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The structure of a uniform simple liquid is related to that of a reference fluid with purely repulsive
intermolecular forces in a self-consistently determined external referencéERR ¢r. The ERF

can be separated into a harshly repulsive gaig generated by the repulsive core of a reference
particle fixed at the origin and a more slowly varying pég; arising from a mean field treatment

of the attractive forces. We use a generalized linear response method to calculate the reference fluid
structure, first determining the response to the smootheifgarof the ERF alone, followed by the
response to the harshly repulsive part. Both steps can be carried out very accurately, as confirmed
by computer simulations, and good agreement with the structure of the full Lennard-Jones fluid is
found. © 2001 American Institute of Physic§DOI: 10.1063/1.1329881

I. INTRODUCTION ent applications where the ERF is large and attractive forces
In this paper we describe a new and physically moti_strongly influence the structure, including the liquid-vapor

vated way to determine the structure of uniform fluids, basednterface and the str-ucture.of fluids near.hard walls. In these
on a mean field treatment of the attractive intermoleculat@S€S conventiondsingle integral equation methods have

interactions. To apply this approximation to a general non9'ven poor results. _ _ o
uniform system, attractive interactions are replaced by a spa- [N this paper we consider a different limit, that of the
tially varying single particle “molecular field” potential, uniform LJ fluid. Here attractive forces produce relatively
chosen to take account of variations in the average attractiv@mall structural changes at high density and integral equation
energy density in different parts of the systérSince the methods have had their greatest successes. Indeed, in the
attractive interactions usually operate over an extende@implest picture, the attractive forces on a given particle from
range, it seems plausible that an averaged description &Ppositely situated neighbors essentiatgncef in typical
given by mean field theory could often provide a usefulhigh density configurations, and the structure of the dense
simplification. uniform LJ fluid is rather well approximated by that of a
However, in real liquids, additional very important “ex- uniform reference fluid at the same densifjhe theoretical
cluded volume” correlations are generated by the shortchallenge is to improve on this rather accurate starting point
ranged and harshly repulsive intermolecular forcéshese  at high density and to describe the larger structural changes
cannot be accurately described using the same mean fieldtractive interactions induce at lower densities.
averaging appropriate for the longer ranged attractive forces. From this perspective the uniform LJ fluid provides an
Despite this additional complexity, the use of mean fieldimportant and nontrivial test of our general approach. It is
theory allows us to consider an inherently simpler system: aot clear that mean field averaging along with the approxi-
nonuniform reference fluidThis consists of particles inter- mate methods’ we use to calculate reference fluid structure
acting only with repulsive intermolecular forces but in the will be accurate enough to determine the small but subtle
presence of areffective reference fieldERF) chosen self-  changes induced by attractive interactions in the highly os-
consistently to take account of the locally averaged effects oillatory structure of uniform fluids at high density or the
attractive interactions as well as any imposed externamore substantial changes seen at lower densities. Indeed, un-
field.4_6 The uniform reference fluid is stable over the entirenke the previous app”cationS, it is difficult to guess even
range of densities from vapor to liquid, and its structure inqualitative features of the ERF.
the presence of an appropriately chosen ERF approximates The plan of the paper is the following. In Sec. Il we
that of the original system. define the nonuniform reference fluid and the formal equa-
In previous work™® we showed how these ideas can betjon determining the ERF. In Sec. Ill we discuss the usual
used tp give an accurate descr_lpt_lon of the structgre of & ean field approximation for the ERF and suggest a new
nonuniform Lennard-Jone&J) fluid in a number of differ-  generalized equation that incorporates exact results at low
density.
dElectronic mail: jdw@ipst.umd.edu In Sec. IV we first use computer simulations to carry out

0021-9606/2001/114(1)/416/10/$18.00 416 © 2001 American Institute of Physics

Downloaded 31 Dec 2011 to 134.82.7.18. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



J. Chem. Phys., Vol. 114, No. 1, 1 January 2001 Structure of uniform fluids 417

the determination of structure essentially exactly. This al-  full system reference system repulsive system
lows us to test the accuracy of the basic mean field descrip-
tion of the ERF without any further approximations. We gen- ‘. .' QO QO QQ OQ
erally find quite satisfactory results though small errors in the ..’ .‘>w OOO Q e OO ‘)“0
simplest mean field determination of the ERF can be seen at . a . OQ® C} OQQ O
high density. Q'@ (. 70O OX 70
In Sec. V we introduce a new theory to calculate self- @ @ ¢ (O OTP:Q O @&:Q
consistently both the ERF and the associated structure in the . O Q O O
reference fluid, using a generalization of a physically moti- 2) b) 9
vated procedure first used to calculate the structure of a LJ
fluid near a hard wafl. The key idea is to divide the ERF into FiG. 1. Model systems considereth) is the full LJ system with a LJ
rapidly and slowly varying parts. We determine the responseatrticle fixed at the origin as indicated by the dashed circle. The interaction
of the reference fluid density to each component of the ERRVith the other particles can be described by an external fibldlr)
. . . . . =w(r). (b) is the nonuniform reference system with the special wall par-
In successive StepS, USIng. approprlate methOdS n ea.Ch Stﬁ&e fixed at the origin with interactionf;R(r). (C) is the original WCA
that can accurately describe the very different density rerepuisive force system with pair potentiah(r). Here the fixed particle
sponses, as discussed in Secs. VB and V C. In Sec. VI wiateracts with the other particles throughy(r) =u(r).
discuss the results of the method and comparison to simula-

tions. The theory generally gives quite satisfactory resultsgjpie that such a choice for the fiellg can be made in

