Probability and Stochastic Processes

A Friendly Introduction for Electrical and Computer Engineers

Chapter 2 Viewgraphs

Random Variables

- Experiment: Procedure + Observations
- Observation is an outcome
- Assign a number to each outcome: Random variable

Random Variables

Three ways to get a rv:

- The rv is the observation
- The rv is a function of the observation
- The rv is a function of a rv

Discrete Random Variables

- S_X = range of X (set of possible values)
- X is discrete is S_X is countable
- Discrete rv X has PMF

$$P_X(x) = P[X = x]$$

PMF Properties

- $P_X(x) \geq 0$
- $\bullet \ \sum_{x \in S_X} P_X(x) = 1$
- For an event $B \subset S_X$,

$$P[B] = P[X \in B] = \sum_{x \in B} P_X(x)$$

Bernoulli RV

Get the phone number of a random student. Let X=0 if the last digit is even. Otherwise, let X=1.

$$P_X(x) = \begin{cases} 1 - p & x = 0\\ p & x = 1\\ 0 & \text{otherwise} \end{cases}$$

Binomial RV

- ullet Test n circuits, each circuit is rejected with probability p independent of other tests.
- K = no. of rejects
- \bullet K is the number of successes in n trials:

$$P_K(k) = \begin{cases} \binom{n}{k} p^k (1-p)^{n-k} & k = 0, 1, \dots, n \\ 0 & \text{otherwise} \end{cases}$$

Geometric RV

Circuit rejected with prob p. Y is the number of tests up to and including the first reject.

From the tree,
$$P[Y = 1] = p$$
, $P[Y = 2] = p(1 - p)$,

$$P_Y(y) = \begin{cases} p(1-p)^{y-1} & y = 1, 2, \dots \\ 0 & \text{otherwise} \end{cases}$$

Geometric: p = 0.2

$$P_Y(y) = \begin{cases} (0.2)(0.8)^{y-1} & y = 1, 2, \dots \\ 0 & \text{otherwise} \end{cases}$$

Pascal RV

 \bullet No. of tests, L, needed to find k rejects.

$$P[L=l] = P[AB]$$

- $A = \{k 1 \text{ rejects in } l 1 \text{ tests}\}$
- $B = \{\text{success on attempt } l\}$
- Events A and B are independent

Pascal continued

• P[B] = p and P[A] is binomial:

$$P[A] = P[k-1 \text{ succ. in } l-1 \text{ trials}]$$

$$= \binom{l-1}{k-1} p^{k-1} (1-p)^{l-1-(k-1)}$$

$$P_L(l) = P[A]P[B]$$

$$= \begin{cases} \binom{l-1}{k-1}p^k(1-p)^{l-k} & l = k, k+1, \dots \\ 0 & \text{otherwise} \end{cases}$$

Pascal:
$$p = 0.2, k = 4$$

$$P_L(l) = \begin{cases} \binom{l-1}{3} (0.2)^4 (0.8)^{l-4} & l = 4, 5, \dots \\ 0 & \text{otherwise.} \end{cases}$$

Summary

- Bernoulli No. of succ. on one trial
- Binomial No. of succ on n trials
- Geometric No. of trials until first succ.
- Pascal No. of trials until succ k

Poisson rv

- Counts *arrivals* of something.
- Arrival rate λ , interval time T.
- With $\alpha = \lambda T$,

$$P_X(x) = \begin{cases} \alpha^x e^{-\alpha}/x! & x = 0, 1, 2, \dots \\ 0 & \text{otherwise} \end{cases}$$

Poisson: $\alpha = 0.5$

$$P_J(j) = \begin{cases} (0.5)^j e^{-0.5}/j! & j = 0, 1, \dots \\ 0 & \text{otherwise} \end{cases}$$

Poisson:
$$\alpha = 5$$

$$P_J(j) = \begin{cases} 5^j e^{-5}/j! & j = 0, 1, \dots \\ 0 & \text{otherwise} \end{cases}$$

Cumulative Distribution Functions

ullet The cumulative distribution function (CDF) of random variable X is

$$F_X(x) = P[X \le x]$$

CDF Example

At the discontinuities r=0 and r=2, $F_{R}\left(r\right)$ is the upper values. (right hand limit)

