P�A1��P�A2�� � � �

We will build our entire theory of probability on these three axioms. Axioms 1
and 2 simply establish a probability as a number between 0 and 1. Axiom 3 states that
the probability of the union of mutually exclusive events is the sum of the individual
probabilities. We will use this axiom over and over in developing the theory of proba-
bility and in solving problems. In fact, it is really all we have to work with. Everything
else follows from Axiom 3. To use Axiom 3 to solve a practical problem, we analyze
a complicated event in order to express it as the union of mutually exclusive events
whose probabilities we can calculate. Then, we add the probabilities of the mutually
exclusive events to find the probability of the complicated event we are interested in.

A useful extension of Axiom 3 applies to the union of two disjoint events.

Theorem 1.3. Given events A and B such that A�B� φ, then

P�A�B� � P�A��P�B�

Although it may appear that Theorem 1.3 is a trivial special case of Axiom 3, this
is not so. In fact, a simple proof of Theorem 1.3 may also use Axiom 2! If you are
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curious, Problem 1.4.7 gives the first steps toward a proof. It is a simple matter to
extend Theorem 1.3 to any finite union of mutually exclusive sets.

Theorem 1.4. If B � B1�B2�� � ��Bm and Bi �Bj � φ for i �� j, then

P�B� �
m

∑
i�1

P�Bi �

In Chapter 7, we show that the probability measure established by the axioms
corresponds to the idea of relative frequency. The correspondence refers to a sequential
experiment consisting of n repetitions of the basic experiment. In these n trials, NA�n�
is the number of times that event A occurs. The relative frequency of A is the fraction
NA�n��n. In Chapter 7, we prove that limn�∞ NA�n��n� P�A�.

Another consequence of the axioms can be expressed as the following theorem.

Theorem 1.5. The probability of an event B� fs1�s2� � � � �smg is the sum
of the probabilities of the outcomes contained in the event:

P�B� �
m

∑
i�1

P�fsig�

Proof Each outcome si is an event (a set) with the single element si . Since outcomes
by definition are mutually exclusive, B can be expressed as the union of mdisjoint sets:

B� fs1g�fs2g� 	 	 	�fsmg

with fsig�
�

sj
�
� φ for i �� j . Theorem 1.4 leads to

P�B� �
m

∑
i�1

P�fsig�

which completes the proof.

COMMENTS ON NOTATION

We use the notation P��� to indicate the probability of an event. The expression in the
square brackets is an event. Within the context of one experiment, P�A� can be viewed
as a function that transforms event A to a number between 0 and 1.

Note that fsig is the formal notation for a set with the single element si . For
convenience, we will sometimes write P�si � rather than the more complete P�fsig� to
denote the probability of this outcome.

We will also abbreviate the notation for the probability of the intersection of two
events, P�A�B�. Sometimes we will write it as P�A�B� and sometimes as P�AB�. Thus
by definition, P�A�B� � P�A�B� � P�AB�.



14 CHAPTER 1 EXPERIMENTS, MODELS, AND PROBABILITIES

Example 1.12. Let Ti denote the duration (in minutes) of the ith phone call you place today. The
probability that your first phone call lasts less than five minutes and your second phone call lasts at
least ten minutes is P�T1 � 5�T2 � 10�.

EQUALLY LIKELY OUTCOMES

A large number of experiments can be modeled by a sample space S� fs1� � � � �sng
in which the n outcomes are equally likely. In such experiments, there are usually
symmetry arguments that lead us to believe that no one outcome is any more likely
than any other. In such a case, the axioms of probability imply that every outcome has
probability 1�n.

Theorem 1.6. For an experiment with sample space S� fs1� � � � �sng in
which each outcome si is equally likely,

P�si � � 1�n 1	 i 	 n

Proof Since all outcomes have equal probability, there exists p such that P�si � � p for
i � 1� � � � �n. Theorem 1.5 implies

P�S� � P�s1�� 	 	 	�P�sn� � np

Since Axiom 2 says P�S� � 1, we must have p� 1�n.

Example 1.13. As in Example 1.6, roll a six-sided die in which all faces are equally likely. What
is the probability of each outcome? Find the probabilities of the events: “Roll 4 or higher,” “Roll an
even number,” and “Roll the square of an integer.”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The probability of each outcome is

P�i� � 1�6 i � 1�2� � � � �6

The probabilities of the three events are

� P�Roll 4 or higher� � P�4��P�5��P�6� � 1�2.

� P�Roll an even number� � P�2��P�4��P�6� � 1�2.

� P�Roll the square of an integer� � P�1��P�4� � 1�3.

Quiz 1.3. A student’s test score T is an integer between 0 and 100 corresponding to the experi-
mental outcomes s0� � � � �s100. A score of 90 to 100 is an A, 80 to 89 is a B, 70 to 79 is a C, 60 to 69
is a D, and below 60 is a failing grade of F . Given that all scores between 51 and 100 are equally
likely and a score of 50 or less cannot occur, please find the following probabilities:
(a) P�fs79g� (b) P�fs100g�

(c) P�A� (d) P�F�
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(e) P�T � 80� (f) P�T � 90�

(g) P�a C grade or better� (h) P�student passes�

1.4 SOME CONSEQUENCES OF THE AXIOMS

Here we list some properties of probabilities that follow directly from the three axioms.
While we do not supply the proofs, we suggest that students prove at least some of
these theorems in order to gain experience working with the axioms.

Theorem 1.7. The probability measure P��� satisfies

(a) P�φ� � 0.

(b) P�Ac� � 1�P�A�.

(c) For any A and B (not necessarily disjoint),

P�A�B� � P�A��P�B��P�A�B�

(d) If A� B, then P�A�	 P�B�.

The following theorem is a more complex consequence of the axioms. It is very
useful. It refers to an event space B1�B2� � � � �Bm and any event, A. It states that we
can find the probability of A by adding the probabilities of the parts of A that are in the
separate components of the event space.

Theorem 1.8. For any event A, and event spacefB1�B2� � � � �Bmg,

P�A� �
m

∑
i�1

P�A�Bi �

Proof The proof follows directly from Theorem 1.2 and Theorem 1.4. In this case, the
disjoint sets are Ci � fA�Big .

Example 1.14. A company has a model of telephone usage. It classifies all calls as either long (L),
if they last more than three minutes, or brief (B). It also observes whether calls carry voice (V), data
(D) or fax (F). This model implies an experiment in which the procedure is to monitor a call. The
observation consists of the nature of the call, V, D, or F , and the length, L or B. The sample space
has six outcomes S� fLV�BV�LD�BD�LF�BFg. The probabilities can be represented in the table in
which the rows and columns are labeled by events and a table entry represents the probability of the
intersection of the corresponding row and column events. In this case, the table is

V F D
L 0�3 0�15 0�12
B 0�2 0�15 0�08
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For example, from the table we can read that the probability of a brief data call is P�BD� � 0�08.
Note that fV�D�Fg is an event space corresponding to fB1�B2�B3g in Theorem 1.8. Thus we can
apply Theorem 1.8 to find

P�L� � P�LV��P�LD��P�LF� � 0�57

Quiz 1.4. Monitor a phone call. Classify the call as a voice call �V�, if someone is speaking;
or a data call �D� if the call is carrying a modem or fax signal. Classify the call as long �L� if if
the call lasts for more than three minutes; otherwise classify the call as brief �B�. Based on data
collected by the telephone company, we use the following probability model: P�V� � 0�7, P�L� � 0�6,
P�VL� � 0�35. Please find the following probabilities:
(a) P�DL� (b) P�D�L�

(c) P�VB� (d) P�V �L�

(e) P�V �D� (f) P�LB�

1.5 CONDITIONAL PROBABILITY

As we suggested earlier, it is sometimes useful to interpret P�A� as our knowledge of
the occurrence of event A before an experiment takes place. If P�A� 
 1, we have
advance knowledge that A will almost certainly occur. P�A�
 0 reflects strong knowl-
edge that A is unlikely to occur when the experiment takes place. With P�A� 
 1�2,
we have little knowledge about whether or not A will occur. Thus P�A� reflects our
knowledge of the occurrence of A prior to performing an experiment. Sometimes, we
refer to P�A� as the a priori probability of A.

In many practical situations, it is not possible to find out the precise outcome of an
experiment. Rather than the outcome si , itself, we obtain information that the outcome
is in the set B. That is, we learn that some event B has occurred, where B consists
of several outcomes. Conditional probability describes our knowledge of A when we
know that B has occurred but we still don’t know the precise outcome.

Example 1.15. Consider an experiment that consists of testing two integrated circuits that come
from the same silicon wafer, and observing in each case whether a circuit is accepted (a) or rejected
(r). There are four outcomes of the experiment rr , ra, ar, and aa. Let A denote the event that the
second circuit is a failure. Mathematically, A� frr�arg.

The circuits come from a high-quality production line. Therefore the prior probability of A is
very low. In advance, we are pretty certain that the second circuit will be acceptable. However, some
wafers become contaminated by dust, and these wafers have a high proportion of defective chips.
Let B� frr� rag denote the event that the first chip tested is rejected.

Given the knowledge that the first chip was rejected, our knowledge of the quality of the second
chip changes. With the first chip a reject, the likelihood that the second chip will also be rejected is
higher than it was a priori. Thus we would assign a higher probability to the rejection of the second
chip when we know that the first chip is a reject.

The notation for this new probability is P�AjB�. We read this as “the probability of
A given B.” Mathematically, the definition of conditional probability is as follows.
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Definition 1.5. Conditional Probability: The conditional probability of
the event A given the occurrence of the event B is

P�AjB� �
P�AB�
P�B�

Conditional probability is defined only when P�B� � 0. In most experiments,
P�B� � 0 means that it is certain that B never occurs. In this case, it makes no sense to
speak of the probability of A given that B occurs.

Note that P�AjB� is a respectable probability measure relative to a sample space
that consists of all the outcomes in B. This means that P�AjB� has properties corre-
sponding to the three axioms of probability.

Theorem 1.9. A conditional probability measure P�AjB� has the following
properties that correspond to the axioms of probability.

Axiom 1: P�AjB�� 0.

Axiom 2: P�BjB� � 1.

Axiom 3: If A� A1�A2�� � � with Ai �Aj � φ for i �� j, then

P�AjB� � P�A1jB��P�A2jB�� � � �

You should be able to prove these statements using Definition 1.5.