However, at the highest densities some small errors can bﬁrinciple.” In practice we will make approximate choices
seen arising from the simple mean field treatment of attracy,qtivated by mean field ideas.

tive interactions. At lower densities, our simplest approxima- Using this perspective, let us consider the problem of

tions give lrles_ults comparable to the best integral equatioetermining the effects of attractive forces on the structure of

method51. " Final remarks are given in Seg. VII. Some tech- niform fluids. The simplest approximation by Weeks,

nical details are presented in the Appendices. Chandler and AndersofWCA) assumes complete cancella-
tion of attractive forces and approximates the radial distribu-
tion functiong(r) of the uniform LJ fluid by theyy(r) of the

II. NONUNIEORM REFERENCE ELUID uniform repulsive force fluid at the same density. To im-
prove on this, we make use of the exact reldttdmetween

We first consider the case where fluid particles interacpBg(r) in the uniform LJ fluid and the singlet density in a

with a known external fieldp(r) and through the LJ pair nonuniform fluid with a particle fixed at,, which we take to

potentialw(r)=uo(r)+u,(r), separated as usdahto rap-  be the origin of our coordinate system:

idly and slowly varying parts so that all the repulsive inter- ) ]

molecular forces arise from, and all the attractive forces PP9(r)=p(rilroil¢=01) = p(ri;[La). @)

from u;.'? We assume that the external figJdr)= ¢(r) Here p(rq|ro;[ #=0]) is the conditional singlet density —

+ ¢4(r) can be separated in a similar way, where the subthe density in zero external field gt given that a particle is

script O denotes a harshly repulsive interaction and the sulfixed atr,. By symmetry this depends only on the radial

script 1 a much more slowly varying interaction usually as-distancer,;=|r,| from the fixed “wall particle” atr,=0.

sociated with attractive forces. We consider a grandThis in turn must equal the nonuniform singlet density in-

ensemble with fixed chemical potential®, which deter- duced by the external fielgh 5(r;)=w(r).

minesp®, the uniform fluid density whegp=0. By choosinggg(ry) in Eqg. (1) to fit the nonuniform LJ

We relate the structure of the nonuniform LJ system todensityp(r;[ ¢ 3]), we obtain anonuniform reference sys-

that of a simplemonuniform reference flujt ® with only  temin which the densityp,(ry;[¢g]) is modified by the

repulsive intermolecular pair interactiong(r;;) (equal to effects of attractive forces. In particular this can be used in

the LJ repulsionsin a different ERF¢g(r). The replace- Eq. (2) to calculate the radial distribution functia(r,) of

ment of attractive pair interactions by an approximate locathe uniform LJ system. The original WCA approximation

“molecular field” is an essential step in mean field theory, arises from the particular choiagg=u,. See Fig. 1.

but we can think of other more general prescriptions for

oRr(r). Here we determinebg(r) formally by the require- Ill. MEAN FIELD APPROXIMATION FOR THE ERF
the full LJ fluid:’ hierarchy and arrived at a generalized mean field equation
po(F:[brl) =p(r:[S]). (1) for the ERF by a series of physically motivated approxima-

tions. We will not repeat these arguments here and instead
The subscript 0 in Eq1) reminds us that the reference focus on the simplest final approximation, tmelecular field
system pair interactions arise only framg and the notation equationfor the ERF, which proved surprisingly accurate in
[ #r] indicates that all distribution functions are functionals a number of different applications. This is just a transcription
of the appropriate external field. Singér;[ ¢]) is a physi-  of the usual molecular field equation for the Ising mddel
cally realizable distribution function, and the reference fluida continuum fluid with attractive interactiong(r) and can
is stable over a wide range of densities, it seems very plause immediately written down:
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The effective fieldp™ at a particular distance, from the 15
fixed wall particle is comprised of the bare fielth 5(r4)
from the fixed particle plus the integral over all positians (r)
of the attractive interactionsi;(r,,) from other particles
weighted by the deviation of the nonuniform reference den-
sity po(ro;[#NT]) from its limiting value pB. Use of the
density deviation ensures thaf" vanishes at large; . N
Let ¢5 denote the second term on the right in E8): 0.5 |

pr0= [ oo D= Pl (@

It provides an estimate of the averaged effects of attractive

pair interactions arising from the othénobile) particles in

the full LJ fluid at a distance; from a particle fixed at the FiG. 2. Densities with a particle fixed at the origin as determined by MD

origin. Because of the convolution with the slowly varying simulations for the three systems in Fig. 1Tat 1.35 andp®=0.78. The

attractive potential “Weighting function’ul(rlz) in Eq. (4) inset gives the difference in density between the LJ fluid and the WCA

. . . ’ repulsive force fluid as determined by simulations and by self-consistent

d’S(rl) e)_(tends SmOOtth Int,\?,:the repmswe core_ region of thesolution of the mean field equatidB), again using simulation data.

wall particle wherepy(r1;[ ¢g 1) vanishes. Outside the core

it is a smooth, basically repulsive and relatively slowly vary-

ing interaction even whemg(ry;[¢n"]) itself has pro- A. Simulation details

nounced oscillations. . .
. . In the following we use reduced Lennard-Jones units

