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The structure of a uniform simple liquid is related to that of a reference fluid with purely repulsive
intermolecular forces in a self-consistently determined external reference field~ERF! fR . The ERF
can be separated into a harshly repulsive partfR0 generated by the repulsive core of a reference
particle fixed at the origin and a more slowly varying partfR1 arising from a mean field treatment
of the attractive forces. We use a generalized linear response method to calculate the reference fluid
structure, first determining the response to the smoother partfR1 of the ERF alone, followed by the
response to the harshly repulsive part. Both steps can be carried out very accurately, as confirmed
by computer simulations, and good agreement with the structure of the full Lennard-Jones fluid is
found. © 2001 American Institute of Physics.@DOI: 10.1063/1.1329881#
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I. INTRODUCTION

In this paper we describe a new and physically mo
vated way to determine the structure of uniform fluids, ba
on a mean field treatment of the attractive intermolecu
interactions. To apply this approximation to a general n
uniform system, attractive interactions are replaced by a s
tially varying single particle ‘‘molecular field’’ potential
chosen to take account of variations in the average attrac
energy density in different parts of the system.1 Since the
attractive interactions usually operate over an exten
range, it seems plausible that an averaged descriptio
given by mean field theory could often provide a use
simplification.

However, in real liquids, additional very important ‘‘ex
cluded volume’’ correlations are generated by the sh
ranged and harshly repulsive intermolecular forces;2,3 these
cannot be accurately described using the same mean
averaging appropriate for the longer ranged attractive for
Despite this additional complexity, the use of mean fie
theory allows us to consider an inherently simpler system
nonuniform reference fluid. This consists of particles inter
acting only with repulsive intermolecular forces but in t
presence of aneffective reference field~ERF! chosen self-
consistently to take account of the locally averaged effect
attractive interactions as well as any imposed exter
field.4–6 The uniform reference fluid is stable over the ent
range of densities from vapor to liquid, and its structure
the presence of an appropriately chosen ERF approxim
that of the original system.

In previous work4–6 we showed how these ideas can
used to give an accurate description of the structure o
nonuniform Lennard-Jones~LJ! fluid in a number of differ-

a!Electronic mail: jdw@ipst.umd.edu
4160021-9606/2001/114(1)/416/10/$18.00
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ent applications where the ERF is large and attractive for
strongly influence the structure, including the liquid-vap
interface and the structure of fluids near hard walls. In th
cases conventional~singlet! integral equation methods hav
given poor results.7

In this paper we consider a different limit, that of th
uniform LJ fluid. Here attractive forces produce relative
small structural changes at high density and integral equa
methods have had their greatest successes. Indeed, in
simplest picture, the attractive forces on a given particle fr
oppositely situated neighbors essentiallycancel8 in typical
high density configurations, and the structure of the de
uniform LJ fluid is rather well approximated by that of
uniform reference fluid at the same density.3 The theoretical
challenge is to improve on this rather accurate starting p
at high density and to describe the larger structural chan
attractive interactions induce at lower densities.

From this perspective the uniform LJ fluid provides
important and nontrivial test of our general approach. It
not clear that mean field averaging along with the appro
mate methods6,9 we use to calculate reference fluid structu
will be accurate enough to determine the small but sub
changes induced by attractive interactions in the highly
cillatory structure of uniform fluids at high density or th
more substantial changes seen at lower densities. Indeed
like the previous applications, it is difficult to guess ev
qualitative features of the ERF.

The plan of the paper is the following. In Sec. II w
define the nonuniform reference fluid and the formal eq
tion determining the ERF. In Sec. III we discuss the us
mean field approximation for the ERF and suggest a n
generalized equation that incorporates exact results at
density.

In Sec. IV we first use computer simulations to carry o
© 2001 American Institute of Physics
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417J. Chem. Phys., Vol. 114, No. 1, 1 January 2001 Structure of uniform fluids
the determination of structure essentially exactly. This
lows us to test the accuracy of the basic mean field desc
tion of the ERF without any further approximations. We ge
erally find quite satisfactory results though small errors in
simplest mean field determination of the ERF can be see
high density.

In Sec. V we introduce a new theory to calculate se
consistently both the ERF and the associated structure in
reference fluid, using a generalization of a physically mo
vated procedure first used to calculate the structure of a
fluid near a hard wall.6 The key idea is to divide the ERF int
rapidly and slowly varying parts. We determine the respo
of the reference fluid density to each component of the E
in successive steps, using appropriate methods in each
that can accurately describe the very different density
sponses, as discussed in Secs. V B and V C. In Sec. VI
discuss the results of the method and comparison to sim
tions. The theory generally gives quite satisfactory resu
However, at the highest densities some small errors ca
seen arising from the simple mean field treatment of attr
tive interactions. At lower densities, our simplest approxim
tions give results comparable to the best integral equa
methods.10,11Final remarks are given in Sec. VII. Some tec
nical details are presented in the Appendices.

II. NONUNIFORM REFERENCE FLUID

We first consider the case where fluid particles inter
with a known external fieldf(r ) and through the LJ pai
potentialw(r )[u0(r )1u1(r ), separated as usual3 into rap-
idly and slowly varying parts so that all the repulsive inte
molecular forces arise fromu0 and all the attractive force
from u1 .12 We assume that the external fieldf(r )[ f0(r )
1f1(r ) can be separated in a similar way, where the s
script 0 denotes a harshly repulsive interaction and the s
script 1 a much more slowly varying interaction usually a
sociated with attractive forces. We consider a gra
ensemble with fixed chemical potentialmB, which deter-
minesrB, the uniform fluid density whenf50.

