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We provide an introduction to molecular dynamics simulations in the context of the Kob–Andersen

model of a glass. We introduce a complete set of tools for doing and analyzing the results of

simulations at fixed NVE and NVT. The modular format of the paper allows readers to select sections

that meet their needs. We start with an introduction to molecular dynamics independent of the

programming language, followed by introductions to an implementation using PYTHON and then the

freely available open source software package LAMMPS. We also describe analysis tools for the quick

testing of the program during its development and compute the radial distribution function and the

mean square displacement using both PYTHON and LAMMPS. VC 2020 American Association of Physics Teachers.

https://doi.org/10.1119/10.0000654

I. INTRODUCTION

Computer simulations are a powerful approach for
addressing questions which are not accessible by theory and
experiments. Simulations give us access to analytically
unsolvable systems, and contrary to laboratory experiments,
there are no unknown “impurities” and we can work with a
well-defined model. In this paper, we focus on the simulation
of many particle systems using molecular dynamics, which
models a system of classical particles whose dynamics is
described by Newton’s equations and its generalizations.

Our goal is to provide the background for those who wish
to use and analyze molecular dynamics simulations. This
paper may also be used in a computer simulation course or
for student projects as part of a course.

Many research groups no longer write their own molecu-
lar dynamics programs, but use instead highly optimized
and complex software packages such as LAMMPS.1 To under-
stand the core of these software packages and how to use
them wisely, it is educational for students to write and use
their own program before continuing with a software pack-
age. One intention of this paper is to guide students through
an example of a molecular dynamics simulation and then
implement the same task with LAMMPS. A few examples are
given to illustrate the wide variety of possibilities for ana-
lyzing molecular dynamics simulations and hopefully to
lure students into investigating the beauty of many particle
systems.

Although we discuss the PYTHON programming language,
the necessary tools are independent of the programming lan-
guage and are introduced in Sec. II. Those who prefer to start
programming with minimal theoretical background may start
with Sec. III and follow the guidance provided on which sub-
section of Sec. II is important for understanding the corre-
sponding subsection in Sec. III.

Throughout the paper, we refer to problems that are listed
in Sec. VII. Answers to Problems (1)–(9) are given in the
text immediately following their reference. These suggested
problems are intended to encourage active engagement with
the paper by encouraging readers to work out sections of the
paper by themselves.

II. MOLECULAR DYNAMICS SIMULATION

A. Introduction

Molecular dynamics simulates a classical system of N par-
ticles. The core of most simulations is to start with the initial
positions and velocities of all particles and to then repeatedly
apply a “recipe” to update each particle’s position and veloc-
ity from time t to time tþ Dt (see Fig. 1). The dynamics is
governed by Newton’s second law

Fi ¼ miai; (1)

where ai is the acceleration of particle i.
In Sec. II B, we define the net force Fi which is used in

this paper and discuss in Sec. II D the update rules for the
positions ri and velocities vi.

B. Model

The model is specified by the net force Fi on each particle
of mass mi. The force Fi can be due to all other particles and/
or additional interactions such as effective drag forces or
interactions with a wall or an external field. In the following,
we will consider only conservative forces which are due to
all the other particles. We also assume pair-wise interactions
given by a potential
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Vij: (2)

Specifically, we use the Lennard-Jones potential

Vij ¼ 4�
r
rij

� �12

� r
rij

� �6
" #

; (3)

where rij ¼ jri � rjj is the distance between particle i at posi-
tion ri and particle j at position rj.

The advantage of the Lennard-Jones potential is that it can
be used to simulate a large variety of systems and scenarios.
For example, each particle may represent an atom, a colloid,
or a monomer of a polymer.2–5 Depending on parameters
such as the temperature, density, and shear stress, the par-
ticles may form a gas, liquid, or solid (crystal or glass).3,6,7

The reason for this wide variety of applications is that the
Lennard-Jones potential incorporates two major effective
forces: a strong repulsive force for short distances and an
attractive force for intermediate distances. The attractive

term of the Lennard-Jones potential / ðr=rÞ6 is the van der
Waals interaction due to mutual polarization of two par-

ticles.8 The repulsive part / ðr=rÞ12
is proportional to a

power of ðr=rÞ6 and thus simplifies the computation of the
force. Note that the Lennard-Jones potential is short-range.
For long-range interactions (gravitational and Coulomb),
more advanced techniques are necessary.9 See Refs. 8–10
for an overview of further applications of the Lennard-Jones
potential and other particle interactions and additional contri-
butions to F.

In this paper, we illustrate how to simulate a glass forming
system. We use the binary Kob–Anderson potential,3,11,12

which has been developed as a model for the Ni80P20 alloy,11

and has become one of the major models for studying super-
cooled liquids, glasses, and crystallization. Examples are dis-
cussed in Refs. 3 and 11–18 and references cited in Refs. 3,
17, and 18. The Kob–Andersen model is an 80:20 mixture of
particles of type A and B. The Lennard-Jones potential in Eq.
(3) is modified by the dependence of � and r on the particle
type a; b 2 fA;Bg of particles i and j

Vij ¼ VabðrijÞ ¼ 4�ab
rab

rij

� �12

� rab

rij

� �6
" #

: (4)

We use units such that rAA ¼ 1 (length unit), �AA ¼ 1
(energy unit), mA ¼ 1 (mass unit), and kB ¼ 1. (The tempera-

ture unit is �AA=kB.) The resulting time unit is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mAr2

AA=�AA

p
.

With these units, the Kob–Andersen parameters are rAA

¼ 1:0; �AA ¼ 1:0, rAB ¼ 0:8; �AB ¼ 1:5, rBB ¼ 0:88; �BB

¼ 0:5, and mA ¼ mB ¼ 1:0. To save computer time, the
potential is truncated and shifted at rij ¼ rcut

ab ¼ 2:5 rab

Vcutoff
ij ¼

VabðrijÞ � Vabðrcut
ab Þ rij < rcut

ab ;

0 otherwiseð Þ:

(
(5)

For the truncated and shifted KA-LJ system, V is given in
Eq. (2) by replacing Vij with Vcutoff

ij .
The force is given by Fi ¼ �riV. The x-component of the

force on particle i is given by (see Problem 1)

Fi;x ¼ 48
X

neighborsj

�ab

r12
ab

r14
ij

� 0:5
r6

ab

r8
ij

 !
ðxi � xjÞ; (6)

and similarly for Fi;y and Fi;z. The sum is only over particles
j for which j 6¼ i and rij < 2:5 rab.

C. Periodic boundary conditions and the minimum
image convention

To determine the neighbors, we need to specify the bound-
aries of the system. We will assume that the goal of the sim-
ulation is to model the structure and dynamics of particles in
a very large system (N � 1023) far from the boundaries.
However, most molecular dynamics simulations contain on
the order of 103–106 particles. To minimize the effect of the
boundaries, we use periodic boundary conditions as illus-
trated in Fig. 2 for a two-dimensional system of linear
dimension L. The system, framed by thick lines is assumed
to be surrounded by periodic images (framed by thin lines).
For particle i, the neighboring particles within a distance rcut

ab
are the particles inside the large circle. To determine the
distance rij between particles i and j, we use the “minimum
image convention.” For example, the distance between i
and particle j¼ 18 would be rij > rcut

ab without using peri-
odic images because particle 18 in the left bottom corner of
the system is outside the large circle. But with periodic
images rij < rcut

ab because the nearest periodic image of
particle 18 is above particle i within the circle. For particles
i and j¼ 20, we use the direct distance between the two par-
ticles within the system (thick frame), because this distance
is less than the distance to any of the periodic images of
j¼ 20.

D. Numerical integration

We next specify the core of a molecular dynamics pro-
gram, that is, the numerical integration of the d�N coupled
differential equations represented in Eq. (1) (see Fig. 1). We
will use the velocity Verlet algorithm

ri tþ Dtð Þ ¼ riðtÞ þ viðtÞDtþ 1

2
aiðtÞ Dtð Þ2; (7)

Fig. 1. Flow chart of a molecular dynamics simulation program.
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vi tþ Dtð Þ ¼ viðtÞ þ
1

2
aiðtÞ þ ai tþ Dtð Þ
� �

Dt: (8)

The velocity Verlet algorithm is commonly used, because it
is energy drift free and second order in the velocity and third
order in the position.9,19 For other numerical integration
techniques, we refer readers to Refs. 9 and 19–21. Note that
the velocity update in Eq. (8) is directly applicable only if
aiðtþ DtÞ does not depend on viðtþ DtÞ; that is, aiðtÞ
depends only on the positions of the particles.

By using Eqs. (7) and (8), we obtain the flow chart (see
Problem 2) in Fig. 3. Most of the computational time is used
to determine the accelerations. Note that for each time step
Dt, the accelerations need to be determined only once for
aiðtþ DtÞ (instead of twice for aiðtÞ and aiðtþ DtÞ). Thus,
only one array for the accelerations is needed, but one must
have the correct order of updates within the time step.

E. Temperature bath

So far, we have used Newton’s second law, Eq. (1), and
numerical integration to determine the dynamics, which cor-
responds to simulating a system at constant energy. We also
assumed that the number of particles and the volume are
constant, and therefore we have described the NVE or micro-
canonical ensemble.22–24 In experiments, the temperature T
and the pressure P are controlled rather than E and V. Many
algorithms have been developed for NVT and NPT simula-
tions, including generalizations which allow box shapes to
vary during the simulation. For an overview of these algo-
rithms, we recommend Refs. 9, 19, and 25. In this section,
we focus on fixed NVT. We discuss in Sec. II E 1 an algo-
rithm that also can be used to obtain the initial velocities
and then discuss in Sec. II E 2 the Nos�e-Hoover algorithm.

A generalization of the latter is the default NVT algorithm in
LAMMPS and is used in Sec. IV C.