More complicated, but sometimes more accurate, equa-

. : . ) . where the unit of length is, the unit of energy i& and the
tions for the ERF are availabfebut in practice the simple unit of time is JmoZ/e. We carried out MD simulations in

mean field approximation3) often gives quite satisfactory the canonical ensemble using the velocity Verlet algorithm

results. In Appendix A we discuss a simple modification Ofwith a time step ofAt=0.001. To maintain constant tem-

Eq. (4) that gives somewhat more accurate results at low -
density. In the following we will use Eq3) to determine the perature, every 150 MD steps we chose new velocities for all

L2 particles from the corresponding Boltzmann distribution.
ERF unless otherwise indicated. . L
We simulated states along the near critical isotherm at
T=1.35 for densitie®=0.78, 0.54, 0.45 and 0.1, and a
state near the triple point witfi=0.88 andp®=0.85. We
IV. RESULTS FROM MD SIMULATIONS used N=3000 particles forT=1.35,p8=0.78 and forT
, we  =0.88,p8=0.85, and\N =450 for all other states. To elimi-
We now must solve EqB)MtFO determine the ERfpr nate the possibility of finite size effects we made test runs for
and associated densipp(r;[¢r"]). As is typical in mean t_1 35 andp®=0.54,0.45 and 0.1 withN=3000 particles,
field theory, a self-consistent solution must be found, sinC& hich led to the same density distributions as for 450.
the ERF(_{)R appears explicitly on the left side and implicitly_ Each state was first equilibrated foxa.0° MD steps. Sub-
on the right side through the dependence of the dens't)éequently we calculated(r) for the uniform systems and

po(r2;[ #rl) on ¢ If we can find the reference structure |, - 4MF)y for the nonuniform reference system for at least
po(r;[¢r]) produced by a given ERBr accurately, then it 3516 and up to 7.5 107 MD steps.
is straightforward to solve the mean field equatiby itera-

tion, for examplé to determine the self-consistesfs” and
the associated densipp(r;[¢5'1). In Sec. V we will dis-
cuss new theoretical methods to calculagér;[ #g]) for a We first concentrate on the high density stafe=0.78
given ¢i. However, since these could introduce additionalandT=1.35, which will illustrate many basic features of the
errors, it is useful first to assess the accuracy of the basimean field approach. Figure 2 gives simulation results for the
mean field equatio3) without any further approximations. full LJ densitypBg(r), the WCA reference densipyPgq(r),

We carried out MD simulations in the canonical en-and the inhomogeneous reference dean;MgF]) for
semble using the three model systems shown in Fig. 1: théhis state. We see that the mean field prediction
full LJ system, the WCA repulsive force system, and thepo(r;[ #n 1)~pBg(r) is able to correct the main quantita-
inhomogeneous reference system with the special wall pative errors in the already rather accurate WCA approximation
ticle fixed at the origint> To determine the effective potential go(r)~g(r), describing in particular the slight shift outward
in the latter case, we solved E) by iteration® using of the first peak. However, some small errors remain, due
(essentially exagtMD results forpg(r;[ ¢g]). The errors in  solely to the mean field approximation for the ERF from Eq.
pO(r;[cﬁgF]) when compared tp(r;[ ¢.3]) then arise solely (3). These are focused on in the inset to Fig. 2, which com-
from the mean field approximation for the ERF:" . pares the density changg(r;[ ¢n' 1) — pBgo(r) due to at-

B. Simulation results for the ERF
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FIG. 3. The self-consistent ER$QF(r) determined from the mean field
equation(3) for T=1.35 andp®=0.78 compared to the full LJ potential
w(r) and the repulsive force reference potentig(r).

tractive forces as predicted by E() to the actual change
pBla(r)—go(r)] given by the simulations. Any further im-

provements in these results will require a better approximag,er neighbors becomes increasingly less effective at lower

tion for the ERF.
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02 r
p(r)
0.1 S
. TB=1 .35 ° pBgo(r)
o p =0.1 — potloR D
3 === py(Filon D)
0 1 1 1 1 1 1 1 1 1 1 1 1
1.0 1.5 2.0

—

FIG. 5. Densities fop®=0.10 andT=1.35 for the LJ system, the WCA
reference system and the nonuniform reference system with the ERF deter-
mined from Eq.(3) and from Eq.(Al). The inset focuses in the region
around the second peak.

T=1.35 isotherm. The attractive force cancellation from fur-

densities, and attractive interactions produce much larger

Figure 3 shows the corresponding self-consistent ERFyctural changes, as will be shown later.
MF(r) from Eq.(3), compared to the bare LJ potentie(r)
and the repulsive reference potentig(r). At low density

pﬁF reduces exactly ta/, and if the force cancellation argu-

ment were exact, then at high densit§f” would equalu, as

assumed in the WCA approximation. However, there is &g the inhomogeneous reference dengity ;[ 417 1). Also
weak negative region g’ (r) for r between about 1.1 and shown ispo(r;[#n" 1), with the ERF calculated from Eq.
1.4. This results from the nonuniform attractive energy den(Al) in Appendix A[usingl,(p) as the interpolation func-
sity experienced by a particle in this region in the LJ systemijony) which does a slightly better job at reproducing the
which is slightly lower than average because of the fixedsgcong peak than does H@). Theoretical values for corre-
particle and its neighbors even at this high density. This progation functions for all the states in Fig. 4 and comparison to
duces the slight shift in the first peak noted above.