Example 1.16. With respect to Example 1.15 for the “testing two chips,” consider the a priori
probability model:

P�rr � � 0�01, P�ra� � 0�01, P�ar� � 0�01, P�aa� � 0�97

Find the probability of events A� “second chip rejected” and B� “first chip rejected.” Also find the
conditional probability that the second chip is a reject given that the first chip is a reject.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We saw in Example 1.15 that A is the union of two disjoint events (outcomes) rr and ar. Therefore,
the a priori probability that the second chip is rejected is

P�A� � P�rr ��P�ar� � 0�02

This is also the a priori probability that the first chip is rejected:

P�B� � P�rr ��P�ra� � 0�02�

The conditional probability of the second chip being rejected given that the first chip is rejected is,
by definition, the ratio of P�AB� to P�B�, where, in this example,

P�AB� � P�both rejected� � P�rr � � 0�01
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Thus

P�AjB� �
P�AB�
P�B�

� 0�01�0�02 � 0�5�

The information that the first chip is a reject drastically changes our state of knowledge about the
second chip. We started with near certainty, P�A� � 0�02, that the second chip would not fail and
ended with complete uncertainty about the quality of the second chip, P�AjB� � 0�5.

Example 1.17. Shuffle a deck of cards and observe the bottom card. What is the conditional
probability the bottom card is the ace of clubs given that the the bottom card is a black card?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The sample space consists of the 52 cards that can appear on the bottom of the deck. Let AC denote
the event that the bottom card is the ace of clubs. Since all cards are equally likely to be at the bottom,
the probability that a particular card, such as the ace of clubs, is at the bottom is P�AC� � 1�52. Let
B be the event that the bottom card is a black card. The event B occurs if the bottom card is one of
the 26 clubs or spades, so that P�B� � 26�52. Given B, the conditional probability of the event AC is

P�ACjB� �
P�ACB�

P�B�
�

P�AC�

P�B�
�

1�52
26�52

�
1

26

The key step was observing that ACB�AC since if the bottom card is the ace of clubs then the bottom
card must be a black card. Mathematically, this is an example of the fact that AC � B implies that
ACB� AC.

Example 1.18. Roll two four-sided dice. Let X1 and X2 denote the number of dots that appear on
die 1 and die 2, respectively. Draw the 4 by 4 sample space. Let A be the event X1 � 2. What is P�A�?
Let B denote the event X2 � X1. What is P�B�? What is P�AjB�?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Each outcome is a pair �X1�X2�. To find P�A�, we add up the probabilities of the sample points in A.

From the sample space, we see that A has 12 points,
each with probability 1�16, so P�A� � 12�16 � 3�4. To
find P�B�, we observe that B has 6 points and P�B� �
6�16 � 3�8. The compound event ABhas exactly three
points, �2�3���2�4���3�4�, so P�AB� � 3�16. From the
definition of conditional probability, we write

P�AjB� �
P�AB�
P�B�

� 1�2

�

�

X2

X1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

A

�
�
�
�
�
�
�B

LAW OF TOTAL PROBABILITY

In many situations, we begin with information about conditional probabilities. Using
these conditional probabilities, we would like to calculate unconditional probabilities.
The law of total probability shows us how to do this.
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Theorem 1.10. Law of Total Probability If B1�B2� � � � �Bm is an event
space and P�Bi �� 0 for i � 1� � � � �m, then

P�A� �
m

∑
i�1

P�AjBi �P�Bi �

This follows from Theorem 1.8 and the identity

P�AB� � P�AjB�P�B�� (1.1)

which is a direct consequence of the definition of conditional probability. The useful-
ness of the result can be seen in the next example.

Example 1.19. A company has three machines B1, B2, and B3 for making 1 kΩ resistors. It has
been observed that 80% of resistors produced by B1 are within 50 Ω of the nominal value. Machine
B2 produces 90% of resistors within 50 Ω of the nominal value. The percentage for machine B3 is
60%. Each hour, machine B1 produces 3000 resistors, B2 produces 4000 resistors and B3 produces
3000 resistors. All of the resistors are mixed together at random in one bin and packed for shipment.
What is the probability that the company ships a resistor that is within 50 Ω of the nominal value?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let A � fresistor is within 50 Ω of the nominal valueg. Using the resistor accuracy information to
formulate a probability model, we write

P�AjB1� � 0�8� P�AjB2� � 0�9� P�AjB3� � 0�6

The production figures state that 3000�4000�3000 � 10�000 resistors per hour are produced. The
fraction from machine B1 is P�B1� � 3000�10000 � 0�3. Similarly, P�B2� � 0�4 and P�B3� � 0�3.
Now it is a simple matter to apply the law of total probability to find the accuracy probability for all
resistors shipped by the company:

P�A� � P�AjB1�P�B1��P�AjB2�P�B2��P�AjB3�P�B3�

� �0�8��0�3���0�9��0�4���0�6��0�3� � 0�78

For the whole factory, 78% of resistors are within 50 Ω of the nominal value.

BAYES’ THEOREM

In many situations, we have advance information about P�AjB� and need to calculate
P�BjA�. To do so we have the following formula:

Theorem 1.11. Bayes’ theorem.

P�BjA� �
P�AjB�P�B�

P�A�

The proof just combines the definition P�BjA� � P�AB��P�A� with Equation (1.1).
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Bayes’ theorem is a simple consequence of the definition of conditional proba-
bility. It has a name because it is extremely useful for making inferences about phe-
nomena that cannot be observed directly. Sometimes these inferences are described as
“reasoning about causes when we observe effects.” For example, let B1� � � � �Bm be an
event space that includes all possible states of something that interests us but we cannot
observe directly (for example, the machine that made a particular resistor). For each
possible state, Bi , we know the prior probability P�Bi � and P�AjBi �, the probability that
an event A occurs (the resistor meets a quality criterion) if Bi is the actual state. Now
we observe the actual event (either the resistor passes or fails a test), and we ask about
the thing we are interested in (the machines that might have produced the resistor).
That is, we use Bayes’ theorem to find P�B1jA��P�B2jA�� � � � �P�BmjA�. In performing
the calculations, we use the law of total probability to calculate the denominator in
Theorem 1.11. Thus for state Bi ,

P�Bi jA� �
P�AjBi �P�Bi �

∑m
i�1 P�AjBi �P�Bi �

(1.2)

Example 1.20. In a shipment of resistors from the factory, we learned in Example 1.19 the follow-
ing facts:

� The probability a resistor is from machine B3 is P�B3� � 0�3.

� The probability a resistor is acceptable, i.e. within 50 Ω of the nominal value, is P�A� � 0�78.

� Given a resistor is from machine B3, the conditional probability it is acceptable is P�AjB3� �
0�6.

What is the probability that an acceptable resistor comes from machine B3?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Now we are given the event A that a resistor is within 50 Ω of the nominal value and need to find
P�B3jA�. Using Bayes’ theorem, we have

P�B3jA� �
P�AjB3�P�B3�

P�A�

Since all of the quantities we need are given in the problem description, our answer is

P�B3jA� � �0�6��0�3���0�78� � 0�23

Similarly we obtain P�B1jA� � 0�31 and P�B2jA� � 0�46. Of all resistors within 50 Ω of the nominal
value, only 23% come from machine B3 (even though this machine produces 30% of all resistors
coming from the factory). Machine B1 produces 31% of the resistors that meet the 50 Ω criterion
and machine B2 produces 46% of them.

Quiz 1.5. Monitor three consecutive phone calls going through a telephone switching office. Clas-
sify each one as a voice call �v�, if someone is speaking; or a data call �d� if the call is carrying a
modem or fax signal. Your observation is a sequence of three letters (each one is either v or d). For
example, three voice calls corresponds to vvv. The outcomes vvvand ddd have probability 0�2 while
the other outcomes vvd, vdv, vdd, dvv, dvd, and ddveach have probability 0�1. Count the number
of voice calls NV in the three calls you have observed. Consider the four events NV � 0, NV � 1,
NV � 2, NV � 3. Describe in words and also calculate the following probabilities:
(a) P�NV � 2� (b) P�NV � 1�
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(c) P�vvdjNV � 2� (d) P�ddvjNV � 2�

(e) P�NV � 2jNV � 1� (f) P�NV � 1jNV � 2�

1.6 INDEPENDENCE

Definition 1.6. 2 Independent Events: Events A and B are independent
if and only if

P�AB� � P�A�P�B� (1.3)

The following formulas are equivalent to the definition of independent events A
and B.

P�AjB� � P�A� P�BjA� � P�B� (1.4)

To interpret independence, consider probability as a description of our knowledge
of the result of the experiment. P�A� describes our prior knowledge (before the experi-
ment is performed) that the outcome is included in event A. The fact that the outcome
is in B is partial information about the experiment. P�AjB� reflects our knowledge of
A when we learn B occurs. P�AjB� � P�A� states that learning that B occurs does not
change our information about A. It is in this sense that the events are independent.

Problem 1.6.7 asks the reader to prove that if A and B are independent, then A and
Bc are also independent. The logic behind this conclusion is that if learning that event
B occurs does not alter the probability of event A, then learning that B does not occur
should not alter the probability of A.

Keep in mind that independent and disjoint are not synonyms. In some contexts
these words can have similar meanings, but this is not the case in probability. Disjoint
events have no outcomes in common and therefore P�AB� � 0. In most situations
independent events are not disjoint! Exceptions occur only when P�A� � 0 or P�B� � 0.
When we have to calculate probabilities, knowledge that events A and B are disjoint
is very helpful. Axiom 3 enables us to addtheir probabilities to obtain the probability
of the union. Knowledge that events C and D are independentis also very useful.
Definition 1.6 enables us to multiply their probabilities to obtain the probability of the
intersection.

Example 1.21. Suppose that for the three traffic lights of Example 1.8, each outcome (a sequence
of three lights, each either red or green) is equally likely. Are the events R2 that the second light was
red and G2 that the second light was green independent? Are the events R1 and R2 independent?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Each element of the sample space

S� frrr� rrg� rgr� rgg�grr�grg�ggr�gggg

has probability 1�8. The events R2 � frrr� rrg�grr�grgg and G2 � frgr� rgg�ggr�gggg each contain
four outcomes so P�R2� � P�G2� � 4�8. However, R2 �G2 � φ and P�R2G2� � 0. That is, R2 and
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G2 must be disjoint since the second light cannot have been both red and green. Since P�R2G2� ��
P�R2�P�G2�, R2 and G2 are not independent.