1. Statistical temperature bath

The canonical ensemble corresponds to a system that can
exchange energy with a very large system at constant tem-
perature T. In equilibrium, the probability of a microstate s is
proportional to the Boltzmann factor

PðsÞ / e�EðsÞ=kBT ; (9)

where kB is Boltzmann’s constant.22–24 Equation (9)
applies to any system. The microstate s is specified by the
position and velocity of each particle, fri; vig, and the sys-
tem energy is

E fri; vigð Þ ¼ 1

2

XN

i¼1

miv
2
i þ Vð rif gÞ: (10)

From Eqs. (9) and (10), it follows that the probability distri-
bution for the x-component of the velocity of particle i is
given by the Maxwell–Boltzmann distribution

P vi;xð Þ ¼
1ffiffiffiffiffiffi

2p
p

ri

e�v2
i;x=2r2

i ; (11)

with the standard deviation

ri ¼
ffiffiffiffiffiffiffiffi
kBT

mi

r
: (12)

The probability distributions for the y- and z-components of
the velocity are obtained by replacing in Eq. (11) vi;x by vi;y

Fig. 2. Sketch of a binary two-dimensional system illustrating periodic

boundary conditions and the minimum image convention. To identify the

neighbors j of particle i, the position rj of particle j is chosen from the

position of j within the system (within thick frame) and the positions of

j’s periodic images (within boxes framed with thin lines), such that rij is

a minimum. Neighbors of i satisfy rij < rcut
ab and are within the large

circle.

Fig. 3. Flow chart for molecular dynamics with the velocity Verlet algorithm.
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and vi;z, respectively.22–24 It is straightforward to show that
(see Problem 3)

hEkini ¼
�XN

i¼1

1

2
miv

2
i

�
¼ 3N

2
kBT: (13)

To achieve simulations at fixed NVT, Andersen26 incorpo-
rated particle collisions with a temperature bath by choosing
the particle velocities from the Maxwell–Boltzmann distri-
bution.9,19 We will use a slight modification to the Andersen
algorithm introduced by Andrea et al.27 At periodic intervals
(approximately every 50 time steps), all velocities are newly
assigned by giving each particle a velocity component vl
(l 2 fx; y; zg) chosen from the Maxwell–Boltzmann distri-
bution in Eqs. (11) and (12).9

Figure 4 shows the flow chart for creating a Maxwell–
Boltzmann distribution for the velocities of the particles. Step 1
can be done in any programming language with either already
defined functions (see Sec. III C for PYTHON and Sec. IV B for
LAMMPS) or with functions (or subroutines), from for example,
Ref. 21. Step 2 can be skipped when mi is the same for all par-
ticles. Step 3 ensures that the center of mass of the system does
not drift, and step 4 rescales all the velocities to achieve the
desired temperature.

The computer code illustrated by the flow chart of Fig. 4
is inserted into the code described by the flow chart of Fig. 3
with a conditional statement (e.g., if) after the “Time Step”
box and within the “Loop Over Time Steps.” We can also
apply steps 1—4 to set the initial velocities fviðt0Þg as part
of the “Initialization” box in Fig. 3.

2. Nos�e–Hoover algorithm

Another way to implement a constant temperature bath,
which is used in LAMMPS,28 is given by the Nos�e–Hoover
style algorithm. The key concept for most of the advanced
algorithms is that we no longer use Newton’s second law for

the equations of motion, but instead use an “extended sys-
tem” with additional parameters. For the Nos�e–Hoover algo-
rithm,29 Eq. (1) is replaced by

€ri ¼
Fi

mi
� n _ri; (14)

d2 ln s

dt2
¼ _n ¼ 1

Q

XN

i¼1

mi _r
2
i � dNkBT

 !
; (15)

where d is the spatial dimension. The idea is to introduce a
fictitious dynamical variable n that plays the role of a friction
which changes the acceleration until the temperature equals
the desired value. The parameter Q is the mass of the tempera-
ture bath. Equations (14) and (15) follow from generalizations
of Hamiltonian mechanics30 and can be written as first-order
differential equations for _ri; _pi, and _n.25,29,31–35 A simplified
derivation of these equations is given in Appendix A for read-
ers who are familiar with Hamiltonian mechanics.

A generalization of Eqs. (14) and (15) is the Nos�e–Hoover
chain method, which includes variables for several tempera-
ture baths, corresponding to more accurate dynamics in cases
with more constraints than the example presented in this
paper.25,31,34,36,37

Given the equations of motion, our task is to convert them
to appropriate difference equations so that we can use
numerical integration. We would like to use the velocity
Verlet algorithm in Eqs. (7) and (8). However, Eq. (14) for
ai depends on the velocity _ri, which means that the right side
of Eq. (8) also depends on viðtþ DtÞ. Fox and Andersen38

suggested a velocity-Verlet numerical integration technique
that can be applied when the equations of motion are of the
form

€xðtÞ ¼ f xðtÞ; _xðtÞ; yðtÞ; _yðtÞ½ �; (16)

€yðtÞ ¼ g xðtÞ; _xðtÞ; yðtÞ½ �: (17)

The Fox–Andersen integration technique and its application
to the Nos�e–Hoover equations of motion, Eqs. (14) and (15),
are discussed in Appendix B. The resulting update rules are
given in Eqs. (B14)–(B16), and (B19). For more advanced
integration techniques, see Ref. 39.

F. Initialization of positions and velocities

As shown in Figs. 1 and 3, a molecular dynamics simula-
tion starts with the initialization of every particle’s position
and velocity. (For more complicated systems, further varia-
bles such as angular velocities need to be initialized.) As
noted in Ref. 19, Sec. 8.6, “An appropriate choice of the ini-
tial conditions is more difficult than might first appear.” We
therefore discuss a few options in detail. The most common
options for the initialization of the particle positions include
(1) using the positions resulting from a previous simulation
of the same system, (2) choosing uniformly distributed posi-
tions at random, or (3) starting with positions on a lattice.
For simplicity, the latter may be on a cubic lattice and/or a
crystalline structure.

The advantage of the first option is that the configuration
might correspond to a well equilibrated system at the desired
parameters and the updates do not need extra precautions as
in options 2 and 3. Even if the available configuration is not
exactly for the desired parameters, it might be appropriate to

Fig. 4. Flow chart for computing the velocities from the

Maxwell–Boltzmann distribution.
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adjust the configuration (for example, to rescale all positions
to obtain the desired density) to avoid the disadvantages of
the other options.

Option 2 has the advantage that it provides at least some
starting configurations if the other options are not possible.
The disadvantage is that if a few of the particles are too close
to each other, very large forces will result. The large forces
can lead to runaway positions and velocities and thus addi-
tional steps must be taken. One idea is to rearrange the parti-
cle positions corresponding to the local potential minimum.
This rearrangement can be achieved with a minimization
program and/or with successive short simulation runs. We
can start with a very small time step Dt and a very low tem-
perature T and successively increase both Dt and T.

The advantage of option 3 is that very large forces are
avoided. However, the lattice structure is not desirable for
studying systems without long-range order, for example,
supercooled liquids and glasses. A sequence of sufficiently
long simulation runs may overcome this problem. For exam-
ple, the system might first successively be heated and then
quenched to the desired temperature. If the system has more
than one particle type, the mixing of the particle types should
be ensured. (In Sec. III A, we provide an example where A
and B particles are randomly swapped.)

Common options for the initialization of the velocities
include (1) using the velocities from a previous simulation of
the same system, (2) computing the velocities from the
Maxwell–Boltzmann distribution corresponding to the
desired temperature, and (3) setting all velocities to zero. If
previous simulation configurations are available at the
desired parameters, that option is always the best. Option 2
is the most common initialization of velocities, because it
corresponds to velocities of a well equilibrated system (see

Sec. II E 1). Option 3 is an option for T¼ 0 simulations,
which we will not discuss further.

III. IMPLEMENTATION OF MD SIMULATIONS

WITH PYTHON

In this section, we assume that readers know how to write
basic PYTHON programs. For the newcomer without PYTHON

experience, we recommend the first few chapters of Ref. 20,
which are available online,40 and/or other online resources.
(Reference 40 includes external links.)

A. Initialization of positions

At the beginning of the simulation, the initial configura-
tion needs to be set. We use arrays for r and v of size
N ¼ NA þ NB. For NA ¼ 800 and NB ¼ 200, the PYTHON com-
mands are

import numpy as np
global Na
global Nb
global N
Na¼800
Nb¼200
N¼NaþNb
x ¼ np.zeros(N,float)
y ¼ np.zeros(N,float)
z ¼ np.zeros(N,float)

If the positions are available, we read them from a file.
We assume the filename initpos contains N lines each
with three columns for ri;x; ri;y, and ri;z and assign the posi-
tions using the statement

x,y,z ¼ sp.loadtxt(‘initpos’,dtype ¼ ‘float’,unpack ¼ True)

To choose positions at random and to ensure reproducible
results, we set the seed once at the beginning of the program

import scipy as sp

sp.random.seed(15)

For a system of linear dimension L¼ 9.4, we set the posi-
tions with

L ¼ 9.4

x,y,z ¼ sp.random.uniform(low ¼ 0.0,high ¼ L,size ¼ (3,N))

For simplicity, we use the simple cubic lattice to place the
particles on lattice sites (see Problem 4) as in the following:

nsitesx ¼ int(round(pow(N,(1.0/3.0))))
dsitesx ¼ L/float(nsitesx)
for ni in range(nsitesx):
tmpz ¼(0.5 þ ni)*dsitesx
for nj in range(nsitesx):
tmpy ¼(0.5 þ nj)*dsitesx

for nk in range(nsitesx):
tmpx ¼(0.5 þ nk)*dsitesx
i¼nkþnj*nsitesxþni*(nsitesx**2)
x[i]¼tmpx
y[i]¼tmpy
z[i]¼tmpz

The arrays x, y, z use the indices 0; 1;…;NA � 1 to store
the positions of the A particles. Because the lattice positions
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are assigned successively to the lattice, the code places all A particles on one side and all B particles on the other side. This
arrangement is not what is intended for a glassy or supercooled system. Therefore, in addition to assigning lattice sites, we
next swap each B particle’s position with a randomly chosen A particle’s position:

for i in range(Na,N):
j ¼ sp.random.randint(Na)
x[i],x[j] ¼ x[j],x[i]
y[i],y[j] ¼ y[j],y[i]
z[i],z[j] ¼ z[j],z[i]

B. Plotting and visualization tools

Long programs should be divided into many smaller tasks and each task tested. Before we continue with the implementation
of molecular dynamics, we use a few printing and plotting tools to check if the program is working as expected.

