Class example on independent random variables

Problem Solution : Yates and Goodman,3.7.1

Problem 3.7.1

Flip a fair coin 100 times and let X be the number of heads in the first 75 flips and Y be the number of heads in the last 25 flips. We know that X and Y are independent and can find their PMFs easily.

$$
P_{X}(x)=\left\{\begin{array}{ll}
\binom{75}{x}(1 / 2)^{75} & x=0,1, \ldots, 75 \\
0 & \text { otherwise }
\end{array} \quad P_{Y}(y)= \begin{cases}\binom{25}{y}(1 / 2)^{2} 5 & y=0,1, \ldots, 25 \\
0 & \text { otherwise }\end{cases}\right.
$$

The joint PMF of X and N can be expressed as the product of the marginal PMFs because we know that X and Y are independent.

$$
P_{X, Y}(x, y)= \begin{cases}\binom{75}{x}\binom{25}{y}(1 / 2)^{100} & x=0,1, \ldots, 75 \quad y=0,1, \ldots, 25 \\ 0 & \text { otherwise }\end{cases}
$$