We relate the structure of the nonuniform LJ system
that of a simplernonuniform reference fluid,4–6 with only
repulsive intermolecular pair interactionsu0(r i j ) ~equal to
the LJ repulsions! in a different ERFfR(r ). The replace-
ment of attractive pair interactions by an approximate lo
‘‘molecular field’’ is an essential step in mean field theor
but we can think of other more general prescriptions
fR(r ). Here we determinefR(r ) formally by the require-
ment that it has a functional form such that thelocal ~singlet!
density at every pointr in the reference fluid equals that o
the full LJ fluid:7

r0~r ;@fR# !5r~r ;@f#!. ~1!

The subscript 0 in Eq.~1! reminds us that the referenc
system pair interactions arise only fromu0 and the notation
@fR# indicates that all distribution functions are functiona
of the appropriate external field. Sincer(r ;@f#) is a physi-
cally realizable distribution function, and the reference flu
is stable over a wide range of densities, it seems very p
Downloaded 31 Dec 2011 to 134.82.7.18. Redistribution subject to AIP lic
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sible that such a choice for the fieldfR can be made in
principle.13 In practice we will make approximate choice
motivated by mean field ideas.

Using this perspective, let us consider the problem
determining the effects of attractive forces on the structure
uniform fluids. The simplest approximation by Week
Chandler and Anderson~WCA! assumes complete cancell
tion of attractive forces and approximates the radial distri
tion functiong(r ) of the uniform LJ fluid by theg0(r ) of the
uniform repulsive force fluid at the same density. To im
prove on this, we make use of the exact relation14 between
rBg(r ) in the uniform LJ fluid and the singlet density in
nonuniform fluid with a particle fixed atr0 , which we take to
be the origin of our coordinate system:

rBg~r 1!5r~r1ur0 ;@f50# ! 5 r~r 1 ;@fLJ# !. ~2!

Here r(r1ur0 ;@f50#) is the conditional singlet density —
the density in zero external field atr1 given that a particle is
fixed at r0 . By symmetry this depends only on the radi
distancer 1[ur1u from the fixed ‘‘wall particle’’ at r050.
This in turn must equal the nonuniform singlet density
duced by the external fieldfLJ(r 1)[w(r 1).

By choosingfR(r 1) in Eq. ~1! to fit the nonuniform LJ
densityr(r 1 ;@fLJ#), we obtain anonuniform reference sys
tem in which the densityr0(r 1 ;@fR#) is modified by the
effects of attractive forces. In particular this can be used
Eq. ~2! to calculate the radial distribution functiong(r 1) of
the uniform LJ system. The original WCA approximatio3

arises from the particular choicefR5u0 . See Fig. 1.

III. MEAN FIELD APPROXIMATION FOR THE ERF

In previous work4–6 we started from the balance o
forces as described by the exact Yvon–Born–Gre
hierarchy2 and arrived at a generalized mean field equat
for the ERF by a series of physically motivated approxim
tions. We will not repeat these arguments here and inst
focus on the simplest final approximation, themolecular field
equationfor the ERF, which proved surprisingly accurate
a number of different applications. This is just a transcripti
of the usual molecular field equation for the Ising model1 to
a continuum fluid with attractive interactionsu1(r ) and can
be immediately written down:

FIG. 1. Model systems considered.~a! is the full LJ system with a LJ
particle fixed at the origin as indicated by the dashed circle. The interac
with the other particles can be described by an external fieldfLJ(r )
5w(r ). ~b! is the nonuniform reference system with the special wall p
ticle fixed at the origin with interactionfR(r ). ~c! is the original WCA
repulsive force system with pair potentialu0(r ). Here the fixed particle
interacts with the other particles throughf0(r )5u0(r ).
ense or copyright; see http://jcp.aip.org/about/rights_and_permissions
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fR
MF~r 1!5fLJ~r 1!1E dr2 @r0~r 2 ;@fR

MF# !2rB# u1~r 12!.

~3!

The effective fieldfR
MF at a particular distancer 1 from the

fixed wall particle is comprised of the bare fieldfLJ(r 1)
from the fixed particle plus the integral over all positionsr2

of the attractive interactionsu1(r 12) from other particles
weighted by the deviation of the nonuniform reference d
sity r0(r 2 ;@fR

MF#) from its limiting value rB. Use of the
density deviation ensures thatfR

MF vanishes at larger 1 .
Let fs denote the second term on the right in Eq.~3!:

fs~r 1![E dr2 @r0~r 2 ;@fR
MF# !2rB# u1~r 12!. ~4!

It provides an estimate of the averaged effects of attrac
pair interactions arising from the other~mobile! particles in
the full LJ fluid at a distancer1 from a particle fixed at the
origin. Because of the convolution with the slowly varyin
attractive potential ‘‘weighting function’’u1(r 12) in Eq. ~4!,
fs(r 1) extends smoothly into the repulsive core region of
wall particle wherer0(r 1 ;@fR

MF#) vanishes. Outside the cor
it is a smooth, basically repulsive and relatively slowly var
ing interaction even whenr0(r 1 ;@fR

MF#) itself has pro-
nounced oscillations.

More complicated, but sometimes more accurate, eq
tions for the ERF are available,5 but in practice the simple
mean field approximation~3! often gives quite satisfactor
results. In Appendix A we discuss a simple modification
Eq. ~4! that gives somewhat more accurate results at
density. In the following we will use Eq.~3! to determine the
ERF unless otherwise indicated.