Figure 4 shows the ERF for a series of states along the  As the density tends to zero, the ERF reduces to the bare

1.5 T

FIG. 4. The self-consistent ERF from E(R) for the indicated densities

along theT=1.35 isotherm.

Again mean field theory can yield accurate results. This
is illustrated in Fig. 5 for the low density stap€=0.1, and
T=1.35. This figure shows simulation results for the full LJ
density pBg(r), the WCA repulsive fluid densitpBg(r),

results for the full LJ fluid will be discussed in Sec. VI.

potential w(r) as correctly predicted by Ed3). The in-
creased ‘“screening” of attractive forces as the density is
increased was first demonstrated using diagrammatic resum-
mation techniques in the derivation of the optimized random
phase(ORPA) and exponentialEXP) integral equationd’
Mean field theory provides a very simple and physically sug-
gestive way of understanding these results.

V. TWO STEP METHOD

We now discuss theoretical meth6dgor determining
the densitypo(r;[ ¢r])=pr(r) produced by a given ERF
¢r. We use a generalization of the two step method first
introduced in Ref. 6. Initially we treat the LJ repulsive po-
tentialug as a hard core interaction with diametgibut then
use the standard “blip function” expansidto correct for its
finite softness in our final numerical results. Let us concen-
trate on the mean field equati¢®) for the ERF. Recall that

dLa(r)=w(r)=up(r)+u(r).
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A. Separation of ERF slowly varying. Thus to determine the densityratwe can
i i divisi imate the rhs of EQ(10) b (ry;[07, 0

The two step method introduces a similar division of the2PProxima a: Yo poll:lO) kg
full ERF, =po(uq), the density of thauniformfluid (in zero field at

_ the shifted chemical potential!:. We arrive at thehydro-
PR(N= ProlM) + dralr), ® static approximatiotf+°® for theodensity arising from a very

and determines the density response to each part of the ERffowly varying field ¢g, :

in separate steps. As this notation suggestg, is supposed 8 ;

to take account of the harshly repulsive part of the ERF  Po(f1:[ éral.ig)~polsg))- (1D

associated mainly with the repulsive core of the fixed waIIWe refer tOpo(,ugl)Epgl as thehydrostatic densityat r;;

particle at the ongin. The othgr componeqzskl is much from Egs.(8) and(11) it depends only on thiocal value of
more slowly varying and physically incorporates the aver-

aged effects of attractive interactions. the field ¢pg, atr,. The hydrostatic approximation is exact

, . : for sufficiently slowly varying ¢, and has been used in
The mean f|elq equatiof8) naturally separates into two more approximate applications of these ideas to hydrophobic
such parts by setting

interactions in watef® However, in the present application
Pro(r)=ug(r) (6) ¢y varies rapidly enough that for quantitative accuracy we
must use more accurate methods to determine the full non-
local response.
Pra(r)=us(r)+ey(r), (7 We now show that the generalized linear response
method introduced in Ref. 9 provides a simple and accurate
way to determine both the densipg, induced in the first
However, other choices can be made. As discussed iRt€P as Well as the responsedg, taken into account in the
Appendix B, there exists considerable freedom to varyS€cond step. In Appendix B we discuss an alternate but
bry(r) inside the harshly repulsive core region wheggr) somewhat more compllpated _a_pproach suggestgd in Ref. 6,
is very large, without affecting the final result when both which requires thapg, is sufficiently slowly varying that

parts of the ERF are taken into account. This flexibility Cangradient—type expansions give_accurate results. )
be used to increase the accuracy of approximations intro- We start from the exact linear response equation that

duced there that require a slowly varying density res’ponse_relatessmall changes in the potential and density for a sys-
tem with external potentialp, chemical potentialw, and

associated densityo(r;[ ¢1,u)=p4(r):*°

and

with ¢ given by Eq.(4). We call this thebasic separation
and will use it in most of what follows.

B. First step

The key idea in the two step method is to compute in an —,85¢(r1)=f draxo "(ri.r2;[pel) py(ra) (12)

initial step the density response to thlwly varying part

¢r1(r) of the ERFalone Physically, this takes account of through the linear response functiongl(rl,rz;[p¢])

the averaged effects of the attractive interactions modeled bse 5(r,—r,)/p4(r1) —Co(r1,r2:[pyl). Herecy is the direct
¢r1 and we can exploit the fact that the density response cacorrelation function of the system with densjiy(r).

be expected to be reasonably slowly varying. The response

to the remaining harshly repulsive interacti@ry, is then

. . 2. Linear response of hydrostatic fluid
determined in a second step.