CDF Properties

For any discrete rv X, range $S_X = \{x_1, x_2, \ldots\}$ satisfying $x_1 \leq x_2 \leq \ldots$,

- $F_X(-\infty) = 0$ and $F_X(\infty) = 1$
- For all $x' \ge x$, $F_X(x') \ge F_X(x)$
- For $x_i \in S_X$ and small $\epsilon > 0$,

$$F_X(x_i) - F_X(x_i - \epsilon) = P_X(x_i)$$

• $F_X(x) = F_X(x_i)$ for $x_i \le x < x_{i+1}$

Expected Value

 \bullet The expected value of X is

$$E[X] = \mu_X = \sum_{x \in S_X} x P_X(x)$$

 \bullet Also called the average of X.

Average vs. E[X]

- Average of *n* samples: $m_n = \frac{1}{n} \sum_{i=1}^n x(i)$
- Each $x(i) \in S_X$. If each $x \in S_X$ occurs N_x times,

$$m_n = \frac{1}{n} \sum_{x \in S_X} N_x x = \sum_{x \in S_X} \frac{N_x}{n} x \to \sum_{x \in S_X} x P_X(x)$$

Derived Random Variables

- Each sample value y of a derived rv Y is a function g(x) of a sample value x of a rv X.
- Notation: Y = g(X)
- Experimental Procedure
 - 1. Perform experiment, observe outcome s.
 - 2. Find x, the value of X
 - 3. Calculate y = g(x)

PMF of
$$Y = g(X)$$

$$P_Y(y) = \sum_{x:g(x)=y} P_X(x)$$

Problem 2.6.5

- Source transmits data packets to receiver.
- If rec'd packet is error-free, rec'vr sends back ACK, otherwise NAK sent.
- For each NAK, the packet is resent.
- \bullet Each packet transmission is independently corrupted with prob q.
- Find the PMF of X, no. of times a packet is sent
- Each packet takes 1 msec to transmit. Source waits 1 msec to receive ACK. T equal the time req'd until the packet is received OK. What is $P_{T}\left(t\right)$?

Expected value of Y = g(X)

• Thm: Given rv X with PMF $P_{X}(x)$, the expected value of Y=g(X), is

$$E[Y] = \mu_Y = \sum_{x \in S_X} g(x) P_X(x)$$

• Example: Y = aX + b:

$$E[Y] = \sum_{x \in S_X} (ax + b)P_X(x) = aE[X] + b$$

Variance and Std Deviation

• Variance: $Y = (X - \mu_X)^2$

$$E[Y] = \sum_{x \in S_X} (X - \mu_X)^2 P_X(x) = \text{Var}[X]$$

- Variance measures spread of PMF
- Standard Deviation: $\sigma_X = \sqrt{\operatorname{Var}[X]}$
- Units of σ_X are the same as X.

Properties of the variance

- If Y = X + b, Var[Y] = Var[X].
- If Y = aX, $Var[Y] = a^2 Var[X]$.

Conditional PMF of X given B

• Given B, with P[B] > 0,

$$P_{X|B}(x) = P[X = x|B]$$

• Two kinds of conditioning.

Conditional PMFs - version 1

- Probability model tells us $P_{X|B_i}(x)$ for possible B_i .
- Example: In the *i*th month of the year, the number of cars N crossing the GW bridge is Poisson with param α_i .

Conditional PMFs - version 2

- B is an event defined in terms of X.
- B is a subset of S_X such that for each $x \in S_X$, either $x \in B$ or $x \notin B$.

$$P_{X|B}(x) = \frac{P[X = x, B]}{P[B]} = \begin{cases} \frac{P_X(x)}{P[B]} & x \in B\\ 0 & \text{otherwise} \end{cases}$$

Conditional PMF Example

Example: X is geometric with p=0.1. What is the conditional PMF of X given event B that X>9?

Conditional Expectations

- Replace $P_X(x)$ with $P_{X|B}(x|b)$
- $E[X|B] = \sum_{x} x P_{X|B}(x)$
- $E[g(X)|B] = \sum_{x} g(x) P_{X|B}(x)$
- $\operatorname{Var}[X|B] = E[(X E[X|B])^2]$