IV. RESULTS FROM MD SIMULATIONS

We now must solve Eq.~3! to determine the ERFfR
MF

and associated densityr0(r ;@fR
MF#). As is typical in mean

field theory, a self-consistent solution must be found, si
the ERFfR appears explicitly on the left side and implicitl
on the right side through the dependence of the den
r0(r 2 ;@fR#) on fR . If we can find the reference structur
r0(r ;@fR#) produced by a given ERFfR accurately, then it
is straightforward to solve the mean field equation~by itera-
tion, for example! to determine the self-consistentfR

MF and
the associated densityr0(r ;@fR

MF#). In Sec. V we will dis-
cuss new theoretical methods to calculater0(r ;@fR#) for a
given fR . However, since these could introduce addition
errors, it is useful first to assess the accuracy of the b
mean field equation~3! without any further approximations

We carried out MD simulations in the canonical e
semble using the three model systems shown in Fig. 1:
full LJ system, the WCA repulsive force system, and t
inhomogeneous reference system with the special wall
ticle fixed at the origin.15 To determine the effective potentia
in the latter case, we solved Eq.~3! by iteration,16 using
~essentially exact! MD results forr0(r ;@fR#). The errors in
r0(r ;@fR

MF#) when compared tor(r ;@fLJ#) then arise solely
from the mean field approximation for the ERFfR

MF .
Downloaded 31 Dec 2011 to 134.82.7.18. Redistribution subject to AIP lic
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A. Simulation details

In the following we use reduced Lennard-Jones un
where the unit of length iss, the unit of energy ise and the
unit of time isAms2/e. We carried out MD simulations in
the canonical ensemble using the velocity Verlet algorit
with a time step ofDt50.001. To maintain constant tem
perature, every 150 MD steps we chose new velocities fo
particles from the corresponding Boltzmann distribution.

We simulated states along the near critical isotherm
T51.35 for densitiesrB50.78, 0.54, 0.45 and 0.1, and
state near the triple point withT50.88 andrB50.85. We
used N53000 particles forT51.35,rB50.78 and forT
50.88,rB50.85, andN5450 for all other states. To elimi
nate the possibility of finite size effects we made test runs
T51.35 andrB50.54,0.45 and 0.1 withN53000 particles,
which led to the same density distributions as forN5450.
Each state was first equilibrated for 53105 MD steps. Sub-
sequently we calculatedg(r ) for the uniform systems and
r0(r ;@fR

MF#) for the nonuniform reference system for at lea
3.53106 and up to 7.53107 MD steps.

B. Simulation results for the ERF

We first concentrate on the high density staterB50.78
andT51.35, which will illustrate many basic features of th
mean field approach. Figure 2 gives simulation results for
full LJ densityrBg(r ), the WCA reference densityrBg0(r ),
and the inhomogeneous reference densityr0(r ;@fR

MF#) for
this state. We see that the mean field predict
r0(r ;@fR

MF#)'rBg(r ) is able to correct the main quantita
tive errors in the already rather accurate WCA approximat
g0(r )'g(r ), describing in particular the slight shift outwar
of the first peak. However, some small errors remain, d
solely to the mean field approximation for the ERF from E
~3!. These are focused on in the inset to Fig. 2, which co
pares the density changer0(r ;@fR

MF#)2rBg0(r ) due to at-

FIG. 2. Densities with a particle fixed at the origin as determined by M
simulations for the three systems in Fig. 1 atT51.35 andrB50.78. The
inset gives the difference in density between the LJ fluid and the W
repulsive force fluid as determined by simulations and by self-consis
solution of the mean field equation~3!, again using simulation data.
ense or copyright; see http://jcp.aip.org/about/rights_and_permissions



-
a

R

-

d
en
m
e
ro

th

r-
wer
ger

his

J

.

he
-
to

are

is
um-
om

g-

rst
o-

en-

l eter-
n

419J. Chem. Phys., Vol. 114, No. 1, 1 January 2001 Structure of uniform fluids
tractive forces as predicted by Eq.~3! to the actual change
rB@g(r )2g0(r )# given by the simulations. Any further im
provements in these results will require a better approxim
tion for the ERF.

Figure 3 shows the corresponding self-consistent E
fR

MF(r ) from Eq.~3!, compared to the bare LJ potentialw(r )
and the repulsive reference potentialu0(r ). At low density
fR

MF reduces exactly tow, and if the force cancellation argu
ment were exact, then at high densityfR

MF would equalu0 as
assumed in the WCA approximation. However, there is
weak negative region infR

MF(r ) for r between about 1.1 an
1.4. This results from the nonuniform attractive energy d
sity experienced by a particle in this region in the LJ syste
which is slightly lower than average because of the fix
particle and its neighbors even at this high density. This p
duces the slight shift in the first peak noted above.

Figure 4 shows the ERF for a series of states along

FIG. 3. The self-consistent ERFfR
MF(r ) determined from the mean field

equation~3! for T51.35 andrB50.78 compared to the full LJ potentia
w(r ) and the repulsive force reference potentialu0(r ).

FIG. 4. The self-consistent ERF from Eq.~3! for the indicated densities
along theT51.35 isotherm.
Downloaded 31 Dec 2011 to 134.82.7.18. Redistribution subject to AIP lic
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T51.35 isotherm. The attractive force cancellation from fu
ther neighbors becomes increasingly less effective at lo
densities, and attractive interactions produce much lar
structural changes, as will be shown later.

Again mean field theory can yield accurate results. T
is illustrated in Fig. 5 for the low density staterB50.1, and
T51.35. This figure shows simulation results for the full L
densityrBg(r ), the WCA repulsive fluid densityrBg0(r ),
and the inhomogeneous reference densityr0(r ;@fR

MF#). Also
shown isr0(r ;@fR

IMF#), with the ERF calculated from Eq
~A1! in Appendix A @using I 2(r) as the interpolation func-
tion#, which does a slightly better job at reproducing t
second peak than does Eq.~3!. Theoretical values for corre
lation functions for all the states in Fig. 4 and comparison
results for the full LJ fluid will be discussed in Sec. VI.