The simple hydrostatic method discussed earlier ap-
proximatespgs(r,) at eachr, by the densityp(r;L of the uni-

Let us first consider the special case wheg varies so  form hydrostatic fluid with chemical potentiadgt, and thus
slowly that it is essentially constant over the range of a COMgnores thenonlocal effects of the shifted fieldyerll on the

relation length in the bulk fluid. The associated de”Sitydensity atr,. To get a more accurate approximation, we can

Po(fi[d_’m]lﬂg) is a functional of _thg external fieldry and ;se Eq(12) to take into account thénear responseof the
a:}fun(_:ftflon of the chemlcarll potentialy and derp])enc:s only ofn density of the uniform hydrostatic fluid to the shifted field
t e.d.| erence betwee.n t ese.quantltles.. Thus for any ixed ;11. Thus we Seto¢=p(r)1 and take6¢:¢;11 in Eq. (12).
positionr, we can define a shifted chemical potential 1 ' . .
This idea was first suggested in Ref. 9 and was shown to give

,uglz,ug— bra(ry) (8)  accurate results in a number of different applications. While
) ) a more formal derivation can be giv@-mere we focus on
and shifted field physical considerations.
¢;11(F)E¢R1(r)—¢m(f1), (9) Since quRll(r) is zero atrq, the left side of Eq.(12)
vanishes by construction. We would expect the linear re-
sponse relation between an external field and induced density
to be most accurate where the field is small — in particular
. By _ gl 1 where the field vanishes — and at eaghwe will use the
po(ril dral- o) =polril beul. 4g). 19 appropriate shifted(hydrostati¢ chemical potential and
By construction the shifted fieIdJrRll(r) vanishes at= r;  shifted field so that this optimal condition continues to hold
and it remains very small for nearr, when ¢r, is very locally. This shift is crucial for the accuracy of this method

1. Hydrostatic approximation

whose parametric dependence mnis denoted by a super-
script, and we have for all the exact relation

Downloaded 31 Dec 2011 to 134.82.7.18. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



J. Chem. Phys., Vol. 114, No. 1, 1 January 2001 Structure of uniform fluids 421

and is its main new feature over previous approaches. More-
over, it has been shown that even large density fluctuations  ,
in a (field free hard sphere fluid can be accurately described
using thesameGaussian probability distribution that controls
small fluctuationd' and that yields the basic linear response
relation(12) for a uniform system.

This suggests that we can accurately determine the de-g(r)

(")

" 0°=0.85 T=0.88

3r p®=0.78 T=1.35

2.0 25

O = N W ]

sired pgry(r1) by using the linear response function PR .
Xo (r12;pg?) of the uniform hydrostatic fluid in Eq(12) 2r N / | Segsngasen
even when the fieldgy, produces significant density | \ p =0.85 T=0.88
changes. Assuming a linear density response, we replace N P ~

opg(r) in (12) by the full density changpm(r)—pgl, thus

R . p°=0.78 T=1.35
yielding our final result:

fi_

[pra(r1)— Pl pg fdrzCo(rlz:p[f)[pm(rz)—pgl]- o 15 20 25
(13 r

Hereco(r10;p™) is the direct correlation of the uniform ref- FIG. 6. Radial distribution functiongo(rz;[ ¢ ]) = polr2:[ ¢r 1)/p° for
0 two high density state¢solid lines with the origin shifted for clarilyas

. . g
erence fluid at the hydrostatic densijty'. Note that the ex-  given by the two step method using E@) for the ERF along with Eqg13)
ternal field appears only implicitly in Eq3) through its  and(15) compared to the results of MD simulatiofepen circle of the LJ
. ST fluid. In the inset the two step results are compared directly to simulations of
local effe(?t on the, hyd.rostatl.c denS|,b)6 ' . . the reference fluidn the self-consistent potentigly’ . The latter tests the
Equation(13) is a linear integral equation relating the accuracy of the two-step method for reference fluid correlations induced by

densitypr.(r1) at a givenr, on the left side to an integral the givengi®, while the former tests the accuracy of the mean field equa-
involving the densitypg,(r,) at all other points and ani- tion for determininggg™ .

form fluid kernel co(rlz;pgl) that depends implicitly om

throughpgl. This new feature presents no technical difficul-

ties in determining a numerical solution and Ej3) can be APR(H)/PBIZJ dr,Co(r 12;pg") ApR(T ). (15
solved by any number of standard methods. We found that

Picard iteration works very well. See Appendix C for details. ~ Equation(15) is alinear equation forApg(r;), which
we can directly solve by iteration or other means. When

pri(r)=pB, andc, is assumed to vanish for>d, Eq.(15)

C. Second step reduces to the standard PY equaffofor the uniform hard
We now determine in a second step the responséPhere fluid. This has an analytic solutibAand is known to
Apr(N)=po(r:[#r]) — po(ri[ #ri]) Of the relatively slowly give very good results ov_erall, with _smaII errors in the height
varying density fieldpo(r ;[ ¢ry])=pri(r) to the remaining pf the f.II’St peak at very high _dgnsnes. If §t||| more accuracy
harshly repulsive componegttz, of the ERF, which we ap- S requ!red,.we can use modified ggnerallzed mean spherical

proximate initially as a hard core of range We takep, ~ a@Pproximation (GMSA)-type equatior related to the

= pry in Eq. (12) and again assume a linear density respons&€rcus—YevickPY) equation to describe,, as discussed in

in the “out” region r,>d where the perturbing potential APPendix D. Again we can solve E¢L5) by iteration.

bro(r1) vanishes. This is consistent with the simulation ~ This constitutes the second step of our method. The net
result$* showing that the Gaussian probability distribution result of this two step process is the desipg(r;[ ¢r]) aris-
gave a good description even of the formation of voids iniNd from a givendg. This can be substituted into E(B),

uniform fluids. which can then be iterated to determine the final self-
: MF T 4+ MF :
This linear response assumption gives the approximatéonsistentdg™ and po(r;[ ¢ 1). See Appendix C for fur-
equation, valid for ;>d: ther details of the calculations.
0= f droxg M(ra.r2;Lpra]) ApR(T ), (14 VI-RESULTS