The events R1 � frgg� rgr� rrg� rrr g and R2 � frrg� rrr�grg�grrg each have four outcomes so
P�R1� � P�R2� � 4�8. In this case, the intersection R1 �R2 � frrg� rrr g has probability P�R1R2� �
2�8. Since P�R1R2� � P�R1�P�R2�, events R1 and R2 are independent.

In this example we have analyzed a probability model to determine whether two
events are independent. In many practical applications, we reason in the opposite
direction. Our knowledge of an experiment leads us to assumethat certain pairs of
events are independent. We then use this knowledge to build a probability model for
the experiment.

Example 1.22. Integrated circuits undergo two tests. A mechanical test determines whether pins
have the correct spacing, and an electrical test checks the relationship of outputs to inputs. We
assume that electrical failures and mechanical failures occur independently. Our information about
circuit production tells us that mechanical failures occur with probability 0.05 and electrical failures
occur with probability 0.2. What is the probability model of an experiment that consists of testing an
integrated circuit and observing the results of the mechanical and electrical test?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To build the probability model, we note that the sample space contains four outcomes:

S� f�ma�ea���ma�er���mr�ea���mr�er�g

where m denotes mechanical, e denotes electrical, a denotes accept, and r denotes reject. Let M and
E denote the events that the mechanical and electrical tests are acceptable. Our prior information
tells us that P�Mc� � 0�05, and P�Ec� � 0�2. This implies P�M� � 0�95 and P�E� � 0�8. Using the
independence assumption and Definition 1.6, we obtain the probabilities of the four outcomes in the
sample space as

P��ma�ea�� � P�ME� � P�M�P�E� � 0�95
0�8 � 0�76

P��ma�er�� � P�MEc� � P�M�P�Ec� � 0�95
0�2 � 0�19

P��mr�ea�� � P�McE� � P�Mc�P�E� � 0�05
0�8 � 0�04

P��mr�er�� � P�McEc� � P�Mc�P�Ec� � 0�05
0�2 � 0�01

Thus far, we have considered independence as a property of a pair of events. Of-
ten we consider larger sets of independent events. For more than two events to be
independent, the probability model has to meet a set of conditions. To define mutual
independence, we begin with three sets.
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Definition 1.7. 3 Independent Events: A1, A2, and A3 are independentif
and only if

(a) A1 and A2 are independent.

(b) A2 and A3 are independent.

(c) A1 and A3 are independent.

(d) P�A1�A2�A3� � P�A1�P�A2�P�A3�.

The final condition is a simple extension of Definition 1.6. The following example
shows why this condition is insufficient to guarantee that “everything is independent
of everything else,” the idea at the heart of independence.

Example 1.23. In an experiment with equiprobable outcomes, the event space is S� f1�2�3�4g.
P�s� � 1�4 for all s� S. Are the events A1 � f1�3�4g, A2 � f2�3�4g, and A3 � φ independent?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

These three sets satisfy the final condition of Definition 1.7 because A1�A2�A3 � φ, and

P�A1�A2�A3� � P�A1�P�A2�P�A3� � 0

However, A1 and A2 are not independent because, with all outcomes equiprobable,

P�A1�A2� � P�2�3� � 1�2 �� P�A1�P�A2� � 3�4
3�4

Hence the three events are dependent.

The definition of an arbitrary number of mutually exclusive sets is an extension of
Definition 1.7.

Definition 1.8. More than Two Independent Events: If n� 3, the sets
A1�A2� � � � �An are independent if and only if

(a) Every set of n�1 sets taken from A1�A2� � � �An is independent.

(b) P�A1�A2�� � ��An�1� � P�A1�P�A2� � � �P�An�.

Quiz 1.6. Monitor two consecutive phone calls going through a telephone switching office. Clas-
sify each one as a voice call �v�, if someone is speaking; or a data call �d� if the call is carrying a
modem or fax signal. Your observation is a sequence of two letters (either v or d). For example, two
voice calls corresponds to vv. The two calls are independent and the probability that any one of them
is a voice call is 0�8. Denote the identity of call i by Ci . If call i is a voice call, then Ci � v; otherwise,
Ci � d. Count the number of voice calls in the two calls you have observed. NV is the number of
voice calls. Consider the three events NV � 0, NV � 1, NV � 2. Determine whether the following
pairs of events are independent:
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(a) fNV � 2g and fNV � 1g (b) fNV � 1g and fC1 � vg

(c) fC2 � vg and fC1 � dg (d) fC2 � vg and fNV is eveng

1.7 SEQUENTIAL EXPERIMENTS AND TREE DIAGRAMS

Many experiments consist of a sequence of subexperiments. The procedure followed
for each subexperiment may depend on the results of the previous subexperiments.
We can use a tree diagram to represent the sequential nature of the subexperiments.
Following the procedure and recording the observations of the experiment is equivalent
to following a sequence of branches from the root of the tree to a leaf. Each leaf
corresponds to an outcome of the experiment.

It is natural to model conditional probabilities in terms of sequential experiments
and to illustrate them with tree diagrams. At the root of the tree, the probability of a
particular event is described by our a priori knowledge. If the possible results of the
first subexperiment are described by the events B1� � � � �Bm, then fB1� � � � �Bmg is an
event space. From the root, we draw branches to each event Bi . Following a branch
from the root corresponds to observing the result of the first subexperiment. We label
the branches with the prior probabilities P�B1�� � � � �P�Bm�. For each event Bi , we have
conditional probabilities describing the result of the second subexperiment. Thus from
each of the first set of branches, we draw a new branch and label it with the conditional
probability. Following a sequence of branches from the root to a leaf (a right endpoint
of the tree) specifies the result of each subexperiment. Thus the leaves represent out-
comes of the complete experiment. The probability of each outcome is the product of
the probabilities on the branches between the root of the tree and the leaf correspond-
ing to the outcome. Generally, we label each leaf with the corresponding outcome and
its probability.

This is a complicated description of a simple procedure as we see in the following
five examples.

Example 1.24. For the resistors of Example 1.19, we have used A to denote the event that a ran-
domly chosen resistor is “within 50 Ω of the nominal value.” This could mean “acceptable.” Let us
use the notation N to be the complement of A: “not acceptable.” The experiment of testing a resistor
can be viewed as a two step procedure. First we identify which machine (B1, B2, or B3) produced the
resistor. Second, we find out if the resistor is acceptable. Sketch a sequential tree for this experiment.
What is the probability of choosing a resistor from machine B2 that is not acceptable?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

These two steps correspond to the following tree:
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B2
0�4��

��
��

B10�3

HHHHHH B3
0�3

���
��� A0�8

N0�2

���
��� A0�9

XXXXXX N0�1

A0�6XXXXXX N0�4

�B1A 0�24

�B1N 0�06

�B2A 0�36

�B2N 0�04

�B3A 0�18

�B3N 0�12

To use the tree to find the probability of the event B2N, a nonacceptable resistor from machine B2,
we start at the left and find the probability of reaching B2 is P�B2� � 0�4. We then move to the right
to B2N and multiply P�B2� by P�NjB2� � 0�1 to obtain P�B2N� � �0�4��0�1� � 0�04.

We observe in this example a general property of all tree diagrams that represent se-
quential experiments. The probabilities on the branches leaving any node add up to 1.
This is a consequence of the law of total probability and the property of conditional
probabilities that corresponds to Axiom 3 (Theorem 1.9).

Example 1.25. Suppose traffic engineers have coordinated the timing of two traffic lights to en-
courage a run of green lights. In particular, the timing was designed so that with probability 0�8 a
driver will find the second light to have the same color as the first. Assuming the first light is equally
likely to be red or green, what is the probability P�G2� that the second light is green? Also, what is
P�W�, the probability that you wait for at least one light? Lastly, what is P�G1jR2�, the conditional
probability of a green first light given a red second light?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In the case of the two-light experiment, the complete tree is

��
��
��

G10�5

HHHHHH R1
0�5

���
��� G20�8

XXXXXX R20�2

���
��� G20�2

XXXXXX R20�8

�G1G2 0�4

�G1R2 0�1

�R1G2 0�1

�R1R2 0�4

The probability the second light is green is

P�G2� � P�G1G2��P�R1G2� � 0�4�0�1 � 0�5

The event W that you wait for at least one light is

W � fR1G2�G1R2�R1R2g

The probability that you wait for at least one light is

P�W� � P�R1G2��P�G1R2��P�R1R2� � 0�1�0�1�0�4 � 0�6
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To find P�G1jR2�, we need P�R2�. Noting that R2 � fG1R2�R1R2g, we have

P�R2� � P�G1R2��P�R1R2� � 0�1�0�4 � 0�5

Since P�G1R2� � 0�1, the conditional probability that you have a green first light given a red second
light is

P�G1jR2� �
P�G1R2�

P�R2�
�

0�1
0�5

� 0�2

Example 1.26. Consider the game of Three. You shuffle a deck of three cards: ace, 2, 3. With the
ace worth 1 point, you draw cards until your total is 3 or more. You win if your total is 3. What is
P�W�, the probability that you win?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let Ci denote the event that card C is the ith card drawn. For example, 32 is the event that the 3 was
the second card drawn. The tree is

��
��
��

A11�3

211�3HHHHHH 31
1�3

���
��� 221�2

321�2

A2
1�2XXXXXX 321�2

�A122 1�6

�A132 1�6

�21A2 1�6

�2132 1�6

�31 1�3

You win if A122, 21A2, or 31 occurs. Hence, the probability that you win is

P�W� � P�A122��P�21A2��P�31� �

�
1
3

��
1
2

�
�

�
1
3

��
1
2

�
�

1
3
�

2
3

Example 1.27. Suppose you have two coins, one biased, one fair, but you don’t know which coin
is which. Coin 1 is biased. It comes up heads with probability 3�4, while coin 2 will flip heads with
probability 1�2. Suppose you pick a coin at random and flip it. Let Ci denote the event that coin i is
picked. Let H and T denote the possible outcomes of the flip. Given that the outcome of the flip is a
head, what is P�C1jH�, the probability that you picked the biased coin? Given that the outcome is a
tail, what is the probability P�C1jT� that you picked the biased coin?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

First, we construct the sample tree:

���
���

� C11�2

XXXXXXX C21�2

���
���

� H3�4

T1�4

H
1�2XXXXXXX T1�2

�C1H 3�8

�C1T 1�8

�C2H 1�4

�C2T 1�4
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To find the conditional probabilities, we see

P�C1jH� �
P�C1H�

P�H�
�

P�C1H�

P�C1H��P�C2H�
�

3�8
3�8�1�4

�
3
5

Similarly,

P�C1jT� �
P�C1T�

P�T�
�

P�C1T�

P�C1T��P�C2T�
�

1�8
1�8�1�4

�
1
3

As we would expect, we are more likely to have chosen coin 1 when the first flip is heads but we are
more likely to have chosen coin 2 when the first flip is tails.