As the density tends to zero, the ERF reduces to the b
potential w(r ) as correctly predicted by Eq.~3!. The in-
creased ‘‘screening’’ of attractive forces as the density
increased was first demonstrated using diagrammatic res
mation techniques in the derivation of the optimized rand
phase~ORPA! and exponential~EXP! integral equations.17

Mean field theory provides a very simple and physically su
gestive way of understanding these results.

V. TWO STEP METHOD

We now discuss theoretical methods6,9 for determining
the densityr0(r ;@fR#)[rR(r ) produced by a given ERF
fR . We use a generalization of the two step method fi
introduced in Ref. 6. Initially we treat the LJ repulsive p
tentialu0 as a hard core interaction with diameterd, but then
use the standard ‘‘blip function’’ expansion2 to correct for its
finite softness in our final numerical results. Let us conc
trate on the mean field equation~3! for the ERF. Recall that
fLJ(r )[w(r )5u0(r )1u1(r ).

FIG. 5. Densities forrB50.10 andT51.35 for the LJ system, the WCA
reference system and the nonuniform reference system with the ERF d
mined from Eq.~3! and from Eq.~A1!. The inset focuses in the regio
around the second peak.
ense or copyright; see http://jcp.aip.org/about/rights_and_permissions
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A. Separation of ERF

The two step method introduces a similar division of t
full ERF,

fR~r ![fR0~r !1fR1~r !, ~5!

and determines the density response to each part of the
in separate steps. As this notation suggests,fR0 is supposed
to take account of the harshly repulsive part of the E
associated mainly with the repulsive core of the fixed w
particle at the origin. The other componentfR1 is much
more slowly varying and physically incorporates the av
aged effects of attractive interactions.

The mean field equation~3! naturally separates into tw
such parts by setting

fR0~r ![u0~r ! ~6!

and

fR1~r ![u1~r !1fs~r !, ~7!

with fs given by Eq.~4!. We call this thebasic separation
and will use it in most of what follows.

However, other choices can be made. As discusse
Appendix B, there exists considerable freedom to v
fR1(r ) inside the harshly repulsive core region whereu0(r )
is very large, without affecting the final result when bo
parts of the ERF are taken into account. This flexibility c
be used to increase the accuracy of approximations in
duced there that require a slowly varying density respon

B. First step

The key idea in the two step method is to compute in
initial step the density response to theslowly varying part
fR1(r ) of the ERFalone. Physically, this takes account o
the averaged effects of the attractive interactions modele
fR1 and we can exploit the fact that the density response
be expected to be reasonably slowly varying. The respo
to the remaining harshly repulsive interactionfR0 is then
determined in a second step.

1. Hydrostatic approximation

Let us first consider the special case wherefR1 varies so
slowly that it is essentially constant over the range of a c
relation length in the bulk fluid. The associated dens
r0(r ;@fR1#,m0

B) is a functional of the external fieldfR1 and
a function of the chemical potentialm0

B and depends only on
the difference between these quantities. Thus for any fi
position r 1 we can define a shifted chemical potential

m0
r 1[m0

B2fR1~r 1! ~8!

and shifted field

fR1
r 1 ~r ![fR1~r !2fR1~r 1!, ~9!

whose parametric dependence onr 1 is denoted by a super
script, and we have for allr the exact relation

r0~r ;@fR1#,m0
B!5r0~r ;@fR1

r 1 #,m0
r 1!. ~10!

By construction the shifted fieldfR1
r 1 (r ) vanishes atr 5 r 1

and it remains very small forr near r 1 when fR1 is very
Downloaded 31 Dec 2011 to 134.82.7.18. Redistribution subject to AIP lic
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slowly varying. Thus to determine the density atr 1 we can
approximate the rhs of Eq.~10! by r0(r 1 ;@0#,m0

r 1)

[r0(m0
r 1), the density of theuniform fluid ~in zero field! at

the shifted chemical potentialm0
r 1 . We arrive at thehydro-

static approximation18,19 for the density arising from a very
slowly varying fieldfR1 :

r0~r 1 ;@fR1#,m0
B!'r0~m0

r 1!. ~11!

We refer tor0(m0
r 1)[r0

r 1 as thehydrostatic densityat r 1 ;
from Eqs.~8! and~11! it depends only on thelocal value of
the field fR1 at r 1 . The hydrostatic approximation is exa
for sufficiently slowly varyingfR1 and has been used i
more approximate applications of these ideas to hydropho
interactions in water.20 However, in the present applicatio
fR1 varies rapidly enough that for quantitative accuracy
must use more accurate methods to determine the full n
local response.

We now show that the generalized linear respon
method introduced in Ref. 9 provides a simple and accu
way to determine both the densityrR1 induced in the first
step as well as the response tofR0 taken into account in the
second step. In Appendix B we discuss an alternate
somewhat more complicated approach suggested in Re
which requires thatrR1 is sufficiently slowly varying that
gradient-type expansions give accurate results.

We start from the exact linear response equation t
relatessmall changes in the potential and density for a sy
tem with external potentialf, chemical potentialm, and
associated densityr0(r ;@f#,m)[rf(r ):2,6

2bdf~r1!5E dr2 x0
21~r1 ,r2 ;@rf#!drf~r 2! ~12!

through the linear response functionx0
21(r1 ,r2 ;@rf#)

[d(r12r2)/rf(r1)2c0(r1 ,r2 ;@rf#). Here c0 is the direct
correlation function of the system with densityrf(r ).