We now give a detailed comparison of the radial distri-
where we impose the exact conditipg(r,;[ #g]) =0 from  pytion functionsgo(rz;[¢',;’”:])=p0(r2;[¢'§"F])/pB given by
the hard core interaction for,<d in the integration over,  the two step method to the results of MD simulations of the
Again we approximatex, '(rq.r2;[pri]) by the response full LJ fluid. In Fig. 6 we consider two high density states
function of an appropriately chosen uniform system. As inwith p8=0.78 andT=1.35 andp®=0.85 andT=0.88. At
Sec. VB2 and as shown in Ref. 9, we find that the use of théhese high densities small errors can be seen in the linear
hydrostatic fluid with densityjz)1 gives accurate results even response treatmefgquivalent to the hard core PY equation
when pg, varies rather rapidly. Some alternate but less genef even the uniform hard sphere reference fluid. For greater
erally useful choices are discussed in Appendix B. Thus weccuracy therefore we used an improved GMSA description
arrive at the basic equation for the second step of our theorys briefly described in Appendix D. We find by direct com-
valid for r{>d: parison with simulations of the reference fluid in the pres-
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For quantitative accuracy, improvements in both ap-
proximations may be called for in some cases. Incorporation
of GMSA-type correctiorfs for reference fluid correlations
is straightforward, as discussed in Appendix D, and alternate
and probably more accurate treatments of the effects of soft
cores can be used if need®dSome corrections to the sim-
plest mean field equation for the ERF, as discussed in Ap-
pendix A or in Ref. 5, can also be introduced. However,
there are some fundamental errors arising from the use of
any mean field approximation for the attractive interactions
that cannot be easily avoided. The inherent limitations of
mean field theory in treating long wavelength correlations
such as those seen at the critical point or arising from capil-
lary waves at the liquid—vapor interface are well known.
Fortunately in many applications of interest such correlations
do not play an important role, or their effects can be taken
into account separately. In such cases the ideas discussed
FIG. 7. Radial distribution functions for the lower density states indicatedhere provide a unified and physically suggestive perspective
compared to the results of MD sirr_lulatio(_:spe‘n circleg of the LJ fluid. capable of giving a good qualitative and often a quantitative
The symbols have the same meaning as in Fig. 6. . . .

description of the structure of both uniform and nonuniform
fluids.

1.0 1.5 2.0 2.5
r

ence of the self-consistent ERF that the two step method
indeed gives a very accurate description of the nonunifornACKNOWLEDGMENTS
reference fluid density, as illustrated in the inset to Fig. 6. ] ] ]

The main remaining errors in describing the full L] fluid _This work was supported by the National Science Foun-
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uniform reference fluid, but it also produces slight over-
shoots in the peaks and minima for these high density states13 _
as can be seen in Fig. 6. é I;’JEAl}IrIIZz)I)Iil A: INTERPOLATED MEAN FIELD

Figure 7 gives results for states B&1.35 and a series Q
of lower densitiesp®=0.54, p®=0.45, andp®=0.10. Here Equation (3) is exactas the densityp tends to zero,
the linear response treatment of the reference system is suﬁrhere(ﬁg'F reduces to the bare field, ;. However, the next
ficiently accurate and the attractive interactions producerder term{of O(p)]in a density expansion is incorrect. This
large changes in the correlation functions. The results see@an most easily be seen by comparing the known density
quite satisfactory, and are comparable to those given by thexpansionsfor the LJ system’s(r ;[ ¢5]) with a LJ par-
best standard integral equation methdts-Results from the  ticle fixed at the origin, and the reference system’s
alternate methods discussed in Appendix B are equally googy(r ;[ ¢g]) with the special wall particle with pair interac-
and essentially indistinguishable on the scale of the graph.tion wg(r o) = ¢r(r;) fixed at the origin.

We examined an empirical modification of E) that at
low density gives the next term d(p) exactly but then
VII. FINAL REMARKS quickly goes over to Eq(3) at higher density:

These results thus give us additional confidence in the
utility of our general approach. While we certainly do not 'B‘ﬁL@MF(rl):B‘ﬁU(rl)_J dro{[po(ra;[ R 1)~ p°]
advocate replacing standard and successful integral equation B
methods for the specific problem of the structure of uniform X[1+1(p)Fo(r12 JF1(razip®)}- (A1)
simple fluids, these ideas do suggest new ways of thinkingdere I (p) is aninterpolation functionthat tends to unity at
about some basic issues. We can view the simple mean fieldw density and to =zero at high densityfy(r)
approximation for the attractive interactions along with the=exd —Buy(r)]—1, and
generalized linear response treatment of correlations in the L
reference fluid as providing reasonably accurate and compu- Fa(rip)=[exp{—Bu(n)l(p)}=11/1(p). (A2)
tationally practical first approximations for correlations in- Possible choices foit(p) include I1(p)=(dp/dBP)o
duced by attractive and repulsive interactions. For qualitative= S, , ,2% proportional to the reference fluid isothermal com-
and often quantitative work they have proved useful in apressibility, and |2(p)=Sé’p, as suggested by a crude
variety of different applications, including cases such as dryargument® based on perturbing the hard sphere Ornstein—
ing near wall§ where attractive forces induce large structuralZernike equation by a very weak and slowly varying poten-
changes and standard integral equation methods fail. tial. At the lowest density studieghy=0.1, Eq. (A1) with
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I,(p) gave a slightly better description of the weak second  Fortunately, we can use the flexibility in the choice of
peak than does the simple mean field equati8n See the field ¢r,(r) in the core region to produce a much