Quiz 1.7. In a cellular phone system, a mobile phone must be paged to receive a phone call. How-
ever, paging attempts don’t always succeed because the mobile phone may not receive the paging
signal clearly. Consequently, the system will page a phone up to three times before giving up. If a
single paging attempt succeeds with probability 0�8, sketch a probability tree for this experiment and
find the probability P�F� that the phone is found?

1.8 COUNTING METHODS

Suppose we have a shuffled full deck and we deal seven cards. What is the probability
that we draw no queens? In theory, we can draw the sample space tree for the seven
cards drawn. However, the resulting tree is so large, this is impractical. In short, it is
too difficult to enumerate all 133 million combinations of seven cards. (In fact, you
may wonder if 133 million is even approximately the number of such combinations.)
To solve this problem, we need to develop procedures that permit us to count how
many seven card combinations there are and how many of them do not have a queen.

The results we will derive all follow from the fundamental principle of counting:

Fundamental Principle of Counting: If experiment A has n possible out-
comes, and experiment B has k possible outcomes, then there are nkpossible
outcomes when you perform both experiments.

This principle is easily demonstrated by a few examples.

Example 1.28. Let A be the experiment “Flip a coin.” Let B be “Roll a die.” Then, A has two
outcomes, H and T, and B has six outcomes, 1� � � � �6. The joint experiment, called “Flip a coin and
roll a die,” has 12 outcomes:

�H�1�� � � � ��H�6���T�1�� � � � ��T�6�

Generally, if an experiment E has k subexperiments E1� � � � �Ek where Ei has ni
outcomes, then E has ∏k

i�1 ni outcomes.
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Example 1.29. Shuffle the deck and deal out all the cards. The outcome of the experiment is a
sequence of cards of the deck. How many possible outcomes are there?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let subexperiment k be “Deal the kth card.” The first subexperiment has 52 possible outcomes corre-
sponding to the 52 cards that could be drawn. After the first card is drawn, the second subexperiment
has 51 possible outcomes corresponding to the 51 remaining cards. The total number of outcomes is

52
51
		 	 
1 � 52!

A second way to think of the experiment is to say that we will number 52 empty slots from 1 to 52.
We will start with the deck in some order and we will choose a numbered slot for each card. In this
case, there are 52 slots and each card is matched with a slot. The outcome of each subexperiment is
a numbered slot position. There are 52 possible positions for the first card, 51 for the second card,
and so on.

Example 1.30. Shuffle the deck and choose three cards in order. How many outcomes are there?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this experiment, there are 52 possible outcomes for the first card, 51 for the second card, and 50
for the third card. The total number of outcomes is 52
51
50.

In Example 1.30, we chose an ordered sequence of three objects out of a set of 52
distinguishable objects. In general, an ordered sequence of k distinguishable objects
is called a k-permutation. We will use the notation �n�k to denote the number of
possible k-permutations of n distinguishable objects. To find �n�k, suppose we have
n distinguishable objects, and the experiment is to choose a sequence of k of these
objects. There are n choices for the first object to pick, n� 1 choices for the second
object, etc. Therefore, the total number of possibilities is

�n�k � n�n�1��n�2� � � ��n�k�1�

Multiplying the right side by �n�k�!��n�k�! yields our next theorem.

Theorem 1.12. The number of k-permutations of n distinguishable ob-
jects is

�n�k � n�n�1��n�2� � � ��n�k�1� �
n!

�n�k�!

Choosing objects from a collection is also called sampling, and the chosen objects
are known as a sample. A k-permutation is a type of sample obtained by specific rules
for the selecting objects from the collection. In particular, once we choose an object
for a k-permutation, we remove the object from the collection and we cannot choose it
again. Consequently, this is also called sampling without replacement. A second type
of sampling occurs when an object can be chosen repeatedly. In this case, when we
remove the object from the collection, we replace the object with a duplicate. This is
known as sampling with replacement.
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Example 1.31. A laptop computer has PCMCIA expansion card slots A and B. Each slot can be
filled with either a modem card �m�, a SCSI interface �i�, or a GPS card �g�. From the set fm� i�gg of
possible cards, what is the set of possible ways to fill the two slots when we sample with replacement?
In other words, how many ways can we fill the two card slots when we allow both slots to hold the
same type of card?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In the experiment to choose with replacement a sample of two cards, let xy denote the outcome that
card type x is used in slot A and card type y is used in slot B. The possible outcomes are

S� fmm�mi�mg� im� ii � ig�gm�gi�ggg

As we see from S, the number of possible outcomes is nine.

The fact that Example 1.31 had nine possible outcomes should not be surprising.
Since we were sampling with replacement, there were always three possible outcomes
for the each of the subexperiments to choose a PCMCIA card. Hence, by the funda-
mental theorem of counting, Example 1.31 must have 32 � 9 possible outcomes.

This result generalizes naturally when we want to choose with replacement a
sample of k objects out of a collection of n distinguishable objects. Sampling with
replacement ensures that in each subexperiment needed to choose one of the k objects,
there are n possible objects to choose. Hence there must be nk ways to choose with
replacement a sample of k objects.

Theorem 1.13. Given n distinguishable objects, there are nk ways to
choose with replacement a sample of k objects.

Both in choosing a k-permutation or in sampling with replacement, different out-
comes are distinguished by the order in which we choose objects. In Example 1.31, mi
and im are distinct outcomes. However, in many practical problems, the order in which
the objects were chosen makes no difference. For example, in a bridge hand, it does
not matter in what order the cards are dealt. Suppose there are four objects, A, B, C,
and D, and we define an experiment in which the procedure is to choose two objects,
arrange them in alphabetical order, and observe the result. In this case, to observe AD
we could choose A first or D first or both A and D simultaneously. What we are doing
is picking a subset of the collection of objects. Each subset is called a k-combination.
We want to find the number of k-combinations.

We will use
�n

k

�
, which is read as “n choose k,” to denote the number of k-

combinations of n objects. To find
�n

k

�
, we perform the following two subexperiments

to assemble a k-permutation of n distinguishable objects:

1. Choose a k-combination out of the n objects.
2. Choose a k-permutation of the k objects in the k-combination.

Theorem 1.12 tells us that the number of outcomes of the combined experiment is �n� k.
The first subexperiment has

�n
k

�
possible outcomes, the number we have to derive. By
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Theorem 1.12, the second experiment has �k�k � k! possible outcomes. Since there
are �n�k possible outcomes of the combined experiment,

�n�k �

�
n
k

�
�k!

Rearranging the terms yields our next result.

Theorem 1.14. The number of ways to choose k objects out of n distin-
guishable objects is �

n
k

�
�

�n�k

k!
�

n!
k!�n�k�!

(1.5)

We encounter
�n

k

�
in other mathematical studies. Sometimes it is called a binomial

coefficientbecause it appears (as the coefficient of xkyn�k) in the expansion of the
binomial form �x�y�n.

Example 1.32.

� The number of five card poker hands is�
52
5

�
�

52 	51 	50 	49 	48
2 	3 	4 	5

� 2�598�960

� The number of ways of picking 60 out of 120 students is
�120

60

�
.

� The number of ways of choosing 5 starters for a basketball team with 11 players is
�11

5

�
� 462.

� A baseball team has 15 field players and 10 pitchers. Each field player can take any of
the eight nonpitching positions. Therefore, the number of possible starting lineups is N ��10

1

��15
8

�
� 64�350 since you must choose 1 of the 10 pitchers and you must choose 8 out

of the 15 field players. For each choice of starting lineup, the manager must submit to the
umpire a batting order for the 9 starters. The number of possible batting orders is N�9!� �
23�351�328�000 since there are N ways to choose the 9 starters and for each choice of 9
starters, there are 9! � 362�880 possible batting orders.

Example 1.33. To return to our original question of this section, suppose we draw seven cards.
What is the probability of getting a hand without any queens?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

There are H �
�52

7

�
possible hands. All H hands have probability 1�H. There are HNQ �

�48
7

�
hands

that have no queens since we must choose 7 cards from a deck of 48 cards that has no queens. Since
all hands are equally likely, the probability of drawing no queens is HNQ�H � 0�5504.

Quiz 1.8. Consider a binary code with 4 bits (0 or 1) in each code word. An example of a code
word is 0110.

(a) How many different code words are there?

(b) How many code words have exactly two zeroes?

(c) How many code words begin with a zero?



1.9 INDEPENDENT TRIALS 31

(d) In a constant ratio binary code, each code word has N bits. In every word, M of the N bits
are 1 and the other M�N bits are 0. How many different code words are in the code with
N � 8 and M � 3?

1.9 INDEPENDENT TRIALS

Suppose we perform the same experiment over and over. Each time, a success occurs
with probability p; otherwise, a failure occurs with probability 1� p. In addition, the
result of each trial is independent of the results of all other trials. The outcome of the
experiment is a sequence of successes and failures denoted by a sequence of ones and
zeroes. For example, 10101 � � � is an alternating sequence of successes and failures.
Let Sk�n denote the event that there were k successes in n trials. To find P

�
Sk�n

�
, we

consider an example.

Example 1.34. What is the probability P
�
S3�5

�
of three successes in five independent trials with

success probability p.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To find P
�
S3�5

�
, we observe that the outcomes with three successes in five trials are 11100, 11010,

11001, 10110, 10101, 10011, 01110, 01101, 01011, and 00111. Each outcome with three successes
has probability p3�1� p�2. The number of such sequences is the number of ways to choose three
slots out of five slots in which to place the three ones. There are

�5
3

�
� 10 possible ways. To find

P
�
S3�5

�
, we add up the probabilities associated with the 10 outcomes with 3 successes, yielding

P
�
S3�5

�
�

�
5
3

�
p3�1� p�2

In general, for n independent trials we observe that

� Each outcome with k successes has probability pk�1� p�n�k.
� There are

�n
k

�
outcomes that have k successes.