2. Linear response of hydrostatic fluid

The simple hydrostatic method discussed earlier
proximatesrR1(r 1) at eachr 1 by the densityr0

r 1 of the uni-

form hydrostatic fluid with chemical potentialm0
r 1 , and thus

ignores thenonlocal effects of the shifted fieldfR1
r 1 on the

density atr 1 . To get a more accurate approximation, we c
use Eq.~12! to take into account thelinear responseof the
density of the uniform hydrostatic fluid to the shifted fie
fR1

r 1 . Thus we setrf5r0
r 1 and takedf5fR1

r 1 in Eq. ~12!.
This idea was first suggested in Ref. 9 and was shown to g
accurate results in a number of different applications. Wh
a more formal derivation can be given,9 here we focus on
physical considerations.

Since fR1
r 1 (r ) is zero atr 1 , the left side of Eq.~12!

vanishes by construction. We would expect the linear
sponse relation between an external field and induced den
to be most accurate where the field is small — in particu
where the field vanishes — and at eachr 1 we will use the
appropriate shifted~hydrostatic! chemical potential and
shifted field so that this optimal condition continues to ho
locally. This shift is crucial for the accuracy of this metho
ense or copyright; see http://jcp.aip.org/about/rights_and_permissions
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and is its main new feature over previous approaches. M
over, it has been shown that even large density fluctuat
in a ~field free! hard sphere fluid can be accurately describ
using thesameGaussian probability distribution that contro
small fluctuations21 and that yields the basic linear respon
relation ~12! for a uniform system.

This suggests that we can accurately determine the
sired rR1(r 1) by using the linear response functio
x0

21(r12;r0
r 1) of the uniform hydrostatic fluid in Eq.~12!

even when the fieldfR1
r 1 produces significant densit

changes. Assuming a linear density response, we rep
drf(r ) in ~12! by the full density changerR1(r )2r0

r 1, thus
yielding our final result:

@rR1~r 1!2r0
r 1#/r0

r 15E dr2 c0~r 12;r0
r 1!@rR1~r 2!2r0

r 1#.

~13!

Herec0(r 12;r0
r 1) is the direct correlation of the uniform ref

erence fluid at the hydrostatic densityr0
r 1 . Note that the ex-

ternal field appears only implicitly in Eq.~13! through its
local effect on the hydrostatic densityr0

r 1.
Equation~13! is a linear integral equation relating the

densityrR1(r 1) at a givenr 1 on the left side to an integra
involving the densityrR1(r 2) at all other points and auni-
form fluid kernel c0(r 12;r0

r 1) that depends implicitly onr 1

throughr0
r 1 . This new feature presents no technical difficu

ties in determining a numerical solution and Eq.~13! can be
solved by any number of standard methods. We found
Picard iteration works very well. See Appendix C for deta

C. Second step

We now determine in a second step the respo
DrR(r )[r0(r ;@fR#)2r0(r ;@fR1#) of the relatively slowly
varying density fieldr0(r ;@fR1#)[rR1(r ) to the remaining
harshly repulsive componentfR0 of the ERF, which we ap-
proximate initially as a hard core of ranged. We takerf

5rR1 in Eq. ~12! and again assume a linear density respo
in the ‘‘out’’ region r 1.d where the perturbing potentia
fR0(r 1) vanishes. This is consistent with the simulati
results21 showing that the Gaussian probability distributio
gave a good description even of the formation of voids
uniform fluids.

This linear response assumption gives the approxim
equation, valid forr 1.d:

05E dr2x0
21~r1 ,r2 ;@rR1# !DrR~r 2!, ~14!

where we impose the exact conditionr0(r 2 ;@fR#)50 from
the hard core interaction forr 2,d in the integration overr 2.

Again we approximatex0
21(r1 ,r2 ;@rR1#) by the response

function of an appropriately chosen uniform system. As
Sec. V B 2 and as shown in Ref. 9, we find that the use of
hydrostatic fluid with densityr0

r 1 gives accurate results eve
whenrR1 varies rather rapidly. Some alternate but less g
erally useful choices are discussed in Appendix B. Thus
arrive at the basic equation for the second step of our the
valid for r 1.d:
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DrR~r 1!/r0
r 15E dr2c0~r 12;r0

r 1!DrR~r 2!. ~15!

Equation~15! is a linear equation forDrR(r 1), which
we can directly solve by iteration or other means. Wh
rR1(r …5rB, andc0 is assumed to vanish forr .d, Eq. ~15!
reduces to the standard PY equation22 for the uniform hard
sphere fluid. This has an analytic solution18,2 and is known to
give very good results overall, with small errors in the heig
of the first peak at very high densities. If still more accura
is required, we can use modified generalized mean sphe
approximation ~GMSA!-type equations23 related to the
Percus–Yevick~PY! equation to describec0 , as discussed in
Appendix D. Again we can solve Eq.~15! by iteration.

This constitutes the second step of our method. The
result of this two step process is the desiredr0(r ;@fR#) aris-
ing from a givenfR . This can be substituted into Eq.~3!,
which can then be iterated to determine the final se
consistentfR

MF and r0(r ;@fR
MF#). See Appendix C for fur-

ther details of the calculations.