We can save the positions into a file with a name such as initposcheck

sp.savetxt(‘initposcheck’,(sp.transpose(sp.vstack((x,y,z)))))

and then check the numbers in the file or look at the positions visually. To plot the positions, we can use either plotting com-
mands such as gnuplot, xmgrace, or PYTHON-plotting tools. For simplicity, we use the latter. The PYTHON commands for
making a two-dimensional scatter plot of ri;z and ri;x which distinguishes A and B particles by color and size are

import matplotlib as mpl
import matplotlib.pyplot as plt
plt.figure()
plt.scatter(x[:Na],z[:Na],s¼150,color¼‘blue’)
plt.scatter(x[Na:],z[Na:],s¼70,color¼‘red’)
plt.xlim(0,L)
plt.xlabel(‘$x$’)
plt.ylabel(‘$z$’)
plt.show()

Figure 5(a) shows the resulting scatter plot for the case where the initial positions are on a lattice. To make a three-
dimensional scatter plot, we use at the beginning of the program the same import commands and add the line

from mpl_toolkits.mplot3d import Axes3D

and then

fig3d ¼ plt.figure()
fax¼fig3d.add_subplot(111, projection¼‘3d’)
fax.scatter(x[:Na],y[:Na],z[:Na], marker¼“o”,s¼150,facecolor¼‘blue’)
fax.scatter(x[Na:],y[Na:],z[Na:], marker¼“o”,s¼70,facecolor¼‘red’)
fax.set_xlabel(‘$x$’)
fax.set_ylabel(‘$y$’)
fax.set_zlabel(‘$z$’)
plt.show()

The resulting figure is shown in Fig. 5(b). Use the right mouse button to zoom in and out and the left mouse button to rotate
the figure. This three-dimensional scatter plot is useful for a quick and easy check.

Fig. 5. Visualizations of the particle positions, which were assigned initially to a cubic lattice.
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For a fancier three-dimensional visualization of the particles, the powerful package VPython is useful.

from vpython import *
for i in range(N):
tx¼x[i]
ty¼y[i]
tz¼z[i]
if i < Na:
sphere(pos¼vector(tx,ty,tz),radius¼0.5, color¼color.blue)

else:
sphere(pos¼vector(tx,ty,tz),radius¼0.2, color¼color.red)

Use the right mouse button to rotate the plot and the middle mouse button to zoom in and out [see Fig. 5(c)]. More information
on plotting tools is available at Ref. 40 and their external links. The PYTHON program and the initial configuration file for this sec-
tion are in the files KALJ_initpos.py and initpos available in Supplementary Material.41

C. Initialization of velocities

If the positions and velocities are already available, they can be read from a file with six columns, similar to our ear-
lier example. As described in Sec. II E 1, a temperature bath can be achieved by periodically resetting all velocities from
the Maxwell–Boltzmann distribution at the desired temperature. We therefore define a function for this task.

def maxwellboltzmannvel(temp):
global vx
global vy
global vz
nopart¼len(vx)
sigma¼np.sqrt(temp) #sqrt(kT/m)
vx¼np.random.normal(0.0,sigma,nopart)
vy¼np.random.normal(0.0,sigma,nopart)
vz¼np.random.normal(0.0,sigma,nopart)

# make sure that center of mass does not drift
vx -¼ sum(vx)/float(nopart)
vy -¼ sum(vy)/float(nopart)
vz -¼ sum(vz)/float(nopart)

# make sure that temperature is exactly wanted temperature
scalefactor¼np.sqrt(3.0*temp*nopart/sum (vx*vxþvy*vyþvz*vz))
vx *¼ scalefactor
vy *¼ scalefactor
vz *¼ scalefactor

This function is used in the example using the PYTHON command maxwellboltzmannvel(0.2) with T¼ 0.2. To check
the resulting velocities, we save them in a file, plot them, and/or visualize them in VPython with

arrow(pos¼vector(tx,ty,tz), axis¼vector(tvx,tvy,tvz),color¼color. green)

where tx,ty,tz correspond to the positions and
tvx,tvy,tvz correspond to the velocities. The implemen-
tation for this section is in KALJ_initposvel.py.41

D. Accelerations

As shown in Fig. 3, the accelerations ai are determined
after the initialization and at each time step. A user-defined
function for determining the accelerations is therefore rec-
ommended (see Problem 5). For the KA-LJ system, mi ¼ 1
and Fi;x as given in Eq. (6) (similarly Fi;y and Fi;z). We store
the accelerations in arrays ax, ay, az. To determine ai for
all i ¼ 1;…;N (in PYTHON the particle index i¼0, …,N-1),
we need a loop over i and implement the sum over neighbors
using an inner loop over j. From Newton’s third law,
Fij ¼ �Fji, we can reduce this double sum by a half.

def acceleration(x,y,z):
ax¼sp.zeros(N)
ay¼sp.zeros(N)
az¼sp.zeros(N)

for i in range(N-1):
…
for j in range(iþ1,N):
…
ax[i] þ¼…
ax[j] �¼…
…

To determine r2
ij, we use rijto2,

def acceleration(x,y,z):
ax¼sp.zeros(N)
…
for i in range(N-1):

xi¼x[i]
yi¼y[i]
zi¼z[i]
for j in range(iþ1,N):

xij¼xi-x[j]
yij¼yi-y[j]
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zij¼zi-z[j]
…
rijto2¼xij*xijþyij*yijþ zij*zij
…

In addition, we need to implement the minimum image convention as described in Sec. II C.

def acceleration(x,y,z):
global L
global Ldiv2
…

xij¼xi-x[j]
yij¼yi-y[j]
zij¼zi-z[j]
# minimum image convention
if xij > Ldiv2: xij �¼ L
elif xij < - Ldiv2: xij þ¼ L
if yij > Ldiv2: yij �¼ L
elif yij < - Ldiv2: yij þ¼ L
if zij > Ldiv2: zij �¼ L
elif zij < - Ldiv2: zij þ¼ L
rijto2¼xij*xij þ yij*yij þ zij*zij
…

Here, Ldiv2 is L=2:0, and we assume the particle positions satisfy 0 < x; y; z < L, which means that x, y, and z are
updated with periodic boundary conditions to stay within the central simulation box. Because the sum is only over neighbors
within 2:5r of a given particle, we add an if statement:

def acceleration(x,y,z):
…
rijto2¼xij*xij þ yij*yij þ zij*zij
if(rijto2<rcutto2):
onedivrijto2¼1.0/rijto2
fmagtmp¼ eps*(sigmato12*onedivrijto2**7 – 0.5*sigmato6*onedivrijto2**4)
ax[i] þ¼ fmagtmp*xij
ax[j] -¼ fmagtmp*xij
…

return 48*ax,48*ay,48*az

We avoided the additional costly computational determination of rij ¼
ffiffiffiffi
r2

ij

q
, and the factor 48 was multiplied only once via

matrix multiplication. This acceleration function is called in the main program with the statement

ax,ay,az ¼ acceleration(x,y,z)

The variables rcutto2 ¼ ðrcutÞ2, eps ¼ �; sigmato12 ¼ r12, and sigmato6 ¼ r6 are particle type dependent for the
binary Kob–Andersen model. We include this dependence with conditional statements
…
for i in range(N-1):
…
for j in range(iþ1,N):

…
if i < Na:

if j < Na: #AA
rcutto2¼rcutAAto2
sigmato12¼sigmaAAto12
sigmato6¼sigmaAAto6
eps ¼ epsAA

else: #AB
rcutto2¼rcutABto2
sigmato12¼sigmaABto12
sigmato6¼sigmaABto6
eps ¼ epsAB

else: #BB

These conditional statements cost computer time and can be avoided by replacing the i,j loops with three separatei,j loops.

# AA interactions
for i in range(Na-1):
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…
for j in range(iþ1,Na):
…
rijto2¼xij*xij þ yij*yij þ zij*zij
if(rijto2<rcutAAto2):

onedivrijto2¼1.0/rijto2
fmagtmp¼ epsAA*(sigmaAAto12*onediv rijto2**7 – 0.5*sigmaAAto6*onediv rijto2**4)
…

# AB interactions
for i in range(Na):
…
for j in range(Na,N):
…
rijto2¼xij*xij þ yij*yij þ zij*zij
if(rijto2<rcutABto2):
onedivrijto2¼1.0/rijto2
fmagtmp¼ epsAB*(sigmaABto12*onedivrijto2**7 – 0.5*sigmaABto6*onedivrijto2**4)
…

# BB interactions
for i in range(Na,N-1):
…
for j in range(iþ1,N):
…

return 48*ax,48*ay,48*az

E. NVE molecular dynamics simulation

We are now equipped to implement a NVE molecular
dynamics simulation (see Problem 6). We follow the flow
chart of Fig. 3 and after the initialization of rif g, vif g, and

aif g, add a loop over time steps and update the positions and
velocities within this loop. To update ri and vi for all i, we
use matrix operations instead of for loops, because matrix
operations are computationally faster in PYTHON. We need to
ensure periodic boundary conditions, which we implement
assuming that we start with 0 < xi; yi; zi � L and that during
each time step no particle moves further than L.

for tstep in range(1,nMDþ1):
# update positions
x þ¼ vx*Deltatþ0.5*ax*Deltatto2
y þ¼ vy*Deltatþ0.5*ay*Deltatto2
z þ¼ vz*Deltatþ0.5*az*Deltatto2
# periodic boundary conditions:
for i in range(N):
if x[i] > L: x[i] �¼ L
elif x[i] <¼ 0: x[i] þ¼ L
if y[i] > L: y[i] �¼ L
elif y[i] <¼ 0: y[i] þ¼ L
if z[i] > L: z[i] �¼ L
elif z[i] <¼ 0: z[i] þ¼ L

# update velocities
vx þ¼ 0.5*ax*Deltat
vy þ¼ 0.5*ay*Deltat
vz þ¼ 0.5*az*Deltat
ax,ay,az ¼ acceleration(x,y,z)
vx þ¼ 0.5*ax*Deltat
vy þ¼ 0.5*ay*Deltat
vz þ¼ 0.5*az*Deltat

Here, nMD ¼ nMD is the number of time steps,
Deltat ¼ Dt, and Deltatto2 ¼ ðDtÞ2.

The most time consuming part of the time loop is the
determination of aif g, because it includes the double loop

over i and j. In more optimized MD programs, the loop over
j would be significantly sped up by looping only over neigh-
bors of particle i (instead of over all particles j) via a neigh-
bor list.9 However, for our purpose of becoming familiar
with MD, we will do without a neighbor list.

F. PYTHON: More analysis and visualization tools

As a check of the program, we may either plot the trajecto-
ries of a specified particle (see Fig. 6) or make a scatter plot
of the initial and final configuration as shown in Fig. 7 for
z(x) after nMD ¼ 50 time steps with Dt ¼ 0:005.

For Fig. 6, we used the plot tools as described in Sec.
III B. To plot the y-component of particle 8, an array for
these values was defined before the time loop

yiplotarray ¼ np.zeros(nMD,float)

Fig. 6. The y-component of particle 8 as a function of time t (in LJ time unitsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mAr2

AA=�AA

p
) for the Kob–Andersen model of N¼ 1000 particles starting

with the initial configuration initposvel, and for 50 time steps with

Dt ¼ 0:005. (The largest time is 50� 0:005 ¼ 0:25.)
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This array was updated within the time loop after the time step

yiplotarray[tstep-1]¼y[7]
Note that particle 8 corresponds to index 7. After the time

loop, the following plotting commands are used:

tarray¼np.arange(Deltat,(nMDþ1)*Deltat,Deltat)
plt.rcParams[‘xtick.labelsize’]¼11
plt.rcParams[‘ytick.labelsize’]¼11
plt.figure()
plt.plot(tarray,yiplotarray,color¼‘blue’)
plt.xlabel(‘$t$’,fontsize¼15)

plt.ylabel(‘$y_8$’,fontsize¼15)
plt.show()

To make Fig. 7, we stored the initial configuration using

x0¼np.copy(x)
y0¼np.copy(y)
z0¼np.copy(z)

and used plt.scatter as described in Sec. III B.
We can also make an animation using VPython.40

Before the time loop, we create spheres (particles at their
positions) and arrows (velocities) as

s ¼ np.empty(N,sphere)

ar ¼ np.empty(N,arrow)

for i in range(N) :

if i < Na :

s[i] ¼ sphere(pos ¼ vector(x[i],y[i],z[i]),radius ¼ 0.5,color ¼ color.blue)

else :

s[i] ¼ sphere(pos ¼ vector(x[i],y[i],z[i]),radius ¼ 0.2,color ¼ color.red)

ar[i] ¼ arrow(pos ¼ vector(x[i],y[i],z[i]),axis ¼ vector(vx[i],vy[i],vz[i]),color ¼ color.green)

Within the time loop, we update the spheres and arrows as

rate(30)
for i in range(N):
s[i].pos ¼ vector(x[i],y[i],z[i])
ar[i].pos ¼ vector(x[i],y[i],z[i])
ar[i].axis ¼ vector(vx[i],vy[i],vz[i])

We can also plot the kinetic energy per particle Ekin=N,
potential energy per particle V/N, and the total energy per
particle Etot=N ¼ ðEkin þ VÞ=N as a function of time. To
include the minimum image convention and the cases AA,
AB, and BB, a user-defined function can be written similar to
acceleration of Sec. III D. The PYTHON program for

this section, KALJ_nve.py, including the accelerations in
Sec. III D, is available in Supplementary Material.41

As shown in Fig. 8, Etot=N exhibits very small variations
about a constant as expected for the NVE simulation.

G. NVT molecular dynamics simulation

We now implement a statistical temperature bath as
described in Sec. II E 1, which will allow readers to do simu-
lations at desired temperatures (see Problem 7).

Fig. 7. z(x) for the initial configuration in black small circles and for the final

configuration at t¼ 0.25 (in LJ time units
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mAr2

AA=�AA

p
) in lighter large circles.

Fig. 8. The total energy per particle Etot=N ¼ ðEkin þ VÞ=N as a function of

time (in LJ units) for a NVE simulation with nMD ¼ 50 and with

Dt ¼ 0:005. The value –6.161 on the top left indicates that the tick labels on

the vertical axis are Etot=N þ 6:151. The initial positions and velocities were

read in from the file initposvel (T¼ 0.5).
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We need to update all the velocities using the
Maxwell–Boltzmann distribution specified in Eqs. (11) and
(12). Because we already have implemented the Maxwell–
Boltzmann distribution in Sec. III C with the user-defined
function maxwellboltzmannvel, we can implement the
temperature bath with only two lines in the time loop after
the time step. For the case of computing new velocities,
every nstepBoltz time steps:

if (tstep % nstepBoltz) ¼¼ 0:
maxwellboltzmannvel(temperature)

You can test your program by plotting the temperature as a
function of time. The temperature can be determined by solving
Eq. (13) for T. Figure 9 shows an example of a MD simulation
using positions initially equilibrated at T¼ 0.5, and then runs at
T¼ 0.2. The PYTHON program, KALJ_nvt.py, for this section
is available in Supplementary Material.41

IV. IMPLEMENTATION OF MD SIMULATIONS

WITH LAMMPS

Readers might have noticed that the simulation we have dis-
cussed was for only 1000 particles and 50 time steps and took
painfully long. (The pain level depends on the computer.) To
shorten the computation time, there exist optimization techni-
ques such as nearest neighbor lists, as well as coding for multi-
ple processors. We now introduce the free and open source
software, LAMMPS. LAMMPS (Large-scale Atomic/Molecular
Massively Parallel Simulator) allows a very wide range of sim-
ulation techniques and physical systems. The LAMMPS website1

includes an overview, tutorials, well written manual pages, and
links for downloading it for a variety of operating systems.
The goal of this section is to help readers get started with
LAMMPS and is not a thorough introduction to LAMMPS.

A. Introduction to LAMMPS

In LAMMPS, the user chooses the simulation technique, sys-
tem, particle interactions, and parameters, all via an input

file. The main communication between the user and LAMMPS

occurs via the input file. To run LAMMPS with parallel code,
the simulation is started with commands such as

mpirun -np 16 lmp_mpi < inKALJ_nve> outLJnve

where -np 16 specifies the number of cores, lmp_mpi is
the name of the LAMMPS executable (which might have a dif-
ferent name depending on the computer), outLJnve is the
output file (see the following for a description on what infor-
mation is written into this file), and inKALJ_nve is the
input file. Becoming familiar with LAMMPS mainly requires
learning the commands in this input file. Further documenta-
tion can be found at Ref. 1. A set of input file examples is
available at Ref. 42. Appendix C describes how to run
LAMMPS on a shared computer using a batch system.

B. NVE simulation with LAMMPS

To run at fixed NVE the input file, inKALJ_nve, contains

#KALJ NVE,read data

atom_style atomic

boundary p p p #periodic boundary cond.in each direction

read_data initconf_T05eq.data #read data file(incl.mass)

pair_style lj=cut2.5 # Define interaction potential

pair_coeff 1 1 1.0 1.0 2.5 #type type eps sigma rcut

pair_coeff 1 2 1.5 0.80 2.0 #typeA typeB epsAB sigmaAB rcutAB=2.5*0:8=2.0

pair_coeff 2 2 0.5 0.88 2.2 #typeB typeB epsBB sigmaBB rcutBB=2.5*0.88=2.2

timestep 0.005 #Delta t

neighbor 0:3 bin

neigh_modify every 1 delay 0 check yes

dump mydump all custom 50 confdump.*.data id type x y z vx vy vz

dump_modify mydump sort id

# set numerical integrator

fix nve1 all nve # NVE; default is velocity verlet

run 100

Fig. 9. The time-dependence of the temperature for fixed NVT with T¼ 0.2,

nstepBoltz ¼ 10, and nMD ¼ 50 with Dt ¼ 0:005.
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Comments start with #. The statement atom_style
atomic specifies the type of particle, and boundary p p p
implements periodic boundary conditions. Not included in
this sample input file are the two possible commands,

units lj
dimension 3

because they are the default settings.
Initial positions and velocities are read from the file

initconf_T05eq.data. For the LAMMPS read_data
command, the specified file (here initconf_ T05eq.data)
contains

#bin. KALJ data file T¼0.5
1000 atoms
2 atom types

0 9.4 xlo xhi
0 9.4 ylo yhi
0 9.4 zlo zhi

Masses

1 1.0
2 1.0

Atoms

1 1 2.24399 2.3078 9.07631
2 1 8.54631 2.43192 8.67359
…
1000 2 6.99911 8.89427 6.16712

Velocities

1 0.195617 1.29979 -1.17318
2 -0.905996 0.0649236 0.246998
…
1000 -0.661298 -1.71996 2.00882

The first few lines specify the type of system, N¼ 1000
atoms with A and B particles, the box length, L¼ 9.4, and
the masses mA ¼ mB ¼ 1. The 1000 lines following Atoms
specify the particle index, i ¼ 1; 2;…; 1000 in the first col-
umn, the particle type in the second column; that is, 1 for
particles 1; 2;…; 800 (A-particles) and 2 for particles
801;…; 1000 (B-particles). Columns three, four, and five are
xi, yi, zi, respectively. The lines following Velocities
contain i, vx;i; vy;i, and vz;i.

In the input file inKALJ_nve, the particle interactions are
defined by the commands pair_style and pair_coeff.
Note that lj/cut corresponds to the forces of Eq. (6).
However, the potential energy excludes the term Vabðrcut

ab Þ of
Eq. (5). In LAMMPS, there is also the option of the truncated and
force shifted Lennard-Jones interactions lj/smooth/linear.
We chose lj/cut to allow for the direct comparison of the
PYTHON and LAMMPS simulations. In the file inKALJ_nve, the
line timestep 0.005 sets Dt ¼ 0:005. The commands
neighbor and neigh_ modify are parameters for the neigh-
bor list. The LAMMPS commands dump and dump_modify peri-
odically save snapshots of all atoms. In our example, for every
50 time steps (starting with t¼ 0), a file is written with file name
confdump.0.data, confdump.50.data, confdump.
100.data, and the content of each written file has columns i,
particle type (1 or 2), xi, yi, zi, vx;i; vy;i, and vz;i. In the dump
command, mydump is the LAMMPS-ID for this dump command.
It can be replaced with any name the reader chooses. The ID

allows further specifications for this dump as used in the com-
mand dump_modify mydump sort id, which ensures that
the lines in the dump files are sorted by particle index i.