To further confirm the second fact, note that out of n trials, there are
�n

k

�
ways to choose

k of the trials to call successes. Summing over the
�n

k

�
outcomes with k successes, the

probability of k successes in n independent trials is

P
�
Sk�n

�
�

�
n
k

�
pk�1� p�n�k (1.6)

Example 1.35. In Example 1.19, we found a randomly tested resistor was acceptable with proba-
bility P�A� � 0�78. If we randomly test 100 resistors, what is the probability of Ti , the event that i
resistors test acceptable?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Testing each resistor is an independent trial with a success occurring when a resistor is found to be
acceptable. Thus for 0 � i � 100,

P�Ti � �

�
100

i

�
�0�78�i�1�0�78�100�i
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Components in Series Components in Parallel

W1 W2 W3

W1

W2

W3

Figure 1.1 Serial and parallel devices.

We note that our intuition says that since 78% of the resistors are acceptable, then in testing 100
resistors, the number acceptable should be near 78. However, P�T78�� 0�096, which is fairly small.
This shows that although we might expect the number acceptable to be close to 78, that does not
mean that the probability of exactly 78 acceptable is high.

The next example describes how cellular phones use repeated trials to transmit
data accurately.

Example 1.36. To communicate one bit of information reliably, cellular phones transmit the same
binary symbol five times. Thus the information “zero” is transmitted as 00000 and “one” is 11111.
The receiver detects the correct information if three or more binary symbols are received correctly.
What is the information error probability P�E�, if the binary symbol error probability is q� 0�1?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this case, we have five trials corresponding to the five times the binary symbol is sent. On each
trial, a success occurs when a binary symbol is received correctly. The probability of a success is
p� 1�q � 0�9. The error event E occurs when the number of successes is strictly less than three:

P�E� � P
�
S0�5

�
�P

�
S1�5

�
�P

�
S2�5

�
� q5 �5pq4 �10p2q3 � 0�0081

By increasing the number of binary symbols per information bit from 1 to 5, the cellular phone
reduces the probability of error by more than one order of magnitude from 0.1 to 0.0081.

RELIABILITY PROBLEMS

Independent trials can also be used to describe reliability problems in which we would
like to calculate the probability that a particular operation succeeds. The operation
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W1 W2

W3 W4

W5

W6

Figure 1.2 The operation described in Example 1.37. On the left is the original operation. On the
right is the equivalent operation with each pair of series components replaced with an equivalent
component.

consists of n components and each component succeeds with probability p, indepen-
dent of any other component. Let Wi denote the event that component i succeeds. As
depicted in Figure 1.1, there are two basic types of operations.

� Components in series. The operation succeeds if all of its components succeed.
One example of such an operation is a sequence of computer programs, in which
each program after the first one uses the result of the previous program. There-
fore, the complete operation fails if any of the component programs fail. When-
ever the operation consists of k components in series, we need all k components
to succeed in order to have a successful operation. The probability the operation
succeeds is

P�W� � P�W1W2 � � �Wn� � p� p��� �� p� pn

� Components in parallel. The operation succeeds if anyof its components work.
This operation occurs when introduce redundancy to promote reliability. In a
redundant system, such as a space shuttle, there are ncomputers on board so that
the shuttle can continue to function as long as at least one computer operates
successfully. If the components are in parallel, the operation fails when all
elements fail, so we have

P�Wc� � P�Wc
1 Wc

2 � � �W
c
n � � �1� p�n

The probability that the parallel operation succeeds is

P�W� � 1�P�Wc� � 1� �1� p�n

We can analyze complicated combinations of components in series and in parallel by
reducing several components in parallel or components in series to a single equivalent
component.

Example 1.37. An operation consists of two redundant parts. The first part has two components in
series (W1 and W2) and the second part has two components in series (W3 and W4). All components
succeed with probability p� 0�9. Draw a diagram of the operation and calculate the probability that
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the operation succeeds.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A diagram of the operation is shown in Figure 1.2. We can create an equivalent component, W5, with
probability of success p5 by observing that for the combination of W1 and W2,

P�W5� � p5 � P�W1W2� � p2 � 0�81

Similarly, the combination of W3 and W4 in series produces an equivalent component, W6, with
probability of success p6 � p5 � 0�81.The entire operation then consists of W5 and W6 in parallel
which is also shown in Figure 1.2. The success probability of the operation is

P�W� � 1� �1� p5�
2 � 0�964

We could consider the combination of W5 and W6 to be an equivalent component W7 with success
probability p7 � 0�964 and then analyze a more complex operation that contains W7 as a component.

Working on these reliability problems leads us to the observation that in calculat-
ing probabilities of events involving independent trials, it is easy to find the probability
of an intersection and difficult to find directly the probability of a union. Specifically,
for the device with components in series, it is difficult to calculate directly the probabil-
ity that the device fails. Similarly, when the components are in parallel, calculating the
probability the device works is hard. However, De Morgan’s law (Theorem 1.1) allows
us to express a union as the complement of an intersection and vice versa. Therefore
when it is difficult to calculate directly the probability we need, we can often calcu-
late the probability of the complementary event first and then subtract this probability
from one to find the answer. This is how we calculated the probability that the parallel
device works.

MULTIPLE OUTCOMES

Suppose we perform n independent repetitions of a subexperiment for which there are
r possible outcomes for any trial. That is, the sample space for each trial is �s1� � � � �sr�
and that on any trial, P�sk� � pk, independent of the result of any other trial.

An outcome of the experiment consists of a sequence of n trial outcomes. Consider
the experiment as following a probability tree where on the ith branch, we choose the
branch labeled si with probability pi . The probability of an experimental outcome is
just the product of the branch probabilities. For example, the experimental outcome
s1s1s3s4s5 occurs with probability p1 p1p3 p4p5. Let Ni denote the number of times
that outcome si occurs out of the n trials. We want to find

P�N1 � n1�N2 � n2� � � � �Nr � nr �

First, the probability of the outcome

s1 � � �s1� �z �
n1 times

s2 � � �s2� �z �
n2 times

� � �sr � � �sr� �z �
nr times

is

pn1
1 pn2

2 � � � pnr
r
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Second, any other experimental outcome that is a reordering of the above sequence
has the same probability since each branch labeled si is followed ni times through the
tree. As a result,

P�N1 � n1�N2 � n2� � � � �Nr � nr � � Mpn1
1 pn2

2 � � � pnr
r

where M is the number of such sequences. M is called the multinomial coefficient. To
find M, we consider n empty slots and perform the following sequence of subexperi-
ments:

subexperiment Procedure
1 Label n1 slots as s1.
2 Label n2 slots as s2.
...

...
r Label remaining nr � n� �n1 � � � ��nr�1� slots as sr .

There are
� n

n1

�
ways to perform the first subexperiment. Similarly, there are

�n�n1
n2

�
ways to perform the second subexperiment. After j � 1 subexperiments, n1 � � � ��

nj�1 slots have already been filled, leaving
�n��n1�����nj�1�

nj

�
ways to perform the jth

subexperiment. From our basic counting principle,

M �

�
n
n1

��
n�n1

n2

��
n� �n1 �n2�

n3

�
� � �

�
nr

nr

�

�
n!

�n�n1�!n1!
�n�n1�!

�n�n1�n2�!n2!
� � �

�n� �n1 � � � �nr�1��!
�n� �n1 � � � �nr��!nr !

If we cancel the common factors, we have

M �
n!

n1!n2! � � �nr !

so that

P�N1 � n1� � � �Nr � nr �

�

	 n!
n1!���nr ! pn1

1 � � � pnr
r n1 � � � ��nr � n; ni � 0� i � 1� � � � � r

0 otherwise

Example 1.38. Each call arriving at a telephone switch is independently either a voice call with
probability 7�10, a fax call with probability 2�10, or a modem call with probability 1�10. Let X, Y,
and Z denote the number of voice, fax, and modem calls out of 100 observed calls. In this case,

P�X � x�Y � y�Z � z�

�

�
100!
x!y!z!

� 7
10

�x� 2
10

�y� 1
10

�z
x�y�z� 100�x� 0�y� 0�z� 0

0 otherwise

Quiz 1.9. A memory module consists of 9 chips. The device is designed with redundancy so that it
works even if one of its chips is defective. Each chip contains n transistors and functions properly if
all of its transistors work. A transistor works with probability p independent of any other transistor.
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(a) What is the probability P�C� that a chip works?

(b) What is the probability P�M� that the memory module works?

CHAPTER SUMMARY

This chapter introduces the model of an experiment consisting of a procedure and
observations. Outcomes of the experiment are elements of a sample space. Probability
is a number assigned to every set in the sample space. Three axioms contain the
fundamental properties of probability. The rest of this book uses these axioms to
develop methods of working on practical problems.

1. Sample space, event, and outcomeare probability terms for the set theory concepts
of universal set, set, and element.

2. A probability measure P�A� is a function that assigns a number between 0 and 1 to
every event A in the sample space. The assigned probabilities conform to the three
axioms presented in Section 1.3.

3. A conditional probability P�AjB� describes the likelihood of A given that B has oc-
curred. The conditional probability P�AjB� also satisfies the three axioms of proba-
bility.

4. Tree diagramsillustrate experiments that consist of a sequence of steps. The labels
on the tree branches can be used to calculate the probabilities of outcomes of the
combined experiment.

5. Counting methodsdetermine the number of outcomes of complicated experiments.

PROBLEMS

1.2.1. � A fax transmission can take place at any of
three speeds depending on the condition of the
phone connection between the two fax machines.
The speeds are high (h) at 14�400 b/s, medium
(m) at 9600 b/s, and low (l ) at 4800 b/s. In
response to requests for information a company
sends either short faxes of two (t) pages, or long
faxes of four ( f ) pages. Consider the experiment
of monitoring a fax transmission and observing
the transmission speed and the length. An obser-
vation is a two-letter word, for example, a high-
speed, two-page fax is ht.

(a) What is the sample space of the experiment?

(b) Let A1 be the event “medium speed fax.”
What are the outcomes in A1?

(c) Let A2 be the event “short (two-page) fax.”
What are the outcomes in A2?

(d) Let A3 be the event “high speed fax or low
speed fax.” What are the outcomes in A3?

(e) Are A1, A2, and A3 mutually exclusive?

(f) Are A1, A2, and A3 collectively exhaustive?