VI. RESULTS

We now give a detailed comparison of the radial dist
bution functionsg0(r 2 ;@fR

MF#)5r0(r 2 ;@fR
MF#)/rB given by

the two step method to the results of MD simulations of t
full LJ fluid. In Fig. 6 we consider two high density state
with rB50.78 andT51.35 andrB50.85 andT50.88. At
these high densities small errors can be seen in the lin
response treatment~equivalent to the hard core PY equatio!
of even the uniform hard sphere reference fluid. For grea
accuracy therefore we used an improved GMSA descrip
as briefly described in Appendix D. We find by direct com
parison with simulations of the reference fluid in the pre

FIG. 6. Radial distribution functionsg0(r 2 ;@fR
MF#)5r0(r 2 ;@fR

MF#)/rB for
two high density states~solid lines with the origin shifted for clarity! as
given by the two step method using Eq.~3! for the ERF along with Eqs.~13!
and~15! compared to the results of MD simulations~open circles! of theLJ
fluid. In the inset the two step results are compared directly to simulation
the reference fluidin the self-consistent potentialfR

MF . The latter tests the
accuracy of the two-step method for reference fluid correlations induce
the givenfR

MF , while the former tests the accuracy of the mean field eq
tion for determiningfR

MF .
ense or copyright; see http://jcp.aip.org/about/rights_and_permissions
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ence of the self-consistent ERF that the two step met
indeed gives a very accurate description of the nonunifo
reference fluid density, as illustrated in the inset to Fig. 6

The main remaining errors in describing the full LJ flu
are thus associated with the mean field approximation for
ERF. As already indicated in Fig. 2, this properly describ
the basic shift in the first peak when compared to the W
uniform reference fluid, but it also produces slight ove
shoots in the peaks and minima for these high density sta
as can be seen in Fig. 6.

Figure 7 gives results for states atT51.35 and a series
of lower densities:rB50.54, rB50.45, andrB50.10. Here
the linear response treatment of the reference system is
ficiently accurate and the attractive interactions prod
large changes in the correlation functions. The results s
quite satisfactory, and are comparable to those given by
best standard integral equation methods.10,11Results from the
alternate methods discussed in Appendix B are equally g
and essentially indistinguishable on the scale of the grap

VII. FINAL REMARKS

These results thus give us additional confidence in
utility of our general approach. While we certainly do n
advocate replacing standard and successful integral equ
methods for the specific problem of the structure of unifo
simple fluids, these ideas do suggest new ways of think
about some basic issues. We can view the simple mean
approximation for the attractive interactions along with t
generalized linear response treatment of correlations in
reference fluid as providing reasonably accurate and com
tationally practical first approximations for correlations i
duced by attractive and repulsive interactions. For qualita
and often quantitative work they have proved useful in
variety of different applications, including cases such as d
ing near walls6 where attractive forces induce large structu
changes and standard integral equation methods fail.

FIG. 7. Radial distribution functions for the lower density states indica
compared to the results of MD simulations~open circles! of the LJ fluid.
The symbols have the same meaning as in Fig. 6.
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For quantitative accuracy, improvements in both a
proximations may be called for in some cases. Incorpora
of GMSA-type corrections23 for reference fluid correlations
is straightforward, as discussed in Appendix D, and altern
and probably more accurate treatments of the effects of
cores can be used if needed.24 Some corrections to the sim
plest mean field equation for the ERF, as discussed in
pendix A or in Ref. 5, can also be introduced. Howev
there are some fundamental errors arising from the use
any mean field approximation for the attractive interactio
that cannot be easily avoided. The inherent limitations
mean field theory in treating long wavelength correlatio
such as those seen at the critical point or arising from ca
lary waves at the liquid–vapor interface are well know
Fortunately in many applications of interest such correlatio
do not play an important role, or their effects can be tak
into account separately. In such cases the ideas discu
here provide a unified and physically suggestive perspec
capable of giving a good qualitative and often a quantitat
description of the structure of both uniform and nonunifo
fluids.
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APPENDIX A: INTERPOLATED MEAN FIELD
EQUATION

Equation ~3! is exact as the densityr tends to zero,
wherefR

MF reduces to the bare fieldfLJ . However, the next
order term@of O(r)# in a density expansion is incorrect. Th
can most easily be seen by comparing the known den
expansions2 for the LJ system’sr(r 1 ;@fLJ#) with a LJ par-
ticle fixed at the origin, and the reference system
r0(r 1 ;@fR#) with the special wall particle with pair interac
tion wR(r 01)5fR(r 1) fixed at the origin.

We examined an empirical modification of Eq.~3! that at
low density gives the next term ofO(r) exactly but then
quickly goes over to Eq.~3! at higher density:

bfR
IMF~r 1!5bfLJ~r 1!2E dr2$@r0~r 2 ;@fR

IMF# !2rB#

3@11I ~r! f 0~r 12!#F1~r 12;rB!%. ~A1!

Here I (r) is an interpolation functionthat tends to unity at
low density and to zero at high density,f 0(r )
[exp@2bu0(r)#21, and

F1~r ;r![@exp$2bu1~r !I ~r!%21#/I ~r!. ~A2!

Possible choices forI (r) include I 1(r)5(]r/]bp)0

[S0,r ,25 proportional to the reference fluid isothermal com
pressibility, and I 2(r)5S0,r

2 , as suggested by a crud
argument26 based on perturbing the hard sphere Ornste
Zernike equation by a very weak and slowly varying pote
tial. At the lowest density studied,r50.1, Eq. ~A1! with

d
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I 2(r) gave a slightly better description of the weak seco
peak than does the simple mean field equation~3!. See
Fig. 5.

APPENDIX B: ALTERNATE EQUATIONS FOR
SLOWLY VARYING rR1

In Sec. V we exploited the Gaussian nature of fluctu
tions in the uniform reference system in carrying out bo
steps of the two step method. While this is a good appro
mation for LJ reference system, it may not always hold tr
In our initial work in Ref. 6 we proposed a different and ve
general way of carrying out the first step, which, howev
requires thatrR1 varies sufficiently slowly that gradient typ
expansions give good results.

We started from an exact equation27 first derived by
Lovett, Mou and Buff~LMB !:28

¹1rR1~r 1!/rR1~r 1!52b¹1fR1~r 1!

1E dr2c0~r1 ,r2 ;@rR1# !¹2rR1~r 2!.

~B1!

The c0(r1 ,r2 ;@rR1#) for a general nonuniformrR1 is diffi-
cult to determine, so Eq.~B1! is generally not very useful fo
practical calculations. However, ifrR1 is relatively slowly
varying, then we can accurately approxima
c0(r1 ,r2 ;@rR1#) under the integral in Eq.~B1! by the uni-

form fluid functionc0(r 12; r̄12),
29 wherer̄12 is some average

density associated with the two points. Then Eq.~B1! can be
solved to determinerR1 .

A natural choice for r̄12 suggested by a gradien
expansion18 is r̄125@rR1(r 1)1rR1(r 2)#/2 . This gives very
good results whenrR1 is reasonably smooth. This is the on
approximation we make and we can check its accuracy
seeing if similar results arise from other approximations s
asr̄125rR1(r 1) or r̄125rR1(r 2). Starting with a givenfR1 ,
we can then solve Eq.~B1! for the associatedrR1 by itera-
tion, making use of the analytic and accurate Percus–Ye
~PY! expressions for the direct correlation function of t
uniform hard sphere fluid.18,22 If more accuracy is required
we can use GMSA-type equations related to the
equation23 to describec0 . See Appendix D.

In our previous study of the LJ fluid near a hard wal6

we used thebasicseparation offR in Eqs.~6! and ~7!, and
found that it indeed produced a slowly varying density
sponse. As expected Eq.~B1! then gave very accurate re
sults. However, in the present application, the size of
excluded volume region of the fixed particle~of orders of
the LJ potential! is also the same order as the range of
attractive interactions as well as the average spacing betw
particles at high density. If the basic separation is used,
‘‘resonance’’ produces afR1

B at very high density with smal
but noticeable oscillations of period 2p/s outside the core
and a pronounced minimum inside the core atr 150. The
associated density responser0(r 1 ;@fR1

B #) will have a pro-
nounced maximum atr 150 and oscillations outside th
core, which will cause errors in the local expansion meth
used in Eq.~B1! and in Eq.~B4! to follow.
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Fortunately, we can use the flexibility in the choice
the field fR1(r ) in the core region to produce a muc
smoother density response. More precisely, we can defin
extendedseparation offR(r ) in Eq. ~5! by

fR0
E ~r ![u0~r !2f0

E~r ! ~B2!

and

fR1
E ~r ![u1~r !1fs~r !1f0

E~r !, ~B3!

wheref0
E(r ) is an essentially arbitrary smooth function th

is nonzero only in the repulsive core region but withf0
E(r )

!u0(r ), so thatfR0
E remains a harshly repulsive~essentially

hard core! interaction. This separation still divides the ER
fR(r ) into two parts with the physical meaning discussed
Sec. V, but provides some additional flexibility in the choi
of fR1(r ) in the core region that can be used to produc
smoother density response in the first step. An exact tr
ment of the response to both components offR(r ) would of
course be independent of how the potential was separat

We found best results by requiring that density respo
to fR1

E inside the~hard! core region beconstantand continu-
ous across the core. In a sense this is the smoothest pos
choice, at least in the vicinity of the core region. This cho
can easily be implemented numerically during the iterat
solution of Eq.~B1! by simply setting¹1rR1(r 1) to be zero
for all r 1 inside the core on each iteration and solving for t
associated¹1fR1

E (r 1). At convergence, the self-consiste
rR1

E (r ) is constant inside the core and smoother outside
core than that produced by the basic separation.

Using the same extended separation, we have verified
comparison with the hydrostatic linear response method
with direct simulations that Eq.~B1! now gives accurate re
sults for all the states tested here. Thus it offers an alterna
~though numerically slightly more complicated! way of car-
rying out the first step.

In Ref. 6 we also carried out the second step in a sligh
different way, effectively combining a local expansion
rR1 with a linear response treatment of the density induc
by fR0 . In particular, in Eq.~14! we treated thed-function
part of x0

21(r1 ,r2 ;@rR1#) exactly and approximated thec0

part by the uniform fluid function at the intermediate dens
r̄125@rR1(r 1)1rR1(r 2)#/2. The accuracy of this approxima
tion can again be checked by comparing with other choi
such asr̄125rR1(r 1). This yields the alternate equation fo
the second step:

DrR~r 1!/rR1~r 1!5E dr2c0~r 12; r̄12!DrR~r 2!. ~B4!

WhenrR1(r 1) is slowly varying, as was the case in a
the examples studied in the previous work, Eq.~B4! gives
accurate results, essentially identical to those of Eq.~15!.
This is also true for most of the states studied in the pres
application, provided that the appropriate extended sep
tion is used. In such cases Eqs.~B1! and~B4! can be used as
alternate ways of implementing the two step method, and
the states shown in Fig. 7 they give results on the scale of
graph essentially identical to those shown. However, for
high density statesrB50.78 andT51.35 andrB50.85 and
T50.88 in Fig. 6 the results using Eq.~B4! vary significantly
ense or copyright; see http://jcp.aip.org/about/rights_and_permissions
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when different choices forr̄12 are made. This indicates tha
for these statesrR1

E is too rapidly varying for Eq.~B4! to be
trusted. Since Eq.~15! gives accurate results even for the
high density states, and makes fewer assumptions abou
smooth behavior ofrR1 , it is the preferred way to carry ou
the second step.30

APPENDIX C: DETAILS OF THE NUMERICAL
CALCULATIONS

We give here some details of the numerical solution
the basic equations~3!, ~13!, and ~15!. Equations~B1! and
~B4! could be used as alternates in the first and second
respectively except at the highest densities. We exploit
spherical symmetry of the density and the ERF about
center of the fixed wall particle, which we take as the orig
of a spherical coordinate system. Since all these equat
are used iteratively, we need an efficient and accu
method to calculate three dimensional integrals overr2 of the
general form

I ~r 1!5E dr2k~r 2!K~r 12; r̄ !, ~C1!

where due to the spherical symmetryk(r 2) depends only on
r 2[ur2u, and K(r 12; r̄) is a function only ofr 12[ur12r2u
and r 1 and r 2 through our choice of the effective densityr̄

which equals either the hydrostatic densityr̄5r0
r 1 or the

average densityr̄5 r̄12[@rR1(r 1)1rR1(r 2)#/2.
These properties make it advantageous for us to usebi-

polar coordinates31 with the substitutiony25r 12
2 5r 1

21r 2
2

22r 1r 2cosu and reduce the three dimensional integration
two:

I ~r 1!5
2p

r 1
E

0

`

dr2r 2k~r 2!E
ur 12r 2u

r 11r 2
dyyK~y; r̄ !. ~C2!

This transformation is particularly useful if the dependen
of K(y; r̄) on y is known analytically, since then we ca
explicitly carry out they integration, and Eq.~C2! further
reduces to a one dimensional integral. All relevant equati
haveK ’s that satisfy this condition, thus permitting very e
ficient numerical computations.

In particular, Eq.~3! becomes

fR
MF~r 1!2fLJ~r 1!5

2p

r 1
E

0

`

dr2 r 2 @r0~r 2 ;@fR
MF# !2rB#

3E
ur 12r 2u

r 11r 2
dy y u1~y!, ~C3!

while Eq. ~15! is transformed to

DrR~r 1!/r0
r 15

2p

r 1
E dr2 r 2DrR~r 2!

3E
ur 12r 2u

r 11r 2
dy y c0~y;r0

r 1!. ~C4!

Equations~13! and ~B4! can be similarly rewritten.
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The vector equation~B1! can be transformed into scala
form by taking the scalar product with the unit vectorr1 /r 1

and using the identity 2r 1•r 25r 1
21r 2

22r 12
2 . Thus we find

dlnrR1~r 1!

dr1
52

bdfR1~r 1!

dr1
1

p

r 1
2E dr2

drR1~r 2!

dr2

3E
ur 12r 2u

r 11r 2
dy y~r 1

21r 2
22y2!c0~y; r̄12!.

~C5!

In all these equations the integration over the variably
can be performed analytically, since we use the PY h
sphere direct correlation functionc0(y), which is a polyno-
mial in y,2 and theu1(y) of the Lennard-Jones potentia
which is a sum ofy26 andy212 terms.12 Integrals involving
an improved GMSA approximation forc0 can also be carried
out analytically. The resulting one dimensional integ
equations can be solved by Picard iteration, where to enfo
convergence we use the usual mixing technique.

In solving these equations the reference potentialu0 is
initially taken to be a hard core potential with diameterd
given by the accurate Verlet–Weiss expressions.32 As in the
blip function method,2 the result forr0(r ;@fR#) with u0 ap-
proximated by a hard core is linearly extrapolated into
core region and multiplied by the Boltzmann factor of t
true soft core potentialu0 to give the final results forr0

shown in Figs. 6 and 7. The errors introduced by this s
plified treatment of soft cores are much smaller than th
arising from our use of the mean field approximation for t
ERF fR .

APPENDIX D: GENERALIZED MEAN SPHERICAL
TREATMENT OF REFERENCE SYSTEM

The description of the reference system presented h
relies on accuracy of the uniform hard sphere fluid dir
correlation functionc0(r ). The generalized linear respons
treatment of Eq.~15! with r0

r 15rB andc0 vanishing outside
the core is equivalent to the PY approximation, and is s
prisingly accurate at intermediate and low densities. Ho
ever, at high density it has noticeable errors, especially in
region of the first peak near contact, and for quantitat
results should be corrected.

Since the uniform fluid direct correlation function is ju
an input in our approach we can use other, more accu
approximations~even results of molecular simulations,
such are available!. We have found that use of the genera
ized mean spherical approximation~GMSA! of Waisman,23

as implemented by Hoye and Stell,33 gives considerable im-
provement over the original PY approximation. Moreover
still preserves the analytic simplicity of the resultingc0(r ) so
that the methods of Appendix C can be used.

The GMSA approximatesc0(r ) outside the hard core
~we setd51 here!, where PY assumesc0 vanishes, by a
Yukawa function:

c0~r .1!5K
e2z(r 21)

r
. ~D1!
ense or copyright; see http://jcp.aip.org/about/rights_and_permissions
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The exact core conditiong(r ,1)50 then allows one to ob
tain c0(r ) inside the core and satisfy the Ornstein–Zern
equation:

c0~r ,1!52a2br2
ha

2
r 32v

12e2zr

zr
1v2

coshzr21

2Kz2ez
.

~D2!

Requiring consistency between compressibility and vi
routes for the pressure and agreement with simulations g
explicit analytic expressions fora, b, v, K andz as functions
of the packing fractionh[pr/6, as discussed in Ref. 33. W
can use this improved expression forc0(r 12;r0

r 1) in Eq. ~15!
to describe the hard sphere reference fluid.

We can also amend our description of the wall particle
a similar way by adding the tail correction Eq.~D1! as given
by the GMSA on the right side of Eq.~15!. In the absence o
attractive forces this equation then reduces exactly t
GMSA description of the response of a hard sphere fluid
hard sphere fixed at the origin, and we neglect any chan
in this correction when attractions are taken into acco
throughfR1(r ). These GMSA corrections to the usual line
response treatment are numerically significant only for
high density states studied in Fig. 6.
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