Fig. 5. smoother density response. More precisely, we can define an
extendedseparation ofpg(r) in Eq. (5) by
APPENDIX B: ALTERNATE EQUATIONS FOR B (1) =Uo(r)— p5(r) (B2)
SLOWLY VARYING pg;
and
In Sec. V we exploited the Gaussian nature of fluctua- E o £
tions in the uniform reference system in carrying out both ~ PRi(F)=Ua(r) + ¢(r)+ o (r), (B3)

steps of the two step method. While this is a good approXiwhere ¢5(r) is an essentially arbitrary smooth function that
mation for LJ reference system, it may not always hold truejs nonzero only in the repulsive core region but Wﬁ(r)

In our initial work in Ref. 6 we proposed a different and very <y (r), so that¢g, remains a harshly repulsivessentially
general way of carrying out the first step, which, howeverhard corg interaction. This separation still divides the ERF
requires thapg, varies sufficiently slowly that gradient type (r) into two parts with the physical meaning discussed in

expansions give good results. _ _ Sec. V, but provides some additional flexibility in the choice
We started from an GX%Ct equatforfirst derived by  of ¢.,(r) in the core region that can be used to produce a
Lovett, Mou and Buff(LMB): smoother density response in the first step. An exact treat-
Vipri(r)pri(r1)=— BV 1dri(ry) ment of the response to both componentggr) would of

course be independent of how the potential was separated.
. We found best results by requiring that density response
+f draCo(r1.r2;[pril) Vopra(ra). to ¢&, inside the(hard core region be&onstantand continu-
(B1) ous across the core. In a sense this is the smoothest possible
) o choice, at least in the vicinity of the core region. This choice
The co(ry,r2;[pral) for a general nonuniformpg, is diffi-  can easily be implemented numerically during the iterative
cult tc_> determine,_ so EqB1) is gengrall_y not very useful for - ggjution of Eq.(B1) by simply settingV;pr.(r4) to be zero
practical calculations. However, jig; is relatively slowly  for 1| r, inside the core on each iteration and solving for the
varying then ~we can accurately approximate gssociatedv, g, (r;). At convergence, the self-consistent

Co(r1,r2;[pra]) under the integral in EqB1) by theuni- € (1 js constant inside the core and smoother outside the
form fluidfunctioncy(r 15;p15),%° wherep,, is some average core than that produced by the basic separation.

density associated with the two points. Then E&fl) can be Using the same extended separation, we have verified by
solved to determingg; . comparison with the hydrostatic linear response method and

A natural choice forp;, suggested by a gradient with direct simulations that EqB1) now gives accurate re-
expansiorf is pyo=[pri(r1) + pra(r2)1/2 . This gives very sults for all the states tested here. Thus it offers an alternative
good results whepg; is reasonably smooth. This is the only (though numerically slightly more complicateday of car-
approximation we make and we can check its accuracy byying out the first step.
seeing if similar results arise from other approximations such  In Ref. 6 we also carried out the second step in a slightly
as;u:pm(rl) OF;12= pra(r). Starting with a givenbg, , dlffere_nt way, effectively combining a local expansion of
we can then solve EqB1) for the associate@g, by itera- PRI with a Imeqr response treatment of the density |_nduced
tion, making use of the analytic and accurate Percus—YevicRY #ro- 'I‘l particular, in Eq/(14) we treated thes-function
(PY) expressions for the direct correlation function of thePart of xo “(r1,r2;[pri]) exactly and approximated thg
uniform hard sphere fluitf22 If more accuracy is required part by the uniform fluid function at the intermediate density
we can use GMSA-type equations related to the PYp12=[pri(ri)+ pri(rz2)]/2. The accuracy of this approxima-
equatio”® to describec,. See Appendix D. tion can again be checked by comparing with other choices

In our previous study of the LJ fluid near a hard wWall, such asp;,=prs(r;). This yields the alternate equation for
we used theébasic separation ofpg in Eqgs.(6) and(7), and  the second step:
found that it indeed produced a slowly varying density re-
sponse. As expe_cted E@1) then gave very accu_rate re- APR(rl)/PRl(rl):J’ droco(rin;p12) Apr(rs). (B4)
sults. However, in the present application, the size of the
excluded volume region of the fixed partidlef order o of When pr,(r,) is slowly varying, as was the case in all
the LJ potentialis also the same order as the range of thethe examples studied in the previous work, E84) gives
attractive interactions as well as the average spacing betweecurate results, essentially identical to those of @§).
particles at high density. If the basic separation is used, thihis is also true for most of the states studied in the present
“resonance” produces d;El at very high density with small application, provided that the appropriate extended separa-
but noticeable oscillations of periodnZo outside the core tion is used. In such cases E¢B1) and(B4) can be used as
and a pronounced minimum inside the corerg&0. The  alternate ways of implementing the two step method, and for
associated density responﬁ@(rl;wgl]) will have a pro- the states shown in Fig. 7 they give results on the scale of the
nounced maximum at;=0 and oscillations outside the graph essentially identical to those shown. However, for the
core, which will cause errors in the local expansion methochigh density statep®=0.78 andT=1.35 andp®=0.85 and
used in Eq(B1) and in Eqg.(B4) to follow. T=0.88in Fig. 6 the results using E@4) vary significantly
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when different choices fop,, are made. This indicates that The vector equatioB1) can be transformed into scalar
for these statepg, is too rapidly varying for Eq(B4) to be ~ form by taking the scalar product with the unit vectqrr
trusted. Since Eq(15) gives accurate results even for theseand using the identity 2;-r,=r+r3—r%,. Thus we find
high density states, and makes fewer assumptions about the