1.2.2. � An integrated circuit factory has three ma-
chines X, Y, and Z. Test one integrated circuit
produced by each machine. Either a circuit is ac-
ceptable (a) or it fails ( f ). An observation is a se-
quence of three test results corresponding to the
circuits from machine X, Y, and Z, respectively.
For example, aa f is the observation that the cir-
cuits from X and Y pass the test and the circuit
from Z fails the test.

(a) What are the elements of the sample space of
this experiment?
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(b) What are the elements of the sets:

ZF � fcircuit from Z failsg

XA � fcircuit from X is acceptableg

(c) Are ZF and XA mutually exclusive?

(d) Are ZF and XA collectively exhaustive?

(e) What are the elements of the sets:

C� fmore than one circuit acceptableg

D � fat least two circuits failg

(f) Are C and D mutually exclusive?

(g) Are C and D collectively exhaustive?

1.2.3. � Shuffle a deck of cards and turn over the first
card. What is the sample space of this experi-
ment? How many outcomes are in the event that
the first card is a heart?

1.2.4. � Find out the birthday (month and day but not
year) of a randomly chosen person. What is the
sample space of the experiment. How many out-
comes are in the event that the person is born in
July?

1.2.5. � Let the sample space of an experiment consist
of all the undergraduates at a university. Give four
examples of event spaces.

1.2.6. � Let the sample space of the experiment consist
of the measured resistances of two resistors. Give
four examples of event spaces.

1.3.1. � Computer programs are classified by the length
of the source code and by the execution time.
Programs with more than 150 lines in the source
code are big (B). Programs with � 150 lines
are little (L). Fast programs (F) run in less than
0�1 seconds. Slow programs (W) require at least
0�1 seconds. Monitor a program executed by a
computer. Observe the length of the source code
and the run time. The probability model for this
experiment contains the following information:
P�LF� � 0�5, P�BF� � 0�2 and P�BW� � 0�2. What
is the sample space of the experiment? Calculate
the following probabilities:

(a) P�W�

(b) P�B�

(c) P�W�B�

1.3.2. � There are two types of cellular phones, hand-
held phones (H) that you carry and mobile phones
(M) that are mounted in vehicles. Phone calls

can be classified by the traveling speed of the
user as fast (F) or slow (W). Monitor a cellu-
lar phone call and observe the type of telephone
and the speed of the user. The probability model
for this experiment has the following information:
P�F� � 0�5, P�HF � � 0�2, P�MW� � 0�1. What is
the sample space of the experiment? Calculate the
following probabilities:

(a) P�W�

(b) P�MF�

(c) P�H�

1.3.3. � Shuffle a deck of cards and turn over the first
card. What is the probability that the first card is
a heart?

1.3.4. � You have a six-sided die that you roll once and
observe the number of dots facing upwards. What
is the sample space? What is the probability of
each sample outcome? What is the probability of
E, the event that the roll is even?

1.3.5. � A student’s score on a 10-point quiz is equally
likely to be any integer between 0 and 10. What is
the probability of an A, which requires the student
to get a score of 9 or more? What is the probabil-
ity the student gets an F by getting less than 4?

1.4.1. � Cellular telephones perform handoffsas they
move from cell to cell. During a call, telephone
either performs zero handoffs (H0), one handoff
(H1), or more than one handoff (H2). In addition,
each call is either long (L), if it lasts more than
3 minutes, or brief (B). The following table de-
scribes the probabilities of the possible types of
calls.

H0 H1 H2

L 0�1 0�1 0�2
B 0�4 0�1 0�1

What is the probability P�H0� that a phone makes
no handoffs? What is the probability a call is
brief? What is the probability a call is long or
there are at least two handoffs?

1.4.2. � For the telephone usage model of Exam-
ple 1.14, let Bm denote the event that a call is
billed for m minutes. To generate a phone bill,
observe the duration of the call in integer min-
utes (rounding up). Charge for M minutes M �
1�2�3� � � � if the exact duration T is M� 1 � t �
M. A more complete probability model shows
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that for m� 1�2� � � � the probability of each event
Bm is

P�Bm� � α�1�α�m�1

where α � 1� �0�57�1�3 � 0�171.

(a) Classify a call as long, L, if the call lasts more
than three minutes. What is P�L�?

(b) What is the probability that a call will be
billed for 9 minutes or less?

1.4.3. � The basic rules of genetics were discovered in
mid 1800s by Mendel, who found that each char-
acteristic of a pea plant, such as whether the seeds
were green or yellow, is determined by two genes,
one from each parent. Each gene is either dom-
inant d or recessive r . Mendel’s experiment is
to select a plant and observe whether the genes
are both dominant d, both recessive, r , or one of
each (hybrid) h. In his pea plants, Mendel found
that yellow seeds were a dominant trait over green
seeds. A yy pea with two yellow genes has yel-
low seeds; a gg pea with two recessive genes has
green seeds; while a hybrid gy or yg pea has yel-
low seeds. In one of Mendel’s experiments, he
started with a parental generation in which half
the pea plants were yyand half the plants were gg.
The two groups were crossbred so that each pea
plant in the first generation was gy. In the second
generation, each pea plant was equally likely to
inherit a y or a g gene from each first generation
parent. What is the probability P�Y� that a ran-
domly chosen pea plant in the second generation
has yellow seeds?

1.4.4. � Use Theorem 1.7 to prove the following facts:

(a) P�A�B�� P�A�

(b) P�A�B�� P�B�

(c) P�A�B�� P�A�

(d) P�A�B�� P�B�

1.4.5. � Suppose a cellular telephone is equally likely
to make zero handoffs (H0), one handoff (H1), or
more than one handoff (H2). Also, a caller is ei-
ther on foot (F) with probability 5�12 or in a ve-
hicle (V).

(a) Given the above information, find three ways
to fill in the following probability table:

H0 H1 H2

F
V

(b) Suppose we also learn that 1�4 of all callers
are on foot making calls with no handoffs and
that 1�6 of all callers are vehicle users making
calls with a single handoff. Given these additional
facts, find all possible ways to fill in the table of
probabilities.

1.4.6. � Using only the three axioms of probability,
prove P�φ� � 0.

1.4.7. � Using the three axioms of probability and the
fact that P�φ� � 0, prove Theorem 1.4. Hint: De-
fine Ai � Bi for i � 1� � � � �m and Ai � φ for i � n.

1.4.8. �� For each fact stated in Theorem 1.7, deter-
mine which of the three axioms of probability are
needed to prove the fact.

1.5.1. � Given the model of handoffs and call length in
Problem 1.4.1,

(a) What is the probability that a brief call will
have no handoffs?

(b) What is the probability that a call with one
handoff will be long?

(c) What is the probability that a long call will
have one or more handoffs?

1.5.2. � You have a six-sided die that you roll once. Let
Ri denote the event that the roll is i. Let Gj de-
note the event that the roll is greater than j . Let
E denote the event that the roll of the die is even-
numbered.

(a) What is P�R3jG1�, the conditional probability
that 3 is rolled given that the roll is greater than
1?

(b) What is the conditional probability that 6 is
rolled given that the roll is greater than 3?

(c) What is P�G3jE�, the conditional probability
that the roll is greater than 3 given that the roll is
even?

(d) Given that the roll is greater than 3, what is
the conditional probability that the roll is even?

1.5.3. � You have a shuffled deck of three clubs: 2, 3,
and 4. You draw one card. Let Ci denote the event
that card i is picked. Let E denote the event that
card chosen is a even-numbered card.

(a) What is P�C2jE�, the probability that the 2 is
picked given that an even numbered card is cho-
sen?
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(b) What is the conditional probability that an
even numbered card is picked given that the 2 is
picked?

1.5.4. � From Problem 1.4.3, what is the conditional
probability of yy, that a pea plant has two dom-
inant genes given the event Y that it has yellow
seeds?

1.5.5. � You have a shuffled deck of three clubs: 2, 3,
and 4 and you deal out the 3 cards. Let Ei denote
the event that ith card dealt is even numbered.

(a) What are P�E2jE1�, the probability the second
card is even given that the first card is even?

(b) What is the conditional probability that the
first two cards are even given that the third card is
even?

(c) Let Oi represent the event that the ith card
dealt is odd numbered. What is P�E2jO1�, the
conditional probability that the second card is
even given that the first card is odd?

(d) What is the conditional probability the sec-
ond card is odd given that the first card is odd?

1.5.6. � Deer ticks can carry both Lyme disease and hu-
man granulocytic ehrlichiosis (HGE). In a study
of ticks in the Midwest, it was found that 16% car-
ried Lyme disease, 10% had HGE, and that 10%
of the ticks that had either Lyme disease or HGE
carried both diseases.

(a) What is the probability P�LH� that a tick car-
ries both Lyme disease (L) and HGE (H)?

(b) What is the conditional probability that a tick
has HGE given that it has Lyme disease?

1.6.1. � Is it possible for A and B to be independent
events yet satisfy A� B?

1.6.2. � Use a Venn diagram in which the event areas
are proportional to their probabilities to illustrate
two events A and B that are independent.

1.6.3. � In an experiment, A, B, C and D are events with
probabilities P�A� � 1�4, P�B� � 1�8, P�C� � 5�8
and P�D� � 3�8. Furthermore, A and B are dis-
joint while C and D are independent.

(a) What is P�A�B�?

(b) What is P�A�B�?

(c) What is P�A�Bc�?

(d) What is P�A�Bc�?

(e) Are A and B independent?

(f) What is P�C�D�?

(g) What is P�C�D�?

(h) What is P�CjD�?

(i) What is P�C�Dc�?

(j) What is P�C�Dc�?

(k) What is P�Cc�Dc�?

(l) Are Cc and Dc independent?

1.6.4. � In an experiment, A, B, C, and D are events
with probabilities P�A�B� � 5�8. P�A� � 3�8,
P�C�D� � 1�3 and P�C� � 1�2. Furthermore, A
and Bare disjoint, while C and D are independent.

(a) What is P�A�B�?

(b) What is P�B�?

(c) What is P�A�Bc�?

(d) What is P�A�Bc�?

(e) Are A and B independent?

(f) What is P�D�?

(g) What is P�C�D�?

(h) What is P�CjD�?

(i) What is P�C�Dc�?

(j) What is P�C�Dc�?

(k) What is P�Cc�Dc�?

(l) Are C and Dc independent?

