Probability and Stochastic Processes

A Friendly Introduction for Electrical and Computer Engineers

Chapter 1 Viewgraphs

Set Theory Preliminaries

- Venn Diagrams
- Universal Set/Empty Set
- Union/Intersection
- Complement
- Mutually Exclusive/Collectively Exhaustive

What is Probability

- a number between 0 and 1.
- a physical property (like mass or volume) that can be measured?
- Measure of our knowledge?

Experiments

- Procedure + Observations
- Real Experiments are TOO complicated
- Instead we analyze/develop models of experiments
 - A coin flip is equally likely to be H or T

Example 1.1

An experiment consists of the following procedure, observation and model:

- Procedure: Flip a coin and let it land on a table.
- Observation: Observe which side (head or tail) faces you after the coin lands.
- Model: Heads and tails are equally likely. The result of each flip is unrelated to the results of previous flips.

Definition Outcome, Sample Space

An *outcome* of an experiment is any possible observation of that experiment.

The *sample space* of an experiment is the finest-grain, mutually exclusive, collectively exhaustive set of all possible outcomes. An *event* is a set of outcomes of an experiment.

Correspondences

Set Algebra	Probability	
set	event	
universal set	sample space	
element	outcome	

Example 1.9

Flip four coins, a penny, a nickel, a dime, and a quarter. Examine the coins in order (penny, then nickel, then dime, then quarter) and observe whether each coin shows a head (h) or a tail (t). What is the sample space? How many elements are in the sample space?

The sample space consists of 16 four-letter words:

 $\{tttt, ttth, ttht, \dots, hhhh\}$

Event Spaces

- An *event space* is a collectively exhaustive, mutually exclusive set of events.
- **Example 1.10**: For i = 0, 1, 2, 3, 4,

$$B_i = \{ \text{outcomes with } i \text{ heads} \}$$

- Each B_i is an event containing one or more outcomes:
- The set $B = \{B_0, B_1, B_2, B_3, B_4\}$ is an event space.

Theorem 1.2

- For an event space $B = \{B_1, B_2, \ldots\}$ and any event A, let $C_i = A \cap B_i$.
- For $i \neq j$, the events $C_i \cap C_j = \phi$.

$$A = C_1 \cup C_2 \cup \cdots$$

Axioms of Probability

A probability measure $P[\cdot]$ is a function that maps events in the sample space to real numbers such that

Axiom 1 For any event $A, P[A] \ge 0$.

Axiom 2 P[S] = 1.

Axiom 3 For any countable collection A_1, A_2, \ldots of mutually exclusive events

$$P[A_1 \cup A_2 \cup \cdots] = P[A_1] + P[A_2] + \cdots$$

Consequences of the Axioms

Theorem 1.4: If

$$B = B_1 \cup B_2 \cup \cdots \cup B_m$$

and for $i \neq j$,

$$B_i \cap B_j = \phi$$

then

$$P[B] = \sum_{i=1}^{m} P[B_i]$$

Problem 1.3.5

A student's score on a 10-point quiz is equally likely to be any integer between 0 and 10. What is the probability of an A, which requires the student to get a score of 9 or more? What is the probability the student gets an F by getting less than 4?

Consequences of the Axioms

Theorem 1.7: The probability measure $P[\cdot]$ satisfies

- $P[\phi] = 0$.
- $P[A^c] = 1 P[A]$.
- \bullet For any A and B,

$$P[A \cup B] = P[A] + P[B] - P[A \cap B]$$

• If $A \subset B$, then $P[A] \leq P[B]$.

Problem 1.4.5

A cellphone is equally likely to make zero handoffs (H_0) , one handoff (H_1) , or more than one handoff (H_2) . Also, a caller is on foot (F) with probability 5/12 or in a vehicle (V).

• Find three ways to fill in the following probability table:

	H_0	H_1	H_2
$oxed{F}$			
V			

• If 1/4 of all callers are on foot making calls with no handoffs and that 1/6 of all callers are vehicle users making calls with a single handoff, what is the table?

Conditioning

- P[A] = our knowledge of the likelihood of A
- P[A] = a priori probability
- Suppose we cannot completely observe an experiment
 - We learn that event B occurred
 - We do not learn the precise outcome

Conditional Probability Definition

- Learning B occurred changes P[A]
- The conditional probability A given the occurrence of B is

$$P[A|B] = \frac{P[AB]}{P[B]}$$

Problem 1.5.6

For deer ticks in the Midwest,

- 16% carried Lyme disease (event *L*)
- 10% had HGE (event *H*)
- 10% of the ticks that had either Lyme or HGE carried both

Find P[LH] and then P[H|L].