smooth behavior opr, , it is the preferred way to carry out dinpra(ra) _ Bd¢R1(r1) I ZM

the second stef?. dry dry rl dr,

f1tre 2,.2 2 -
X ’ r‘dyy(r1+rz—y )Co(Y;p12)-
172

APPENDIX C: DETAILS OF THE NUMERICAL
CALCULATIONS (CH

In all these equations the integration over the variable
can be performed analytically, since we use the PY hard
here d|rect correlation functiazy(y), which is a polyno-
al in y,? and theul(y) of the Lennard-Jones potential,
which is a sum ofy~® andy 12 terms?? Integrals involving
an improved GMSA approximation fax, can also be carried

We give here some details of the numerical solution of
the basic equationg3), (13), and(15). Equations(B1) and
(B4) could be used as alternates in the first and second steré)
respectively except at the highest densities. We exploit the
spherical symmetry of the density and the ERF about the’
center of the fixed wall particle, which we take as the origin

out analytically. The resulting one dimensional integral
of a spherical coordinate system. Since all these equations
equations can be solved by Picard iteration, where to enforce
are used iteratively, we need an efficient and accurate

method to calculate three dimensional integrals oyef the convergence we use the usual mixing technique. .
general form In solving these equations the reference potentials

initially taken to be a hard core potential with diameter
— given by the accurate Verlet—Weiss expressitnss in the
|(rl):J drak(r2)K(riz;p), (€1 plip function method: the result forpo(r ;[ ¢r]) with ug ap-

) proximated by a hard core is linearly extrapolated into the
where due to the spherical symmeldr;) depends only on  ¢qre region and multiplied by the Boltzmann factor of the
ro=[ry|, andK(ry,;p) is a function only ofr;,=|r;—r,|  true soft core potentiall, to give the final results fop
andr, andr, through our choice of the effective densjly = shown in Figs. 6 and 7. The errors introduced by this sim-
which equals either the hydrostatic densjty- pgl or the Pplified treatment of soft cores are much smaller than those
average densitp = p1o=[ pry(F1)+ pr(r)1/2. arising from our use of the mean field approximation for the

These properties make it advantageous for us tobi}se ERF ¢r.
polar coordinated' with the substitutiony?=r2,=r%+r3

—2rqr,cos and reduce the three dimensional integration to
two: APPENDIX D: GENERALIZED MEAN SPHERICAL
TREATMENT OF REFERENCE SYSTEM

2@ (= ryt+ro
I(ry)= r_j drzrzk(fz)j dny(y p). (C2 The description of the reference system presented here
170 Iri=ral relies on accuracy of the uniform hard sphere fluid direct
This transformation is particularly useful if the dependencecorrelation functioncy(r). The generalized linear response
of K(y;p) ony is known analytically, since then we can treatment of Eq(15) with pi'=p® andc, vanishing outside
explicitly carry out they integration, and Eq(C2) further  the core is equivalent to the PY approximation, and is sur-
reduces to a one dimensional integral. All relevant equationgrisingly accurate at intermediate and low densities. How-
haveK's that satisfy this condition, thus permitting very ef- ever, at high density it has noticeable errors, especially in the

ficient numerical computations. region of the first peak near contact, and for quantitative
In particular, Eq.(3) becomes results should be corrected.
) Since the uniform fluid direct correlation function is just
7T o] . .

MF(p ) — by y(Fy) = _f dry o[ po(rail &MF]) — pB] an input in our approach we can use other,_ more accurate
approximations(even results of molecular simulations, if
such are availabje We have found that use of the general-

it ized herical imatiéBMSA) of Waismar?3
% dy y u(y), (C3 ized mean spherical approximatig® ) of Waismart,
Iry=r2l as implemented by Hoye and St&ligives considerable im-

provement over the original PY approximation. Moreover, it

while Eq. (15) is transformed to . Co .
a.(19 still preserves the analytic simplicity of the resultiog(r) so

2 that the methods of Appendix C can be used.
Apr(r)/pg'= r f drarzApg(r) The GMSA approximateg,(r) outside the hard core
(we setd=1 herg, where PY assumes, vanishes, by a
R Yukawa function:
Xf dy y q(¥;pgh)- (C4
|r1—r2\ efz(rfl)
Equations(13) and (B4) can be similarly rewritten. Co(r>1)=K r ' (D
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The exact core conditiog(r<1)=0 then allows one to ob-
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BFor a general review, see R. Evans,Aundamentals of Inhomogeneous

tain co(r) inside the core and satisfy the Ornstein—Zernike, Fluids, edited by D. HendersofDekker, New York, 199P

equation:

5 cosler—1
2K 2%e?
(D2)

na , l—e*
<l)=—a—-br— —r3—
Co(r<1) a—br 5 r°—v r
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