1.6.5. � In an experiment with equiprobable outcomes,
the event space is S� f1�2�3�4g and P�s� � 1�4
for all s� S. Find three events in S that are pair-
wise independent but are not independent. (Note:
pairwise independent events meet the first three
conditions of Definition 1.7).

1.6.6. � (Continuation of Problem 1.4.3) One of
Mendel’s most significant results was the conclu-
sion that genes determining different characteris-
tics are transmitted independently. In pea plants,
Mendel found that round peas are a dominant trait
over wrinkled peas. Mendel crossbred a group of
rr�yypeas with a group of ww�ggpeas. In this no-
tation, rr denotes a pea with two “round” genes
and wwdenotes a pea with two “wrinkled” genes.
The first generation were either rw�yg, rw�gy,
wr�yg or wr�gy plants with both hybrid shape and
hybrid color. Breeding among the first generation
yielded second generation plants in which genes
for each characteristic were equally likely to be
either dominant or recessive. What is the proba-
bility P�Y� that a second generation pea plant has
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yellow seeds? What is the probability P�R� that
a second generation plant has round peas? Are R
and Y independent events? How many visibly dif-
ferent kinds of pea plants would Mendel observe
in the second generation? What are the probabil-
ities of each of these kinds?

1.6.7. � For independent events A and B, prove that

(a) A and Bc are independent.

(b) Ac and B are independent.

(c) Ac and Bc are independent.

1.6.8. � Use a Venn diagram in which the event areas
are proportional to their probabilities to illustrate
three events A, B, and C that are independent.

1.6.9. � For a Venn diagram in which the event areas
are proportional to their probabilities to illustrate
three events A, B, and C that are pairwise inde-
pendent but not independent.

1.7.1. � Suppose you flip a coin twice. On any flip, the
coin comes up heads with probability 1�4. Use
Hi and Ti denote the result of flip i.

(a) What is the probability, P�H1jH2�, that the
first flip is heads given that the second flip is
heads?

(b) What is the probability that the first flip is
heads and the second flip is tails?

1.7.2. � For Example 1.25, suppose P�G1� � 1�2,
P�G2jG1� � 3�4 and P�G2jR1� � 1�4. Find P�G2�,
P�G2jG1� and P�G1jG2�.

1.7.3. �At the end of regulation time, a basketball team
is trailing by one point and a player goes to the
line for two free throws. If the player makes ex-
actly one free throw, the game goes into overtime.
The probability that the first free throw is good
is 1�2. However, if the first attempt is good, the
player relaxes and the second attempt is good with
probability 3�4. However, if the player misses the
first attempt, the added pressure reduces the suc-
cess probability to 1�4. What is the probability
that the game goes into overtime?

1.7.4. � You have two biased coins. Coin A comes up
heads with probability 1�4. Coin B comes up
heads with probability 3�4. However, you are not
sure which is which so you choose a coin ran-
domly and you flip it. If the flip is heads, you
guess that the flipped coin is B; otherwise, you
guess that the flipped coin is A. Let events A and

B designate which coin was picked. What is the
probability P�C� that your guess is correct?

1.7.5. � Suppose that for the general population, 1 in
5000 people carries the human immunodeficiency
virus (HIV). A test for the presence of HIV yields
either a positive (�) or negative (�) response.
Suppose the test gives the correct answer 99% of
the time. What is P��jH�, the conditional prob-
ability that a person tests negative given that the
person does have the HIV virus? What is P�Hj��,
the conditional probability that a randomly cho-
sen person has the HIV virus given that the person
tests positive?

1.7.6. � A machine produces photo detectors in pairs.
Tests show that the first photo detector is accept-
able with probability 3�5. When the first photo
detector is acceptable, the second photo detector
is acceptable with probability 4�5. Otherwise, if
the first photo detector is defective, the second
photo detector is acceptable with probability 2�5.

(a) What is the probability that exactly one photo
detector of a pair is acceptable?

(b) What is the probability that both photo detec-
tors in a pair are defective?

1.7.7. � You have two biased coins. Coin A comes up
heads with probability 1�4. Coin B comes up
heads with probability 3�4. However, you are not
sure which is which so you flip each coin once
where the first coin you flip is chosen randomly.
Use Hi and Ti to denote the result of flip i. Let A1
be the event that coin A was flipped first. Let B1
be the event that coin B was flipped first. What
is P�H1H2�? Are H1 and H2 independent? Please
explain your answer.

1.7.8. � Suppose Dagwood (Blondie’s husband) wants
to eat a sandwich but needs to go on a diet. So,
Dagwood decides to let the flip of the coin deter-
mine whether he eats. Using an unbiased coin,
Dagwood will postpone the diet (and go directly
to the refrigerator) if either (a) he flips heads on
his first flip or (b) he flips tails on the first flip
but then proceeds to get two heads out of the next
three flips. Note that the first flip is notcounted in
the attempt to win two of three and that Dagwood
never performs any unnecessary flips. Let Hi be
the event that Dagwood flips heads on try i. Let
Ti be the event that tails occurs on flip i.

(a) Sketch the tree for this experiment. Please



PROBLEMS 41

label the probabilities of all outcomes carefully.

(b) What are P�H3� and P�T3�?

(c) Let D be the event that Dagwood must diet.
What is P�D�? What is P�H1jD�?

(d) Are H3 and H2 independent events?

1.7.9. � The quality of each pair of diodes produced by
the machine in Problem 1.7.6 is independent of
the quality of every other pair of diodes.

(a) What is the probability of finding no good
diodes in a collection of n pairs produced by the
machine?

(b) How many pairs of diodes must the machine
produce to reach a probability of 0�99 that there
will be at least one acceptable diode?

1.7.10. � Each time a fisherman casts his line, a fish
is caught with probability p, independent of
whether a fish is caught on any other cast of a
line. The fisherman will fish all day until a fish
is caught and then he quits and goes home. Let
Ci denote the event that on cast i the fisherman
catches a fish. Draw the tree for this experiment
and find the following probabilities:

(a) P�C1�

(b) P�C2�

(c) P�Cn�

1.8.1. � Consider a binary code with 5 bits (0 or 1) in
each code word. An example of a code word is
01010. How many different code words are there?
How many code words have exactly three 0’s?

1.8.2. � Consider a language containing four letters:
A, B, C, D. How many three-letter words can
you form in this language? How many four-letter
words can you form if each letter only appears
once in each word?

1.8.3. � Shuffle a deck of cards and pick two cards at
random. Observe the sequence of the two cards
in the order in which they were chosen.

(a) How many outcomes are in the sample
space?

(b) How many outcomes are in the event that the
two cards are the same type but different suits?

(c) What is the probability that the two cards are
the same type but different suits?

(d) Suppose the experiment specifies observing
the set of two cards regardless without consider-

ing the order in which they are selected and redo
parts (a)–(c).

1.8.4. � On an American League baseball team with 15
field players and 10 pitchers, the manager must
select for the starting lineup, 8 field players, 1
pitcher, and 1 designated hitter. A starting lineup
specifies the players for these positions and the
positions in a batting order for the 8 field play-
ers and designated hitter. If the designated hitter
must be chosen among all the field players, how
many possible starting lineups are there?

1.8.5. � Suppose that in Problem 1.8.4, the designated
hitter can be chosen from among all the players.
How many possible starting lineups are there?

1.8.6. � A basketball team has three pure centers, four
pure forwards, four pure guards and one swing-
man who can play either guard or forward. A
“pure” position player can play only the desig-
nated position. If the coach must start a lineup
with one center, two forwards and two guards,
how many possible lineups can the coach choose?

1.8.7. � An instant lottery ticket consists of a collection
of boxes covered with gray wax. For a subset of
the boxes, the gray wax hides a special mark. If
a player scratches off the correct number of the
marked boxes (and no boxes without the mark),
then that ticket is a winner. Design an instant lot-
tery game in which a player scratches five boxes
and the probability that a ticket is a winner is ap-
proximately 0.01.

1.9.1. � Consider a binary code with 5 bits (0 or 1) in
each code word. An example of a code word is
01010. In each code word, a bit is a zero with
probability 0�8, independent of any other bit.

(a) What is the probability of the code word
00111?

(b) What is the probability that a code word con-
tains exactly three ones?

1.9.2. � The Boston Celtics have won 16 NBA champi-
onships over approximately 50 years. Thus it may
seem reasonable to assume that in a given year the
Celtics win the title with probability p� 0�32, in-
dependent of any other year. Given such a model,
what would be the probability of the Celtics win-
ning eight straight championships beginning in
1959? Also, what would be the probability of the
Celtics winning the title in 10 out of 11 years,
starting in 1959? Given your answers, do you
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trust this simple probability model?

1.9.3. � A better model for traffic lights than that given
in Example 1.8 would include the effect of yellow
lights. Suppose each day that you drive to work a
traffic light that you encounter is either green with
probability 7�16, red with probability 7�16, or
yellow with probability 1�8, independent of the
status of the light on any other day. If over the
course of five days, G, Y, and R denote the num-
ber of times the light is found to be green, yellow,
or red, respectively, what is the probability that
P�G� 2�Y � 1�R� 2�? Also, what is the proba-
bility P�G� R�?

1.9.4. � Suppose a 10-digit phone number is transmit-
ted by a cellular phone using four binary symbols
for each digit using the model of binary symbol
errors and deletions given in Problem 1.9.6. If
C denotes the number of bits sent correctly, D
the number of deletions, and E the number of
errors, what is P�C� c�D � d�E � e�? Your an-
swer should be correct for any choice of c, d, and
e.

1.9.5. � A particular operation has six components.
Each component has a failure probability q, inde-
pendent of any other component. The operation
is successful if both

� Components 1, 2, and 3 all work or com-
ponent 4 works.

� Either component 5 or component 6
works.

Sketch a block diagram for this operation similar
to those of Figure 1.1 on page 32. What is the
probability P�W� that the operation is successful?

1.9.6. � We wish to modify the cellular telephone cod-
ing system in Example 1.36 in order to reduce the
number of errors. In particular, if there are two
or three zeroes in the received sequence of 5 bits,
we will say that a deletion (event D) occurs. Oth-
erwise, if at least 4 zeroes are received, then the
receiver decides a zero was sent. Similarly, if at

least 4 ones are received, then the receiver decides
a one was sent. We say that an error occurs if ei-
ther a one was sent and the receiver decides zero
was sent or if a zero was sent and the receiver de-
cides a one was sent. For this modified protocol,
what is the probability P�E� of an error? What is
the probability P�D� of a deletion?