The integration technique is set by the command fix nve1
all nve; nve1 is an ID for this fix command, all means that
this integration step is applied to all particles, and nve specifies
the NVE time step which is the velocity Verlet integration step
by default. The command run100 means that the simulation is
run for 100 time steps under these specified conditions.

The input file inKALJ_nve assumes that the initial positions
and velocities are available. For a small system such as
N¼ 1000, the initial positions may be generated by doing a sim-
ulation with PYTHON. However, for simulations with significantly
more particles, the initial positions and velocities may not be
available. If we instead initialize with uniformly randomly dis-
tributed positions and velocities from the Maxwell–Boltzmann
distribution, we replace in inKALJ_ nve the read_data
command with the following LAMMPS commands

region my_region block 0 9.4 0 9.4 0 9.4
create_box 2 my_region
create_atoms 1 random 800 229609 my_region
create_atoms 2 random 200 691203 my_region
mass 1 1
mass 2 1
velocity all create 0.5 92561 dist gaussian

The first two commands create the simulation box for two
types of atoms, the create_atoms commands initialize the
atom positions randomly drawn from a uniform distribution and
random number generator seeds 229609 and 691203 (any
positive integers), and the last command initializes the velocities
of all particles with the Maxwell– Boltzmann distribution for
temperature T¼ 0.5 and random number seed 92561.

As noted in Sec. II F, random positions can lead to very
large forces. These can be avoided by adding in
inKALJ_nve before the fix command the line

minimize 1.0e-4 1.0e-6 1000 1000

The files (inKALJ_nve, inKALJ_nve_rndposvel,
and initconf_T05eq.data) for this section and Secs.
IV A and IV B are available.41

C. NVT simulations

The default NVT simulation in LAMMPS uses the
Nos�e–Hoover algorithm (see Sec. II E 2, and Appendices A
and B).25,28,31,34,36,37 To implement this temperature bath in
LAMMPS, we replace the command fix nve1 all nve in the
input file with

fix nose all nvt temp 0.2 0.2 $(100.0*dt)

As described in Ref. 28, nose is the ID chosen by the
user for this fix command, all indicates that this fix is
applied to all atoms, nvt temp 0.2 0.2 sets the constant
temperature to T ¼ 0:2, and the last parameter sets the damp-
ing parameter as recommended in Ref. 28 to 100Dt.

Another way of achieving a temperature bath is to imple-
ment the statistical temperature bath as described in Sec.
II E 1. We use an implementation similar to that used in
PYTHON in Sec. III G. To compute random velocities periodi-
cally in time, we replace the command run 100. To com-
pute new velocities for every 10 time steps at temperature
T ¼ 0:2, the replacement line is
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run 100 pre no every 10 ‘‘velocity all create 0:2 $frndg dist gaussian’’

where ${rnd} is a user-defined LAMMPS variable corre-
sponding to a random reproducible integer; rnd needs to be
defined before the modified run command by

variable rndequal floor(random(1,100000,3259))

where we used the LAMMPS function random (see Ref. 43). To
test the program, readers may plot the measured temperature
as a function of time, TmeasðtÞ (similar to Fig. 9) and Etot=N as
a function of time (similar to Fig. 8). Such time dependent
functions can be computed and saved with thermo_style,

thermo_style custom step temp pe ke etotal

thermo 2 #print every 2 time steps

which saves data every 2 time steps in the output file, e.g.,
outLJnvt, the five variables: (number of time steps),
Tmeas; V=N; Ekin=N, and Etot=N. Note that the LAMMPS inter-
action lj/cut potential energy excludes the term Vabðrcut

ab Þ
of Eq. (5).

Because the output file includes the output from the
thermo command plus several lines with other information,
it is convenient to filter out the time dependent information.
This can be done in UNIX/LINUX. For example, to obtain Tmeas

as a function of time steps, use the UNIX command

gawk‘NF ¼¼ 5 && ! =[a� z,A� Z]=fprint $1,$2g’ outLJnvt

The resultant output can be redirected into a file or directly
piped into a plotting tool, e.g., by adding to gawk at the
end|xmgrace -pipe. To obtain Etot=N as a function of
the number of time steps, we replace the gawk command $2
by $5.

The LAMMPS input files, inKALJ_nvt_stat and
inKALJ_nvt_Nose, are available in Supplementary
Material.41

V. SIMULATION RUN SEQUENCE

Readers can now run molecular dynamics simulations
with PYTHON or LAMMPS. To illustrate what a simulation
sequence entails, we give a few examples of simulations for
the Kob–Andersen model.

The first set of papers on the Kob–Andersen model was on
the equilibrium properties of supercooled liquids.3,11,12

As described in Ref. 11, the system was first equilibrated at
T ¼ 5:0 and then simulated at successively lower tempera-
tures T ¼ 4:0; 3:0; 2:0; …; 0:475; 0:466. For each succes-
sive temperature, a configuration was taken from the
previously equilibrated temperature run, the temperature
bath (stochastic in this study) was applied for tequi time units,
followed by an NVE simulation run also for tequi time units,
and then followed by an NVE production run during which
the dynamics and structure of the system were determined.
This sequence of reaching successively lower temperatures
was applied to eight independent initial configurations.

Another example for a simulation sequence is to apply a
constant cooling rate as was done in Ref. 13 with an NPT
algorithm.

References 44–46 studied the Kob–Andersen model out of
equilibrium by first equilibrating the system at a high tem-
perature Ti and then quenching instantly to a lower tempera-
ture Tf . That is, a well equilibrated configuration from the
simulation at Ti was taken to be the initial configuration for
an NVT simulation at Tf . During the run at Tf , the structure
and dynamics of the system depend on the waiting time,
which is the time elapsed since the temperature quench.44–46

VI. ANALYSIS

In this section, we discuss the analysis of molecular
dynamics simulations. To give readers a taste of the wide
variety of analysis tools, we focus on two commonly studied
quantities: the radial distribution function and the mean
square displacement.

A. Radial distribution function

The radial distribution function, gðrÞ, is an example of a
structural quantity and is a measure of the density of
particles j at a distance r from a particle i, where r ¼ rij

¼ jri � rjj and radial symmetry is assumed. For a binary sys-
tem, gAAðrÞ; gBBðrÞ, and gABðrÞ are defined as

gaaðrÞ ¼
V

Na Na � 1ð Þ

�XNa

i¼1

XNa

j ¼ 1

j 6¼ i

d r � jri � rjj
	 
�

;

(18)

where a 2 fA;Bg, and (see Refs. 9 and 11)

gABðrÞ ¼
V

NANB

�XNA

i¼1

XNB

j¼1

d r � jri � rjj
	 
�

: (19)

Equations (18) and (19) include sums over particle pairs ði; jÞ
of the types specified. The Dirac delta function dðxÞ is the
number density for a point particle at x ¼ 0. The number
density of ði; jÞ pairs with distance r ¼ rij is normalized by
the global density. Therefore, gðrÞ characterizes the distribu-
tion of particle distances. The average h…i in Eqs. (18) and
(19) can be taken either by averaging over independent simu-
lation runs and/or via a time average by averaging measure-
ments at different times t. For the measurement of gðrÞ in
equilibrium, the system needs to be first equilibrated, and
therefore t > tequil for all measurements. For more advanced
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readers, the generalization of the radial distribution function
is the van Hove correlation function Gðr; tÞ.6,11

1. Radial distribution function with PYTHON

To determine a histogram of the rij distances, we use an
array as illustrated for gAA in Fig. 10. Before determining the
histogram, we set to zero the arrays gofrAAhist,

gofrBBhist, and gofrABhist. For each measurement,
we loop over all unique particle combinations (j > i), deter-
mine the minimum image distance (see Sec. III D), and add
to the counter of the corresponding bin.9

for i in range(0,N-1):
xi¼x[i]
…
for j in range(iþ1,N):
xij¼xi-x[j]
…
#minimum image convention
if xij > Ldiv2: xij -¼ L
…
rijto2¼xij*xij þ yij*yij þ zij*zij
rij¼sp.sqrt(rijto2)
grbin¼int(rij/grdelta)
if(grbin < grnbinmax):
if(i < Na):
if (j < Na): #AA
histgofrAA[grbin] þ¼ 2

else: #AB
histgofrAB[grbin] þ¼ 1

else: #BB
histgofrBB[grbin] þ¼ 2

Here, grdelta ¼ Dr is the bin size (see Fig. 10). If the
average is a time average, taken via measurements (assume
with user defined function histmeas) after tequil time
steps every nstepgofr time steps, we set the arrays
histgofrAA, etc., to zero before the time loop, and add
the conditional statement

if(tstep > tequil) and ((tstep % nstepgofr) ¼¼ 0) :

histmeas(x,y,z)

within the time loop and after the time step, that is in the flow chart of Fig. 3 after the “Time Step” box and within the “Loop
Over Time Steps,” so before the time loop repeats. We can then save the resulting radial distribution functions into a file of
name gofrAABBAB.data by adding to the program after the time loop

fileoutgofr ¼ open(‘‘gofrAABBAB.data’’,mode ¼ ‘w’)

for grbin in range(grnbinmax) :

rinner ¼ grbin*grdelta

router ¼ rinnerþ grdelta

shellvol ¼ (4.0*sp.pi=3.0)*(router**3� rinner**3)

gofrAA ¼ (L**3=(Na*(Na� 1)))*histgofrAA[grbin]=(shellvol*nmeas)

gofrBB ¼ (L**3=(Nb*(Nb� 1)))*histgofrBB[grbin]=(shellvol*nmeas)

gofrAB ¼ (L**3=(Na*Nb))*histgofrAB[grbin]=(shellvol*nmeas)

rmid ¼ rinner þ 0:5*grdelta

print(rmid,gofrAA,gofrBB,gofrAB,file ¼ fileoutgofr)

We have assumed that nmeas measurements of the histo-
gram were taken, and the variables are as shown in Fig. 10
with grdelta ¼ Dr. For the normalization, we determine
the shell volume/area, which is sketched in Fig. 10 as the
shaded area enclosed by the two large circles drawn with

thick lines. In three dimensions, the shell volume is
ð4p=3Þðr3

outer � r3
innerÞ.

The resulting radial distribution functions are shown in
Fig. 11 for which we ran the NVT simulation with N ¼ 1000
at T ¼ 0:5, starting with a well equilibrated configuration at

Fig. 10. Sketch of the determination of the radial distribution function. To

compute gAAðrÞ, a histogram of pair distances rij is stored in the array

gofrAAhist. The width of each bin is Dr. There are grnbinmax bins.
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T ¼ 0:5, running the simulation for 200 time steps and mea-
suring the histogram every nstepgofr¼25 time steps
with Dr ¼ 0:1. To measure distances up to L=2, we set

grnbinmax ¼ int(Ldiv2/grdelta). The PYTHON pro-
gram KALJ_nvt_gofr.py for this section is in
Supplementary Material.41

2. Interpretation of radial distribution function

Because the repulsive interaction Vðrij ! 0Þ ! 1 pre-
vents the complete overlap of two particles, gðrÞ ¼ 0. The
first peak of gðrÞ corresponds to the most likely radius of
the first shell of neighboring particles surrounding particle i.
The second peak of gðrÞ corresponds to the second nearest
neighbor shell, etc. (see Fig. 12). With increasing r, the
peaks become less and less pronounced, because the system
has, contrary to a crystal, no long range order. The peak posi-
tions of gAAðrÞ; gBBðrÞ, and gABðrÞ in Fig. 11 are consistent
with the results of Kob and Andersen (Fig. 9 of Ref. 11). For
their more quantitative study, they used longer simulation
runs, several independent simulation runs, and a smaller (and
probably more than one) value of Dr.

3. Radial distribution function with LAMMPS

We can determine the radial distribution functions with
LAMMPS by adding to the input file before the run command
the lines

compute rdfAABBAB all rdf 25 1 1 2 2 1 2

fix myrdf all ave/time 25 8 200c_rdfAABBAB[*] file gofrAABBAB.data mode vector

The compute command defines the measurements,
which are done during the run:

(1) rdfAABBAB is the user defined ID for this compute
command. This ID is used in the fix command with

c_rdfAABBAB, which means the ID is like a variable
name.

(2) all applies the command to all atoms.
(3) rdf computes the radial distribution function.
(4) 25 ¼ Nbin specifies Dr to be rcut=25. The following num-

bers specify the particle type combinations, that is,
gAA; gBB, and gAB.

(5) fix ave/time defines the time averaging. As described
in Ref. 47, the three numbers in our example specify that
the histogram is measured every Nevery ¼ 25 time
steps, Nrepeat ¼ 8 measurements are averaged (in
Sec. VI A 1 nmeas), and Nfreq ¼ 200 is the interval of
time steps at which the time average is printed. That is,
if the simulation run is nMD ¼ 600, then the averages of
gðrÞ are printed out three times, the first by averaging
measurements taken at time step 200; 175; 150;…; 25,
and the last one at time steps 600; 575; 550;…; 425.
Constraints on the choice of Nevery, Nrepeat, and
Nfreq are given in Ref. 47. In addition, compatible
times need to be chosen, if the LAMMPS command run
every is used, which we used for the statistical temper-
ature bath in Sec. IV C.

(6) [*] takes time averages for each of the variables of the
compute rdf command

(7) file gofrAABBAB.data specifies that the results are
saved in the file gofrAABBAB.data.

(8) mode vector is necessary, because gAAðrÞ, etc., are
vectors instead of scalars, with indices for the Nbin bins

Fig. 11. Radial pair distribution functions for the Kob–Andersen model with

N¼ 1000, L¼ 9.4 at T¼ 0.5. The vertical arrows indicate peak positions of

gAAðrÞ.

Fig. 12. Sketch of particle arrangements to illustrate the interpretation of the

radial distribution function. The first, second, third, and forth neighbor shells

are indicated with large circles (thick lines). The radii of these shells corre-

spond to the peak positions of the radial distribution function as indicated

with vertical arrows in Fig. 11 for the example of gAAðrÞ.
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r ¼ ½0;DrÞ; ½Dr; 2DrÞ;…. The entries in the file
gofrAABBAB.data are for each average time (here
200; 400; 600) starting with one line specifying the print
time in time steps, 200, etc., and Nevery, followed by
Nbin lines, each with columns for the bin number,
r; gAA; cAA, gBB; cBB; gAB; cAB, where cAA, etc., are coor-
dination numbers.

The LAMMPS input file inKALJ_T05_gofr is in
Supplementary Material.41

B. Mean square displacement

We next study how the system evolves as a function of
time. The mean square displacement9,11 captures how far
each particle moves during a time interval t

msd ¼ hr2ðtÞi ¼ hjrðtÞ � rð0Þj2i; (20)

where h…i corresponds to an average over particles and may
also include an average over independent simulation runs. In
the following discussion on the implementation of the mean
square displacement with PYTHON and mean square displace-
ment with LAMMPS, we average only over particles of one
type

hr2
aðtÞi ¼

1

Na

XNa

i¼1

jriðtÞ � rið0Þj2; (21)

where a 2 fA;Bg is the particle type.
A generalization of Eq. (20) is

hr2ðtw; tw þ tÞi ¼ hjrðtw þ tÞ � rðtwÞj2i: (22)

If the system is in equilibrium, hr2ðtw; tw þ tÞi is indepen-
dent of starting time tw and the average h…i may include an
average over tw.

1. Mean square displacement with PYTHON

It is suggested that readers do Problem 8 before reading
the following. We use arrays to store the positions at t ¼ 0
after the initialization of the positions with
x0 ¼ np:copyðxÞ, …. We cannot use periodic boundary
conditions to determine the mean square displacement and
instead use unwrapped coordinates and define the additional
arrays xu, yu, and zu which are initially also copied from
x, etc. These arrays are updated in the time step loop as in
Sec. III E

xu þ¼ vx*Deltatþ0.5*ax*Deltatto2
yu þ¼ vy*Deltatþ0.5*ay*Deltatto2
zu þ¼ vz*Deltatþ0.5*az*Deltatto2

Periodic boundary conditions are not applied to xu, yu,
and zu.

To save the results into the file msd.data, we add
before the time loop the statement fileoutmsd¼open
(“msd.data”,mode=‘w’). Measurements of the mean
square displacements are done within the time loop and after
the time step.

msdA¼0.0
for i in range(Na):
dx ¼ xu[i]-x0[i]

dy ¼ yu[i]-y0[i]
dz ¼ zu[i]-z0[i]
msdA þ¼ dx*dxþdy*dyþdz*dz

msdA/¼ float(Na)
msdB¼0.0
for i in range(Na,N):
dx ¼ xu[i]-x0[i]
dy ¼ yu[i]-y0[i]
dz ¼ zu[i]-z0[i]
msdB þ¼ dx*dxþdy*dyþdz*dz

msdB/¼ float(Nb)
print(tstep*Deltat,msdA, msdB,file¼fileoutmsd)

Figure 13 shows the resultant mean square displacement
as a function of time. After a steep increase for very small
times, hr2i reaches a plateau. The plateau value is larger for
the smaller B particles. For significantly longer times, hr2i
increases again. To quantify hr2ðtÞi, we need to record every
time step for short times and longer and longer time intervals
for larger times so that the data points on the horizontal axis
are evenly spaced on a log-log plot of hr2ðtÞi as shown in
Fig. 14 for a simulation using LAMMPS, which is needed for
such larger times. This is achieved by saving data at times
tk ¼ t0 � Ak. In terms of time steps,

tk

Dt
¼ t0

Dt
� Ak: (23)

For kmax print times, we solve Eq. (23) for A for the case of
k ¼ kmax, when ðtkmax

=DtÞ ¼ nMD is the total number of time
steps.

A ¼ nMD

t0=Dtð Þ

� �ð1=kmaxÞ
: (24)

The parameters needed for the calculation of hr2ðtÞi can be
set in PYTHON for the example of nMD ¼ 1000; ðt0=DtÞ ¼ 1:0,

Fig. 13. The mean square displacement hr2i as a function of time t (in LJ

units) for the Kob–Andersen model. The initial configuration is equilibrated

at T¼ 0.5. The results are for a NVE simulation for N¼ 1000 and for 1000

time steps (with a PYTHON program, recording hr2i every time step. After a

steep increase for very small times, hr2i reaches a plateau. For the interpreta-

tion of this figure see Sec. VI B 3.

416 Am. J. Phys., Vol. 88, No. 5, May 2020 Katharina Vollmayr-Lee 416



and kmax ¼ 60 with the following lines before the time step
loop:

kmsdmax ¼ 60
t0msd¼1.0
A¼(float(nMD)/t0msd)**(1.0/float(kmsdmax))
tmsd ¼ t0msd
tmsdnextint ¼ int(round(t0msd))

where t0msd ¼ ðt0=DtÞ, and tmsd ¼ ðtk=DtÞ. Within the
time step loop, we add the conditional statements

if tmsdnextint ¼¼ tstep:
# prepare when next msd-time

while(tmsdnextint ¼¼ tstep):
tmsd ¼ A*tmsd
tmsdnextint ¼ int(round(tmsd))

# do measurement
msdA¼0.0
for i in range(Na):
dx ¼ xu[i]-x0[i]

…

where… continues as above for the msd linear in time. The
while loop was added, because for short times, A*tmsd
might increase by less than the integer 1.

The PYTHON programs, KALJ_nve_msd_lin.py and
KALJ_nve_msd_log.py, for this section are available in
Supplementary Material.41

2. Mean square displacement with LAMMPS

The determination of the mean square displacement
requires a computation during the simulation run. This com-
putation can be done in LAMMPS with the compute com-
mand. (Another example of the compute command is in
Sec. VI A 3 for the computation of gðrÞ.) In Eq. (21), the
sum is over only A or B particles. Thus, in the LAMMPS input
script, we need to define these groups of atoms, which we
then use for the following compute commands:

group A type 1
group B type 2
compute msdA A msd
compute msdB B msd

If we wish to save the mean square displacement every
time step, or more generally with linear time averaging, we
can use the fix ave/time command as described in Sec.
VI A 3. To write hr2

Ai and hr2
Bi for every time step into files

msdA.data and msdB.data, respectively, we use the
commands

fix msdAfix A ave=time 1 1 1 c_msdA[4] file msdA.data

fix msdBfix B ave=time 1 1 1 c_msdB[4] file msdB.data

The resulting files can be used to make a figure. However, as will become clear in Sec. VI B 3, if long simulation runs of the
order of 107 time steps are desired, saving in logarithmic time becomes necessary (see Sec. VI B 1). Logarithmic printing can
be achieved by using the function43,48 logfreq3 to define the print times tmsd with the variable command and then by
using thermo_style and thermo (see Sec. IV C) to print the mean square displacements into the output file together with
other scalar quantities which depend on time. The previous fix ave/time commands are replaced by

variable tmsd equal logfreq3(1,200,10000000)

variable tLJ equal step*dt

thermo_style custom v_tLJ c_msdA[4] c_msdB[4] pe etotal

thermo v_tmsd

We also defined the variable tLJ for the printing of t in LJ units (instead of time steps).49

Another way to obtain information logarithmic in time is to print all unwrapped particle positions during the LAMMPS

simulation,

variable tmsd equal logfreq3(1,200,10000000)

dump msddump all custom 5000 posudump.*.data id xu yu zu

dump_modify msddump sort id every v_tmsd

Fig. 14. The mean square displacement hr2i as a function of the time t (in LJ

units) for the Kob–Andersen model. The initial configuration is equilibrated

at T¼ 0.5. The results are for the NVE simulation with N¼ 1000 and for 107

time steps (with LAMMPS and saving hr2i in logarithmic intervals).
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and then analyze the resulting posudump* files with
PYTHON or another programming language. The LAMMPS input
files, inKALJ_nve_msd_lin, inKALJ_nve_msd_log,
and inKALJ_nve_msd_logdumps, for this section are in
Supplementary Material.41

3. Interpretation of mean square displacement

Figure 14 shows hr2
Ai and hr2

Bi obtained with thermo_
style as described in Sec. VI B 2.

For very short times t, we can approximate riðtÞ ¼ rið0Þ
þ við0Þ t and write Eq. (21) for small t as

hr2
ai ¼

1

Na

XNa

i¼1

jvið0Þ tj2 ¼ C t2: (25)

We see that ln ðhr2
aiÞ ¼ ln Cþ 2 ln t, corresponding to a line with

slope 2 as indicated by the dashed line at short times in Fig. 14.
For intermediate times, hr2

ai reaches a plateau. This pla-
teau is typical for glass formers at high enough density at
which each particle is trapped in a cage formed by its neigh-
boring particles. The smaller B particles reach a higher pla-
teau. For long enough times, each particle escapes its cage of
neighbors and therefore hr2

ai increases. At very large times,
the dynamics of many successive escape events can be mod-
eled as a random walk. For a random walk in d dimensions
of step size a and an equal probability to step right or left,
we have after Nstep steps19

h Drð Þ2i ¼ da2Nstep: (26)

Equation (26) implies that hr2
ai / t and therefore a log-log

plot yields a line of slope 1 as indicated by a dashed line at
long times in Fig. 14.

VII. SUGGESTED PROBLEMS

(1) Determine Fi;x ¼ �dV=dxi.

(2) Sketch the flow chart for the molecular dynamics simu-
lation in Fig. 1 in more detail, specifying the order of
the determination of positions, velocities, accelerations,
and the application of periodic boundary conditions.

(3) To derive Eq. (13), first determine h1=2 miv2
i;xi

¼
Ð1
�1 1=2 miv2

i;xPðvi;xÞdvi;x (the result is a special case
of the equipartition theorem), and then obtain Eq. (13).

(4) Write a program that places the N particles on lattice
sites of a simple cubic lattice.

(5) Outline the implementation of the acceleration function
and program it with PYTHON.

(6) Use Fig. 3 to add to your PYTHON program the loop over
time steps and update positions and velocities.

(7) Use Sec. II E 1 to add to your PYTHON program the sto-
chastic temperature bath algorithm.

(8) Add to your NVE PYTHON program the determination of
the mean square displacement and save the results in a
file.

(9) For the ð3N þ 1Þ generalized coordinates q ¼ ð rif g; sÞ
determine the conjugate momenta pi and ps and then
the Hamiltonian.

(10) To simulate a system of sheared bubbles, Durian50,51

introduced a model such that bubble i of radius Ri inter-
acts with bubbles j of radius Rj as

Vij ¼
F0

2
1� rij

Ri þ Rjð Þ

� �2

; (27)

for all j with rij � ðRi þ RjÞ. Determine the force Fij on
particle i due to particle j. The solution is Eq. (1) in
Ref. 51.

(11) Compute the radial distribution functions gab for (a)
temperatures 0:1 � T � 3:0 and (b) densities
0:1 � N=L3 � 2:0. For each parameter set, first equili-
brate before measuring gab. Choose Dr � 0:05.
In PYTHON, you can include a parameter in the name of
the output file. For example, to use the temperature
in the name we can write.

fileoutgofr ¼ open(’’gofrAABBAB’’þstr(temperature)þ’’.data’’,mode ¼ ’w’)

Interpret your results. Reference 11 includes gab for
0:466 � T � 5:0 in Fig. 9 as well as a discussion of its
behavior.
(12) Compute the mean square displacement given in Eq.

(22). Average over each type of particle separately, that
is, compute

hr2
aðtw; tw þ tÞi ¼ 1

Na

XNa

i¼1

jriðtw þ tÞ � riðtwÞj2: (28)

Use several values of tw. For example, in a run with
nMD ¼ 1000, use tw ¼ 0; 10Dt; 100Dt; 500Dt. First do a
NVE simulation as done in Sec. VI B. Use as initial
configuration the provided file initposvel (for
PYTHON) or initconf_T05eq.data (for LAMMPS),
which is well equilibrated at T ¼ 0:5. Make a plot of

hr2
aðtw; tw þ tÞi as a function of the time difference t for

different values of tw. Interpret your results. Then,

using the same initial configuration file, do a NVT sim-

ulation at T ¼ 0:2. Make again a plot of hr2
aðtw; tw þ tÞi

as a function of the time difference t for different values
of tw. Compare your plots for the NVE run (T ¼ 0:5)
and the NVT run at T ¼ 0:2 and interpret your results.

(13) Determine the mean square displacement hr2
aðtÞi of the

KA-LJ system for N ¼ 1000; L ¼ 9:4 at temperatures
3:0; 2:0; 1:0; 0:8; 0:6; 0:55; 0:5; and 0:475 (a subset of
the temperatures studied by Kob and Andersen.11 Be
sure to equilibrate the system sufficiently at each inves-
tigated temperature. As in Ref. 11, start at T ¼ 3:0,
apply a temperature bath for nequi;T¼3 time steps, con-

tinue with a NVE simulation run of nequi;T¼3 time steps,
use the resulting configuration as initial configuration
for the production run at T ¼ 3:0 and also as initial con-
figuration of the next lower temperature, T ¼ 2:0.
Apply the temperature bath at T ¼ 2:0 for nequi;T¼2

time steps, followed by a NVE simulation run of
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nequi;T¼2 time steps, etc. For Dt ¼ 0:0025, we recom-

mend nequi;T ¼ 106 time steps for T � 0:8, nequi;T

¼ 2� 106 for 0:6 � T � 0:55, and nequi;T ¼ 5� 106

for 0:5 � T � 0:475. When doing a sequence of NVT
and NVE runs, use the LAMMPS command unfix before
applying the next fix command. To be able to apply
logarithmic printing of the mean square displacement
as in Sec. VI B 2, you may also use the LAMMPS com-
mand reset_timestep 0. To ensure that the neigh-
bor list is updated sufficiently frequently, use the
LAMMPS command neighbor 0.2 bin (instead of
neighbor 0.3 bin). If the Nos�e temperature bath is
used, we recommend for T � 0:5 to scale the velocities
after the NVT run such that the total energy per particle
of the NVE run is equal to the average total energy per
particle hEtot=Ni during the NVT run with the (time)
average taken near the end of the NVT run. Velocity
scaling can be achieved with the LAMMPS command
velocity all scale ${scalene}, where
{scaleEn} corresponds to the temperature corre-
sponding to the time averaged total energy per particle
obtained, for example, with the LAMMPS commands

variable etot equal keþpe
fix aveEn all ave/time15000002000000v_etot
variable scaleEn equal (2*(f_aveEn-pe))/3

These commands need to be before the run command
of the NVT run. Interpret the resulting mean square dis-
placements and compare your results with Fig. 2 of
Ref. 11, keeping in mind, that we use the time unitffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mAr2
AA=�AA

p
, whereas Kob and Andersen use the time

unit
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mAr2

AA=48�AA

p
. For large times t, the mean square

displacement depends on t as (see Ref. 19)

hr2
aðtÞi ¼ 2dDat; (29)

where Da is the diffusion constant for particles
a 2 fA;Bg. Determine DaðTÞ by fitting Eq. (29) to
hr2

aðtÞi. Fitting can be done, for example, with PYTHON or
gnuplot. For each fit, check the goodness of the fit by
eye by plotting your data and the fitting curve. To ensure
that Eq. (29) is a good approximation adjust the t-range
used for the fitting accordingly. Use the resulting fit
parameters to obtain DAðTÞ and DBðTÞ. As done in Ref.
11, fit the predictions from mode-coupling theory

Da ¼ A T � Tcð Þca ; (30)

and check your fits with a log-log plot of Da as a func-
tion of ðT � TcÞ. Another prediction for DaðTÞ is the
Vogel–Fulcher law

Da ¼ C exp �B=ðT � TVF½ �: (31)

Compare your results with Fig. 3 of Ref. 11 which
shows 6Da (not Da (Ref. 52)) with diffusion unit

rAA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48�AA=mA

p
(instead of rAA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�AA=mA

p
as for your

results). The results are discussed in Ref. 11.
(14) Simulate the binary Lennard-Jones system in two

instead of three dimensions. Choose the same density
N=L2 ¼ 1:204 with N ¼ 1000 and L ¼ 28.82. Either
start with random positions and velocities from a
Maxwell–Boltzmann distribution, or use the input file

configurations initposvel_2d_lammps.data
(for LAMMPS) or initposvel_2d_python.data
(for PYTHON). Both are a result of simulations at T ¼ 0.2
and are provided in Supplementary Material.41 Do an
NVE or NVT simulation for T < 0.5. Remember to
replace 3 by 2 in Eq. (13) and adjust the variable
shellvol in the PYTHON computation of the radial dis-
tribution function. For LAMMPS, follow the instructions
in Ref. 53; you may set zi ¼ vi;z ¼ 0:0 with the LAMMPS

command set atom 1000 z 0.0 vz 0.0. Make a
scatter plot of the resulting particle positions and com-
pute the radial distribution function. Compare with the
three-dimensional results. An interpretation of your
results is given in Ref. 54, which introduced the two-
dimensional Kob–Andersen Lennard-Jones model with
the particle ratio NA : NB ¼ 65 : 35 instead of 80 : 20.
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APPENDIX A: HAMILTONIAN FORMALISM FOR

NOS�E–HOOVER THERMOSTAT

We motivate Eqs. (14) and (15) using the Hamiltonian for-
malism. We follow the derivation given in Chap. 6 of Ref.
31 and present a shortened version here for simplicity. For a
complete derivation, see Refs. 29, 31, and 33.

We start with the Lagrangian

L ¼
XN

i¼1

1

2
mi s _rið Þ2 � V frigð Þ

þ 1

2
Q _s2 � XkBT ln s;

(A1)

where X ¼ dN (see Problem 9). The momenta are pi;x ¼
@L=@ _ri;x ¼ mis

2 _ri;x and similarly for pi;y and pi;z. Therefore,

pi ¼ mis
2 _ri: (A2)

Similarly, ps ¼ @L=@ _s ¼ Q _s. We apply Hamiltonian
mechanics30 using as generalized coordinates qk for k ¼ 1;
2;…3N þ 1, where the first 3N values of k label qk ¼ ri;l for
particles i ¼ 1;…;N and l 2 fx; y; zg and q3Nþ1 ¼ s. The
corresponding Hamiltonian is

H ¼
X3Nþ1

k¼1

_qk pk � L; (A3)

¼
XN

i¼1

p2
i

2mis2
þ V frigð Þ þ p2

s

2Q
þ XkBT ln s: (A4)
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We use Hamilton’s equations _qk ¼ @H=@pk and _pk ¼ �@H=
@qk to obtain the equations of motion

_ri ¼
@H
@pi

¼ pi

mis2
; (A5)

_s ¼ @H
@ps
¼ ps

Q
; (A6)

_pi ¼ �
@H
@ri
¼ �riV ¼ Fi; (A7)

_ps ¼ �
@H
@s
¼
XN

i¼1

p2
i

mis3
� XkBT

s
: (A8)

We follow Frenkel and Smit31 and switch to “real variables”
~ri; ~pi; ~s, ~ps; d~t, corresponding to a rescaling of the time

~ri ¼ ri; (A9)

~pi ¼
pi

s
; (A10)

~s ¼ s; (A11)

~ps ¼
ps

s
; (A12)

d~t ¼ dt

s
: (A13)

We also define

n ¼ ds

dt
¼ d ln ~s

d~t
: (A14)

The equations of motion for the real variables are

d~ri

d~t
¼ dri

1

s
dt
¼ s

pi

mis2
¼

~pi

mi
; (A15)

d~pi

d~t
¼ s

d

dt

pi

s

� �
¼ dpi

dt
� pi

ds

dt

� �
s
¼ Fi � ~pin; (A16)

dn
d~t
¼ d

d~t

ds

dt

� �
¼ s

d

dt

ps

Q

� �
;

¼ s

Q

XN

i¼1

p2
i

mis3
� XkBT

s

 !
¼ 1

Q

XN

i¼1

~p2
i

mi
� XkBT

 !
:

(A17)

By using Eq. (A4), the Hamiltonian in terms of real variables
can be expressed as

H ¼
XN

i¼1

~p2
i

2mi
þ V frigð Þ þ Q

2
n2 þ XkBT ln ~s: (A18)

For the equations of motion (A15)–(A17), the constant of
motion is given in Eq. (A18). Note that Eqs. (A16) and
(A17) are the same as Eqs. (14) and (15) by replacing in Eqs.
(A16) and (A17) ~ri; ~s; ~pi; ~ps with ri; s; pi; ps; that is, we do a
(confusing) change of notation for the sake of simplicity in
Sec. II E 2.

APPENDIX B: FOX–ANDERSON INTEGRATION OF

THE NOS�E-HOOVER EQUATIONS

We cannot directly apply the velocity-Verlet algorithm of
Eqs. (7) and (8) to numerically integrate Eqs. (14) and (15),
because the acceleration aiðtþ DtÞ depends on the velocity
viðtþ DtÞ. We use instead the more general velocity Verlet
integration technique of Fox and Andersen38 and apply it to
the NVT Nos�e-Hoover equations of motion. As described in
Appendix A of Ref. 38, this technique is applicable when the
form of the equations of motion is

€xðtÞ ¼ f xðtÞ; _xðtÞ; yðtÞ; _yðtÞ½ �; (B1)

€yðtÞ ¼ g xðtÞ; _xðtÞ; yðtÞ½ �: (B2)

These equations can be expressed as [see Ref. 38, Eq. (A4)]

xðtþ DtÞ ¼ xðtÞ þ _xðtÞDt

þ 0:5f xðtÞ; _xðtÞ; yðtÞ; _yðtÞ½ � Dtð Þ2; (B3)

yðtþ DtÞ ¼ yðtÞ þ _yðtÞDtþ 0:5g xðtÞ; _xðtÞ; yðtÞ½ � Dtð Þ2;
(B4)

_y approxðtþDtÞ¼ _yðtÞþ0:5 g xðtÞ; _xðtÞ;yðtÞ½ �



þg xðtþDtÞ; _xðtÞ;yðtþDtÞ½ �gDt; (B5)

_xðtþDtÞ ¼ _xðtÞ þ 0:5ff xðtÞ; _xðtÞ;yðtÞ; _yðtÞ½ �
þ f xðtþDtÞ; _xðtþDtÞ;yðtþDtÞ;½
_y approxðtþDtÞ�gDt; (B6)

_yðtþ DtÞ ¼ _yðtÞ þ 0:5 g xðtÞ; _xðtÞ; yðtÞ½ �



þ g xðtþ DtÞ; _xðtþ DtÞ; yðtþ DtÞ½ �gDt:

(B7)

As Fox and Andersen note, Eq. (B6) contains _xðtþ DtÞ on
both sides. For the case of Nos�e–Hoover equations, Eq. (B6)
can be solved for _xðtþ DtÞ. We write

x ¼ rif g; (B8)

y ¼ ln s; (B9)

_y ¼ n; (B10)

€y ¼ _n; (B11)

f ¼ Fi

mi
� n _ri

� �
; (B12)

g ¼ 1

Q

XN

i¼1

mi _r
2
i � XkBT

 !
; (B13)

and see that Eqs. (B3)–(B5) correspond to

riðtþ DtÞ ¼ riðtÞ þ riðtÞDtþ 0:5
FiðtÞ
mi
� n riðtÞ

� �
Dtð Þ2;

(B14)

lnsðtþDtÞ¼ lnsðtÞþnðtÞDt

þ 1

2Q

XN

i¼1

mi _r
2
i ðtÞ�XkBT

 !
Dtð Þ2; (B15)
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napproxðtþDtÞ¼nðtÞþDt

Q

XN

i¼1

mi _r
2
i ðtÞ�XkBT

" #
: (B16)

Equation (B6) corresponds to

_riðtþDtÞ¼ _riðtÞþ
1

2

�
FiðtÞ
mi
�nðtÞ _riðtÞ

� �

þ FiðtþDtÞ
mi

�napproxðtþDtÞ _riðtþDtÞ
� ��

Dt;

(B17)

which can be solved for _riðtþ DtÞ

_riðtþ DtÞ ¼
�

_riðtÞ þ
Dt

2

�
FiðtÞ
mi
� nðtÞ _riðtÞ

þ Fiðtþ DtÞ
mi

��
1þ Dt

2
napproxðtþ DtÞ

� ��1

:

(B18)

We use a Taylor series and keep terms up to order ðDtÞ2 and
obtain Eq. (A9) of Ref. 55

_riðtþ DtÞ ¼ _riðtÞ þ
Dt

2

�
FiðtÞ þ Fiðtþ DtÞ

mi

� nðtÞ þ napproxðtþ DtÞ
� �

_riðtÞ
�

� 1� Dt

2
napproxðtþ DtÞ

� �
: (B19)

APPENDIX C: BATCH SYSTEM

This appendix is necessary only if the reader uses a super-
computer with a batch system. Often, supercomputers with
mpirun do not allow the direct, interactive running of pro-
grams. Instead, a batch system is used to provide computing
power to many users who run many and/or long (hours–
months) simulations. In this case, an extra step is needed.
That is, the user writes a batch-script, which contains the
mpirun command, and submits a run via this script. Some
of these script commands are supercomputer specific.

An example of a slurm batch-script is

#!/bin/bash
#SBATCH -p short # partition (queue)
#SBATCH -n 16 # number of cores
#SBATCH --job-name¼“ljLammps” # job name
#SBATCH -o slurm.%N.%j.out # STDOUT
#SBATCH -e slurm.%N.%j.err # STDERR
module load lammps
# sometimes mpi module needs to be loaded
mpirun -np 16 lmp_mpi < inKALJ_nve > outLJnve

This script, with file name runKALJ_slurm.sh, is sub-
mitted with slurm using the command

sbatch runKALJ_slurm.sh

We can look at submitted jobs using squeue and if nec-
essary, kill a submitted job with scancel. This script
runKALJ_slurm.sh is available.41
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