Law of Total Probability

• If B_1, B_2, \ldots, B_m is an event space and $P[B_i] > 0$ for $i = 1, \ldots, m$, then

$$P[A] = \sum_{i=1}^{m} P[A|B_i]P[B_i]$$

Bayes' Theorem

•

$$P[B|A] = \frac{P[A|B]P[B]}{P[A]}$$

• For an event space B_1, B_2, \ldots, B_m ,

$$P[B_i|A] = \frac{P[A|B_i]P[B_i]}{\sum_{i=1}^{m} P[A|B_i]P[B_i]}$$

Bayes' Theorem

•

$$P[B|A] = \frac{P[A|B]P[B]}{P[A]}$$

• For an event space B_1, B_2, \ldots, B_m ,

$$P[B_i|A] = \frac{P[A|B_i]P[B_i]}{\sum_{i=1}^{m} P[A|B_i]P[B_i]}$$

Sequential Experiments - Example

- Two coins, one biased, one fair, but you don't know which is which.
- Coin 1: P[H] = 3/4. Coin 2: P[H] = 1/2
- Pick a coin at random and flip it. Let C_i denote the event that coin i is picked. What is $P[C_1|H]$

Solution: Tree Diagram

$$P[C_1|H] = \frac{P[C_1H]}{P[C_1H] + P[C_2H]} = \frac{3/8}{3/8 + 1/4} = \frac{3}{5}$$

Definition 2 Independent Events

Definition 1.6 Events A and B are *independent* if and only if

$$P[AB] = P[A]P[B] \tag{1}$$

Equivalent definitions:

$$P[A|B] = P[A] \qquad P[B|A] = P[B]$$

Always check if you are asked!

Definition 3 Independent Events

Definition 1.7 A_1 , A_2 , and A_3 are *independent* if and only if

- A_1 and A_2 are independent.
- A_2 and A_3 are independent.
- A_1 and A_3 are independent.
- $P[A_1 \cap A_2 \cap A_3] = P[A_1]P[A_2]P[A_3].$

Fundamental Principle of Counting

- Experiment A has n possible outcomes,
- Experiment B has k possible outcomes,
- There are nk possible outcomes when you perform both experiments.

Permutations

- \bullet k-permutation: an ordered sequence of k distinguishable objects
- $(n)_k = \text{no. of } k\text{-permutations of } n \text{ dist. objects.}$

$$(n)_k = n(n-1)(n-2)\cdots(n-k+1) = \frac{n!}{(n-k)!}$$

Combinations

- Pick a subset of k out of n objects.
- Order of selection doesn't matter
- Each subset is a *k-combination*

How Many Combinations

- $\binom{n}{k}$ = "n choose k"
- Two steps for a *k*-permutation:
 - 1. Choose a k-combination out of n objects.
 - 2. Choose a k-permutation of the k objects in the k-combination.

$$(n)_k = \binom{n}{k} k!$$
 $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

Problem 1.8.6

A basketball team has

- 3 pure centers, 4 pure forwards, 4 pure guards
- one swingman who can play either guard or forward.

A pure player can play only the designated position. How many lineups are there (1 center, 2 forwards, 2 guards)

Problem 1.8.6 Solution

Three possibilities:

- 1. swingman plays guard: N_1 lineups
- 2. swingman plays forward N_2 lineups
- 3. swingman doesn't play. N_3 lineups

$$N = N_1 + N_2 + N_3$$

$$N_1 = {3 \choose 1} {4 \choose 2} {4 \choose 1} = 72$$

$$N_2 = {3 \choose 1} {4 \choose 1} {4 \choose 2} = 72$$

$$N_3 = {3 \choose 1} {4 \choose 2} {4 \choose 2} = 108$$

Multiple Outcomes

- n independent trials
- r possible trial outcomes (s_1, \ldots, s_r)
- $\bullet \ P[s_k] = p_k$

Multiple Outcomes (2)

- Outcome is a sequence:
 - Example: $s_3s_4s_3s_1$

$$P[s_3s_4s_3s_1] = p_3p_4p_3p_1 = p_1p_3^2p_4$$
$$= p_1^{n_1}p_2^{n_2}p_3^{n_3}p_4^{n_4}$$

• Prob depends on how many times each outcome occurred

Multiple Outcomes (3)

 $N_i = \text{no. of time } s_i \text{ occurs}$

$$P[N_1 = n_1, \dots, N_r = n_r] = M p_1^{n_1} p_2^{n_2} \cdots p_r^{n_r}$$

$$M = Multinomial Coefficient$$

$$=\frac{n!}{n_1!n_2!\cdots n_r!}$$