1.9.7. � In a game between two equal teams, the home
team wins any game with probability p � 1�2.
In a best of three playoff series, a team with the
home advantage has a game at home, followed by
a game away, followed by a home game if neces-
sary. The series is over as soon as one team wins
two games. What is P�H�, the probability that the
team with the home advantage wins the series? Is
the home advantage increased by playing a three
game series rather than one game playoff? That
is, is it true that P�H�� p for all p� 1�2?

1.9.8. � Consider the device described in Problem 1.9.5.
Suppose we can replace any one of the com-
ponents by an ultrareliable component that has
a failure probability of q�2. Which component
should we replace?

1.9.9. � There is a collection of field goal kickers, which
can be divided into two groups 1 and 2. Group i
has 3i shooters. On any kick, a kicker from group
i will kick a field goal with probability 1��i �1�,
independent of the outcome of any other kicks by
that kicker or any other kicker.

(a) A kicker is selected at random from among
all the kickers and attempts one field goal. Let K
be the event that the a field goal is kicked. Find
P�K�.

(b) Two kickers are selected at random. For
j � 1�2, let Kj be the event that kicker j kicks
a field goal. Find P�K1�K2�. Are K1 and K2 in-
dependent events?

(c) A kicker is selected at random and attempts
10 field goals. Let M be the number of misses.
Find P�M � 5�.
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QUIZ SOLUTIONS – CHAPTER 1

Quiz 1.1
In the Venn diagrams for parts (a)-(g) below, the shaded area represents the indi-

cated set.

M O

T

M O

T

M O

T

(a) R� Tc (b) M�O (c) M�O

M O

T

M O

T

M O

T

(d) R�M (e) R�M (f) Tc�M

M O

T

(g) M�Tc

The remaining parts are

(h) T and M are not mutually exclusive since T �M �� φ.
(i) Since R� Tc, R�T �M � Tc�T �M � S. Thus R, T and M are collectively

exhaustive.
(j) From the Venn diagram, T �O� φ so T and O are mutually exclusive.
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Quiz 1.2
(a) A1 � fvvv�vvd�vdv�vddg (b) B1 � fdvv�dvd�ddv�dddg

(c) A2 � fvvv�vvd�dvv�dvdg (d) B2 � fvdv�vdd�ddv�dddg

(e) A3 � fvvv�dddg (f) B3 � fvdv�dvdg

(g) A4 � fvvv�vvd�vdv�dvv�vdd�dvd�ddvg (h) B4 � fddd�ddv�dvd�vddg
Recall that Ai and Bi are collectively exhaustive if Ai �Bi � S. Also, Ai and Bi are
mutually exclusive if Ai �Bi � φ. Since we have written down each pair Ai and Bi
above, we can simply check for these properties.

The pair A1 and B1 are mutually exclusive and collectively exhaustive. The pair
A2 and B2 are mutually exclusive and collectively exhaustive. The pair A3 and B3 are
mutually exclusive but not collectively exhaustive. The pair A4 and B4 are not mutu-
ally exclusive since dvd belongs to A4 and B4. However, A4 and B4 are collectively
exhaustive.

Quiz 1.3
There are exactly 50 equally likely outcomes: s51 through s100. Each of these

outcomes has probability 0�02.

(a) P�fs79g� � 0�02
(b) P�fs100g� � 0�02
(c) P�A� � P�fs90� � � � �s100g� � 11�0�02 � 0�22
(d) P�F� � P�fs51� � � � �s59g� � 9�0�02 � 0�18
(e) P�T � 80� � P�fs80� � � � �s100g� � 21�0�02 � 0�42
(f) P�T � 90� � P�fs51�s52� � � � �s89g� � 39�0�02 � 0�78
(g) P�a C grade or better� � P�fs70� � � � �s100g� � 31�0�02 � 0�62
(h) P�student passes� � P�fs60� � � � �s100g� � 41�0�02 � 0�82

Quiz 1.4
If you cannot see how the following calculations are made, you should draw Venn

diagrams for the specified events.

(a) P�DL� � P�LVc� � P�L��P�LV� � 0�6�0�35 � 0�25
(b) P�D�L� � P�Vc�L� � P�Vc��P�LV� � 0�3�0�35 � 0�65
(c) P�VB� � P�V��P�VL� � 0�7�0�35 � 0�35
(d) P�V �L� � P�V��P�L��P�VL� � 0�7�0�6�0�35 � 0�95
(e) P�V �D� � P�V �Vc� � P�S� � 1
(f) P�LB� � P�LLc� � 0

Quiz 1.5

(a) The probability of exactly two voice calls is

P�NV � 2� � P�fvvd�vdv�dvvg� � 0�3

(b) The probability of at least one voice call is

P�NV � 1� � P�fvdd�dvd�ddv�vvd�vdv�dvv�vvvg� � 6�0�1��0�2 � 0�8
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An easier way to get the same answer is to observe that

P�NV � 1� � 1�P�NV � 1� � 1�P�NV � 0� � 1�P�fdddg� � 0�8

(c) The conditional probability of two voice calls followed by a data call given that
there were two voice calls is

P�fvvdgjNV � 2� �
P�fvvdg �NV � 2�

P�NV � 2�
�

P�fvvdg�
P�NV � 2�

�
0�1
0�3

�
1
3

(d) The conditional probability of two data calls followed by a voice call given
there were two voice calls is

P�fddvgjNV � 2� �
P�fddvg�NV � 2�

P�NV � 2�
� 0

The joint event of the outcome ddvand exactly two voice calls has probability
zero since there is only one voice call in the outcome ddv.

(e) The conditional probability of exactly two voice calls given at least one voice
call is

P�NV � 2jNv � 1� �
P�NV � 2�NV � 1�

P�NV � 1�
�

P�NV � 2�
P�NV � 1�

�
0�3
0�8

�
3
8

(f) The conditional probability of at least one voice call given there were exactly
two voice calls is

P�NV � 1jNV � 2� �
P�NV � 1�NV � 2�

P�NV � 2�
�

P�NV � 2�
P�NV � 2�

� 1

Given that there were two voice calls, there must have been at least one voice
call.

Quiz 1.6
In this experiment, there are four outcomes with probabilities

P�fvvg� � �0�8�2 � 0�64 P�fvdg� � �0�8��0�2� � 0�16

P�fdvg� � �0�2��0�8� � 0�16 P�fddg� � �0�2�2 � 0�04

When checking the independence of any two events A and B, it’s wise to avoid intuition
and simply check whether P�AB� � P�A�P�B�. Using the probabilities of the outcomes,
we now can test for the independence of events.

(a) First, we calculate the probability of the joint event:

P�NV � 2�NV � 1� � P�NV � 2� � P�fvvg� � 0�64

Next, we observe that

P�NV � 1� � P�fvd�dv�vvg� � 0�96

Finally, we make the comparison

P�NV � 2�P�NV � 1� � �0�64��0�96� �� P�NV � 2�NV � 1�

which shows the two events are dependent.
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(b) The probability of the joint event is

P�NV � 1�C1 � v� � P�fvd�vvg� � 0�80

From part (a), P�NV � 1� � 0�96. Further, P�C1 � v� � 0�8 so that

P�NV � 1�P�C1 � v� � �0�96��0�8� � 0�768 �� P�NV � 1�C1 � v�

Hence, the events are dependent.
(c) The problem statement that the calls were independent implies that the events

the second call is a voice call, fC2 � vg, and the first call is a data call, fC1 � dg
are independent events. Just to be sure, we can do the calculations to check:

P�C1 � d�C2 � v� � P�fdvg� � 0�16

Since P�C1 � d�P�C2 � v� � �0�2��0�8� � 0�16, we confirm that the events are
independent. Note that this shouldn’t be surprising since we used the informa-
tion that the calls were independent in the problem statement to determine the
probabilities of the outcomes.

(d) The probability of the joint event is

P�C2 � v�NV is even� � P�fvvg� � 0�64

Also, each event has probability

P�C2 � v� � P�fdv�vvg� � 0�8 P�NV is even� � P�fdd�vvg� � 0�68

Now we can check for independence:

P�C2 � v�P�NV is even� � �0�8��0�68� � 0�544 �� P�C2 � v�NV is even�

Hence, the events are dependent.

Quiz 1.7
Let Fi denote the event that that the user is found on page i. The tree for the

experiment is

��
��
��

F10�8

Fc
10�2
��
��

��
F20�8

Fc
20�2
��

��
��

F30�8

Fc
30�2

The user is found unless all three paging attempts fail. Thus the probability the user is
found is

P�F � � 1�P�Fc
1 Fc

2 Fc
3 � � 1� �0�2�3 � 0�992
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Quiz 1.8

(a) We can view choosing each bit in the code word as a subexperiment. Each
subexperiment has two possible outcomes: 0 and 1. Thus by the fundamental
principle of counting, there are 2�2�2�2 � 24 � 16 possible code words.

(b) An experiment that can yield all possible code words with two zeroes is to
choose which 2 bits (out of 4 bits) will be zero. The other two bits then must be
ones. There are

�4
2

�
� 6 ways to do this. Hence, there are six code words with

exactly two zeroes. For this problem, it is also possible to simply enumerate
the six code words:

1100 1010 1001 0101 0110 0011

(c) When the first bit must be a zero, then the first subexperiment of choosing the
first bit has only one outcome. For each of the next three bits, we have two
choices. In this case, there are 1�2�2�2� 8 ways of choosing a code word.

(d) For the constant ratio code, we can specify a code word by choosing M of the
bits to be ones. The other N�M bits will be zeroes. The number of ways of
choosing such a code word is

�N
M

�
. For N � 8 and M � 3, there are

�8
3

�
� 56

code words.

Quiz 1.9

(a) Since the chip works only if all n transistors work, the transistors in the chip
are like devices in series. The probability that a chip works is P�C� � pn.

(b) The module works if either 8 chips work or 9 chips work. Let Ck denote the
event that exactly k chips work. Since transistor failures are independent of
each other, chip failures are also independent. Thus the P�Ck� has a binomial
probability. Specifically,

P�C8� �

�
9
8

�
�P�C��8 �1�P�C��9�8 � 9p8n�1� pn�

P�C9� � �P�C��9 � p9n

The probability a memory module works is

P�C� � P�C8��P�C9� � p8n�9�8pn�


