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We show that the aging dynamics of a strong glass former displays a strikingly simple scaling
behavior, connecting the average dynamics with its fluctuations, namely, the dynamical heteroge-
neities. We perform molecular dynamics simulations of SiO2 with van Beest-Kramer-van Santen
interactions, quenching the system from high to low temperature, and study the evolution of the
system as a function of the waiting time tw measured from the instant of the quench. We find that
both the aging behavior of the dynamic susceptibility χ4 and the aging behavior of the probability
distribution P( fs,r) of the local incoherent intermediate scattering function fs,r can be described by
simple scaling forms in terms of the global incoherent intermediate scattering function C. The scaling
forms are the same that have been found to describe the aging of several fragile glass formers and
that, in the case of P( fs,r), have been also predicted theoretically. A thorough study of the length
scales involved highlights the importance of intermediate length scales. We also analyze directly
the scaling dependence on particle type and on wavevector q and find that both the average and
the fluctuations of the slow aging dynamics are controlled by a unique aging clock, which is not
only independent of the wavevector q, but is also the same for O and Si atoms. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4953911]

I. INTRODUCTION

If a glass-forming liquid is cooled from a high temperature
to a low temperature and crystallization is avoided,
the relaxation times of the system increase dramatically.
Depending on the experimental (or simulation) time accessible
in comparison with this growing relaxation time, either
a supercooled liquid (in equilibrium) or a glass (out of
equilibrium) is observed.1–3 In the non-equilibrium (aging)
case, after a temperature quench, the dynamics at low
temperature depends on the waiting time tw — the time
elapsed since the temperature quench. To investigate this
rich dynamics, a large variety of approaches (experiments,
computer simulations, and theoretical techniques) have been
used and many different systems have been studied. Previous
work on the dynamics of both of supercooled liquids and of
glasses ranges from small molecules, to polymers, to network
glasses, to colloidal glasses, and to granular systems (in the
last two cases density is the control parameter, instead of
temperature). For reviews we refer the reader to Refs. 1–5.

A common finding of these studies, and in that
sense a universal feature, is that the dynamics is spatially
heterogeneous, meaning that there are fast and slow regions
in space.6–8 One route for probing the extent of universality
is to investigate the possible presence of similar scaling
behaviors of the dynamical heterogeneities in diverse systems.
We take this route in the work presented here. Specifically, we
investigate the scaling of the dynamic susceptibility χ4 and
of the distribution P( fs,r) of the local incoherent intermediate

a)Electronic mail: kvollmay@bucknell.edu

scattering function fs,r. In previous work, there have been
relatively few studies on P( fs,r).9–14 Also, most previous work
on χ4 has focused on the dependence of χ4 on the temperature
(or density) in the supercooled liquid regime (see Sec. 3.2.4.3
of Ref. 6 and for SiO2 specifically see Refs. 15–18) There
have been fewer studies for the aging dynamics, i.e., the
dependence of χ4 on the waiting time tw, which we discuss in
this paper.13,19–25

Predictions for the scaling of P( fs,r) with respect to tw
follow from a theoretical framework for the aging dynamics
that explains dynamical heterogeneities in terms of the
presence of Goldstone modes associated with a broken
continuous symmetry under time reparametrizations.9–11,26–32

To study the dynamical heterogeneity, i.e., the local
fluctuations in the relaxation, we focus on a local two-
time correlation, the local incoherent intermediate scattering
function fs,r(tw, tw + t), which depends on the position r, the
waiting time tw, and the time interval t. The Goldstone modes
correspond to space dependent shifts of the time variable
t → φr(t) such that

fs,r(tw, tw + t) ≈ C(φr(tw), φr(tw + t)). (1)

Here C(tw, tw + t) corresponds to the global two-time
correlation function.9,31 More generally, a simple Landau-
theory approximation for the dynamical action predicts that
quantities describing fluctuations in the system depend on the
waiting time tw and the time interval t essentially only through
the global two-time correlation function C(tw, tw + t).9–11 Thus
it is expected that the probability distribution P( fs,r(tw, tw + t))
should collapse for different waiting times tw, for (tw, t) pairs
chosen such that C(tw, tw + t) is held fixed. This prediction

0021-9606/2016/144(23)/234510/12/$30.00 144, 234510-1 Published by AIP Publishing.
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is consistent with spin glass simulation results.9–11 Despite
the theory being initially derived for spin glasses, simulation
results for structural glasses12,13,20,21,25,30,31 and experimental
results for a polymer glass22 find this predicted scaling to hold.
The numerical simulations also show that χ4(tw, tw + t) is a
product of two factors: a waiting-time dependent scale that
grows with tw and a scaling function that depends on (tw, t)
only through the value of C(tw, tw + t).

The large variety of structural glass formers can be divided
into two broad groups, called fragile and strong glass formers,
due to their different dependence of the viscosity (and the
relaxation time) on temperature.1–3 All of the previous tests of
predictions of the Goldstone mode approach in structural
glasses have been for the case of fragile glass formers.
It is an open question whether the behavior of dynamical
heterogeneity in strong glass formers is also well described
by the same theoretical framework. In this paper, we address
precisely that question. We present here molecular dynamics
simulation results for the network former SiO2 which is a
strong glass former. The van Beest-Kramer-van Santen (BKS)
potential33 which we use has not only been shown to be an
excellent model for real silica34–37 but also previous work
of the last 20 years provides us with detailed insight into
many of the properties of this system, including its phase
diagram,38–45 energy landscape,46–50 structure34,35,38–40,51–53,82

vibrational spectrum,37,54–57 dynamical heterogeneities,18,58–63

and aging.64–68

Further motivation for the present work is the unexpected
similarity that has recently been found between the dynamics
of the strong glass former SiO2 and fragile glass formers.67

Whereas in Ref. 67 the microscopic dynamics is studied
via single particle jump analysis, we investigate in this
paper whether this surprising similarity of strong and fragile
glass dynamics also holds true for the scaling of dynamical
heterogeneities. We find not only that indeed most results
confirm universal dynamics, but we also gain deeper insight
into the involved length and time scales. The scaling of P( fs,r)
uncovers the importance of intermediate length scales and the
scaling of C, χ4, and P( fs,r) all indicates a common aging
clock which is the same for Si and O atoms.

II. MODEL AND SIMULATION DETAILS

To model amorphous SiO2, we used the BKS potential.33

We carried out molecular dynamics (MD) simulations with
NSi = 112 silica atoms and NO = 224 oxygen atoms, at a
constant volume V =

(
16.920 468 Å

)3
which corresponds to a

density ρ = 2.323 g/cm3. For further details on the interaction
see Ref. 66.

At 6000 K we generated 200 independent configurations
(at least 1.63 ns apart) which then were fully equilibrated
at initial temperature Ti = 5000 K for 3.27 ns, followed by
an instantaneous quench to lower temperature Tf = 2500 K,
i.e., below Tc = 3330 K.69 Unique to our simulations is that we
applied the Nosé-Hoover temperature bath at Tf only for the
first 0.327 ns (NVT) and then continued with constant energy
(NVE) for 98.1 ns. We switch to (NVE), i.e., the integration of
Newton’s equations, to avoid any algorithm specific influence

of a thermostat. The shortest possible application of the
(NVT) thus allows us to disturb the dynamics minimally. We
confirmed that Tf stays constant and is similar to Tf(t) as
shown in Fig. 2 of Ref. 66. In all the following results, we
find no indication of a sudden change in the dynamics due
to this switch from (NVT) to (NVE), instead all investigated
quantities show a smooth transition at the corresponding time.
The MD time step was 1.02 fs and 1.6 fs during the (NVT)
and (NVE) runs, respectively. In what follows, we analyzed
the combined (NVT) and (NVE) simulation runs at Tf.

The main difference between the present simulation
and the ones discussed in Refs. 51, 66, and 67 is that
our new dataset has increased statistics (200 independent
runs instead of 20) and that each NVE run at Tf has a
longer duration (98.1 ns instead of 32.7 ns). As described in
Sec. III, this increased statistics and the longer simulation runs
allowed us to gain insight into the scaling of the two point
correlation function Cα significantly beyond the results of
Ref. 66. Furthermore, having 200 independent simulation
runs gave good enough statistics to make it possible to
determine the dynamic susceptibility and the distribution
of the local incoherent intermediate scattering function (see
Secs. IV and V).

III. GLOBAL INCOHERENT INTERMEDIATE
SCATTERING FUNCTION

Let us first look at the global generalized incoherent
intermediate scattering function

Cα(tw, tw + t,q) = 

f αs (tw, tw + t,q)� (2)

with

f αs (tw, tw + t,q) = 1
Nα

Nα
j=1

cos
�
q ·

�
r j(tw + t) − r j(tw)�	 . (3)

Here r j(t) is the position of particle j at time t, tw is the waiting
time elapsed since the temperature quench from 5000 K to
2500 K, and Nα is the total number of particles of type
α (α ∈ {Si,O,all}). The notation ⟨. . .⟩ indicates an average
over wave vectors q of fixed magnitude q and over the
200 independent simulation runs. In Eq. (3) the sum is over
particles in the complete simulation box, whereas in Sec. V
the sum is only over particles within a local sub-box. We call
Cα the “global” incoherent intermediate scattering function
to stress this distinction. Error bars for Cα are given by
the statistical error of the average over the 200 independent
simulation runs. Even though averaging over 200 independent
runs allows us to remove a lot of the noise in the results,
we further smooth the results by additionally applying a time
average. The time average is computed by using logarithmic
time bins and by averaging t-values, Cα-values, and error bars
∆Cα within the same time bin.

Unique to the present work is that we investigate directly
the influence of particle type on scaling. To do so, we
distinguish three different cases, labeled by the symbol α.
In the case of α = Si, the sum in Eq. (2) is exclusively over Si
atoms and in the case of α = O the sum is exclusively over O
atoms. In the third case, α = all, the sum is over all particles,
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FIG. 1. Global generalized incoherent intermediate scattering function at
q = 2.7 Å−1 for oxygen atoms, CO(tw, tw+ t,q) as defined in Eq. (2), for 12
waiting times tw between 0 ns and 81.9 ns. To avoid cluttering the graph, in
this figure and in most other figures where results for different waiting times
are compared, statistical error bars are shown for just one of the waiting times.
Here and in the following figures, the shown error bars are of the same order
as the not shown error bars for different waiting times.

i.e., including both Si and O atoms. We use this notation
throughout the whole paper, including in our discussion of
the dynamic susceptibility χ4 and the probability distribution
P( fs,r).

Fig. 1 shows Cα(tw, tw + t,q) for oxygen atoms and for
q = 2.7 Å−1. We find that with increasing waiting time tw the
correlation function decays more slowly. To quantify this, we
define the relaxation time ταq as the time when Cα has decayed
to a certain value Cα

cut(q),
Cα(tw, tw + ταq ,q) = Cα

cut(q). (4)

Instead of the commonly used choice Cα
cut = 1/e, we

adjust to the varying plateau height of Cα(q) for different
q. Hence for Cα

cut(q), we choose the values listed in Table I,
each of which is given by 1/e times the corresponding plateau
value of Cα(q).

The resulting relaxation times for oxygen atoms are
shown in Fig. 2 as functions of the waiting time tw. As
in Ref. 66, different regimes for tw can be identified from
Figs. 1 and 2. In Ref. 66 it was found that for small waiting
times, tw . 0.1 ns, Cα(tw, tw + t) does not form a plateau, for
intermediate tw a plateau is formed, and time superposition
applies, and for sufficiently large waiting times Cα becomes
tw-independent, i.e., equilibrium is reached. The increased
statistics of the present simulations allow the identification
in Fig. 2 of the transition from small to intermediate tw as a

TABLE I. Cα
cut(q) values.

q Si O All

1.7 0.323 0.298 0.306
2.7 0.265 0.217 0.233
3.4 0.221 0.162 0.182
4.6 0.144 0.085 0.105

FIG. 2. Relaxation times for oxygen atoms τO
q(tw) as defined in Eq. (4). For

clarity, the data for q = 4.6 Å−1,3.4 Å−1,2.7 Å−1, and 1.7 Å−1 have been
shifted by factors of 1,3,9,27, respectively. The lines are power law fits. The
fitted exponents µ are shown in the inset, both for the case of O atoms and
for the case of all atoms.

change in the tw dependence of the relaxation times τα(tw)
from non-power law to power law behavior. Fig. 2 also shows
that ταq (tw) does not reach a plateau, i.e., the waiting times are
not long enough to reach equilibrium.

Let us next investigate further the dynamics for
intermediate waiting times tw & 0.1 ns. The inset in Fig. 2
shows the power law fit exponents µ as functions of wave
vector q. We find that within the error bars, µ seems to be
independent of q for q ≥ 2.7 Å−1. Similar results for τ(tw)
have been found experimentally for a metallic glass70 and
for a colloidal glass.71 The inset in Fig. 2 also shows that
µ is independent of the particle type α. (The particle type
is indicated by a square for α = O and by a rhombus for
α = all.) This independence of α is rather surprising, since
Horbach and Kob had found that the dynamics of silicon
and oxygen atoms is very different for temperatures below
3330 K.35 Saksaengwijit and Heuer72 relate this decoupling of
silicon and oxygen dynamics to rotational processes.

We interpret the α-independence of µ as an evidence
for the existence of a common “single aging clock” in the
system, despite the different dynamics of Si and O atoms.
This allows us to analyze Si and O atoms together (α = all).
To directly test the hypothesis of a single aging clock, we
generalize an approach introduced by Kob and Barrat.73 They
had investigated the q-dependence of Cα via a parametric
plot of Cα(q2) versus Cα(q1) for various tw. Whereas for
their system, a binary Lennard-Jones system, they found
no data collapse,73 for our system, SiO2, it was found in
Ref. 66 that data collapse indeed happens. This indicates
that Cα(tw, tw + t,q) = Cα(z̃(tw, t,α),q).66 In other words, for
each particle type α, there is a unique q-independent aging
clock represented by z̃(tw, t,α). Notably, this seems the only
non-universal result we encounter in our comparison of the
dynamics of fragile and strong glass formers. However, Kob
and Barrat included the full range of waiting times, whereas we
included only tw ≥ 0.14 ns. When we include in a parametric
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FIG. 3. To study directly the dependence of the global incoherent inter-
mediate scattering function Cα on the particle type α, we show here two
parametric plots of CO versus CSi for various waiting times tw: one for
q = 2.7 Å−1 (main panel) and another for q = 1.7 Å−1 (inset).

plot of Cα(q2) versus Cα(q1) also too short waiting times
tw < 0.14 ns, we obtain no data collapse for SiO2 similar to
the results of Kob and Barrat. According to Fig. 4 of Ref. 73,
their smallest three or four waiting times correspond to too
short waiting times. When we exclude these waiting times in
their Fig. 8, their results for the binary Lennard-Jones system
show data collapse similar to our results for SiO2.

We now address the question of the existence of a common
aging clock for Si and O atoms, in other words, whether or
not the function z̃(tw, t,α) is independent of α. The question
is therefore whether it is true that

Cα(tw, tw + t,q) ≡ C(tw, tw + t,q,α)
?
= C(z(tw, t),q,α). (5)

To answer this question, we investigate directly the α-
dependence via a parametric plot of CO(tw, tw + t,q) versus
CSi(tw, tw + t,q) as shown in Fig. 3 for q = 2.7 Å−1 (and
in the inset for q = 1.7 Å−1). We find almost perfect data
collapse for all investigated q and conclude that Eq. (5) is
correct. Hence the (tw, t)-dependence is solely governed by
one function z(tw, t), i.e., an “inner aging clock” which is not
only q-independent but also the same for different particle
types.

This may appear surprising at first, since, as mentioned
before, it is known that in SiO2 the oxygen atoms have a
faster dynamics than the silicon atoms.35,72 Our results do
not contradict this statement. To illustrate how to reconcile
a common clock and yet different dynamics of Si and O
atoms, we show in Fig. 4 (tw, tw + t)-pairs for fixed Cα. For
example, the blue circles of the bottom curve were obtained
by finding for each tw the corresponding tw + t for which
CSi(tw, tw + t,q = 2.7 Å−1) = 0.575 with 1% accuracy. For
equilibrium dynamics, this curve would be trivial: it would
be the set of (tw, tw + t)-pairs for a certain constant value of t.
For aging dynamics, the curve is non-trivial: t changes as tw
changes. Nevertheless, we obtain the same non-trivial curve
for O atoms (blue triangles) for fixed CO = 0.463. Similarly

FIG. 4. This figure illustrates the compatibility of Si and O atoms having
both different speeds as well as a common clock. For each tw the correspond-
ing (tw+ t) was determined to obtain the specified Cα =Cα(tw, tw+ t,q
= 2.7 Å−1) with 1% accuracy. The solid lines are for the guidance of the
eye. The common clock is apparent by identical curves for silicon (circles)
and oxygen (triangles). The fact that the dynamics of O atoms is faster than
the dynamics of Si atoms is reflected by the constant value of CO being lower
than the corresponding constant value of CSi on the same curve.

we obtain identical curves for Si atoms (circles) and oxygen
atoms (triangles) for different choices of CSi and CO (upper
three curves), hence a common clock for Si and O atoms. The
fact that the dynamics of O atoms is faster than the dynamics
of Si atoms is reflected by the constant value of CO being
lower than the corresponding constant value of CSi on the
same curve.

IV. DYNAMIC SUSCEPTIBILITY

In this section, we study the dynamic susceptibility,
χα

4 , which is a four-point correlation function. χα
4 quantifies

thermal fluctuations of the incoherent intermediate scattering
function. Following the notation of Berthier,17 χα

4 is defined74

to be

χα
4 (tw, tw + t,q) = Nα

( f αs )2

− (⟨ f αs ⟩)2


, (6)

where f αs (tw, tw + t,q), Nα, and ⟨. . .⟩ are as defined at the
beginning of Sec. III. To obtain error bars for χα

4 , we divide
the 200 independent simulation runs into 20 subsets each of
10 independent simulation runs and compute a value χ

(α, i)
4

for each subset i, with i = 1, . . . ,20. The error bar of χα
4 is

the standard deviation of the mean over those 20 independent
χ
(α, i)
4 values. As in the case of Cα, we further smooth the

results for χα
4 by applying a time average using logarithmic

time bins. This means that for each logarithmic bin, all
unsmoothed data (t, χ4,∆χ4), which occur at a time t within
the specified bin time window, are averaged to (t, χ4,∆χ4).

Fig. 5 shows the resulting dynamic susceptibility for
oxygen atoms and q = 2.7 Å−1. Since χα

4 is a four-
point correlation function, it is a measure of dynamic
heterogeneities. The dynamic susceptibility is small both
for very short times and for very large times t and it has a
maximum χα

max at an intermediate time tαmax. This maximum
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FIG. 5. Dynamic susceptibility χO
4 (tw, tw+ t,q) as defined in Eq. (6) for

q = 2.7 Å−1, for the same waiting times tw as in Fig. 1.

can be interpreted as a maximal number of particles in a
dynamically correlated region. For a thorough discussion of
this maximum and its scaling dependence on temperature and
system size in the case of a supercooled liquid and a dense
granular system, see Refs. 16, 17, and 75. We investigate here
instead the aging dynamics and thus the dependence of χα

4 on
waiting time tw. To quantify the dependence of this maximum
on tw, q, and α, we show the peak height χα

max and the peak
position tαmax as functions of tw in Figs. 6 and 7, respectively.
Similar to previous results in fragile glass formers,13,20,21,23–25

χα
max and tαmax increase with increasing tw. It is possible that

χα
max reaches a plateau for large tw, but the noise in the results

is too large to allow for any definite conclusions to be drawn.
As above, the dependence of tαmax(tw,q) on tw is consistent with
the presence of two regimes: tw . 0.1 ns and tw & 0.1 ns. As
in the case of ταq (tw), in the longer time regime, the time scale
tαmax(tw,q) has a power law dependence on tw, with exponents

FIG. 6. Peak value, χα
max, of χα

4 (tw, tw+ t,q) (see Fig. 5). Here χα
max as a

function of waiting time tw is shown for oxygen atoms, i.e., α =O. We find
similar results for α =Si and α = all.

FIG. 7. Peak position tO
max of the maximum of χO

4 (tw, tw+ t,q) (see Fig. 5).
For clarity, the data for q = 4.6 Å−1,3.4 Å−1,2.7 Å−1, and 1.7 Å−1 have
been shifted by factors of 1,3,9,27, respectively. The lines are power law
fits tO

max∝ t
µmax
w with exponents as shown in the inset.

µmax which are again independent of particle type, as shown
in the inset of Fig. 7.

We next address the question of how the dynamic
susceptibility scales with respect to waiting time. As described
in the Introduction, numerical simulations for fragile glasses
find13,20,21,25 a scaling behavior of the (tw, t) dependence of the
dynamic susceptibility given by

χα
4 (tw, tw + t,q) = χ0

4(tw,q,α) φ(Cα(tw, tw + t,q),q,α). (7)

A similar more general result follows from Ref. 76.
Without loss of generality, we choose χ0

4(tw,q,α) in Eq. (7) to
be the maximum height χα

max. To test the validity of Eq. (7),
we plot in Fig. 8 χα

4 /χ
α
max as a function of (1 − Cα) for the

case of oxygen atoms (α = O) and q = 2.7 Å−1 (for details

FIG. 8. We show here χO
4 /χ

O
max as a function of (1−CO) for different waiting

times tw. The data collapse confirms Eq. (7), i.e., the normalized dynamic
susceptibility depends on tw only via the global incoherent intermediate
scattering functionCα. We find similar data collapse for all other investigated
q and α.
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FIG. 9. (1−CO)cross as defined in Eq. (8) is plotted as a function of waiting
time tw.

see endnote77). Fig. 8 shows indeed data collapse within the
error bars. To quantify how good this data collapse is, we
determine the left crossing point of a horizontal line at 0.6 in
Fig. 8, i.e., (1 − Cα)cross is defined as the smaller of the two
solutions of the equation

χα
4 /χ

α
max((1 − Cα)cross) = 0.6. (8)

Fig. 9 shows the resulting (1 − Cα)cross as a function of tw
for α = O, for q = 1.7 Å−1, 2.7 Å−1, 3.4 Å−1, and 4.6 Å−1. To a
first approximation, (1 − Cα)cross is waiting time independent,
consistent with Eq. (7). However, a slight systematic increase
of (1 − Cα)cross with tw appears to be present, which may be
evidence for the existence of small corrections to Eq. (7).

We now investigate the dependence of χ4 on wave vector
q and particle type α. We use Eq. (5) to rewrite Eq. (7) as

χα
4 (tw, tw + t,q) = χmax(tw,q,α) φ(C(z(tw, t),q,α),q,α). (9)

The dependence on time t enters into Eq. (9) only via C
and therein only through z(tw, t), where z is independent of
q, as it has been shown in Ref. 66, and independent of α, as
shown above in Fig. 3. Therefore we have

χα
4 (tw, tw + t,q) = χmax(tw,q,α) χ̂(z(tw, t),q,α), (10)

where χ̂(z,q,α) is a tw-independent function in the sense that
all (t, tw)-dependences enter only via z. As a consequence
of z being independent of q, we obtain data collapse for
a parametric plot of χα

4 /χ
α
max for q = q2 as a function

of χα
4 /χ

α
max for q = q1, with q2 , q1, and similarly as a

consequence of z being independent of α we obtain data
collapse for a parametric plot of (χO

4 /χ
O
max) versus (χSi

4 /χ
Si
max)

(see the Appendix).
The common aging clock for Si and O atoms allows for

the analysis of Si and O atoms together, thus leading to the
data collapse of χall

4 /χall
max (1 − Call) for different tw, which

is shown in Fig. 10 for q = 2.7 Å−1 and quantified for all
investigated q values via (1 − Call)cross in the inset of Fig. 10.
This common aging clock might be the reason why a data
collapse was also found in previous work on fragile glass

FIG. 10. Similar to Fig. 8, we show here χα
4 /χ

α
max as a function of (1−Cα)

for different waiting times tw but now for α = all, i.e., both Si- and O-
atoms were included in the analysis. The inset shows the corresponding
(1−Call)cross as a function of tw for all investigated q values.

formers, in which case different particle types were analyzed
together.13,20,21

V. DISTRIBUTION OF LOCAL INCOHERENT
INTERMEDIATE SCATTERING FUNCTION

In Sec. IV, we found scaling for the dynamic
susceptibility, which can be thought of as a measure of
the thermal fluctuations of the global incoherent intermediate
scattering function f αs (tw, tw + t,q). In this section, we present
results on the probability distribution for the local coarse
grained intermediate scattering function

f αs,r(tw, tw + t,q)
=

1
Nα

r


r j(tw)∈Br

cos
�
q ·

�
r j(tw + t) − r j(tw)�� , (11)

where the sum is over particles of type α which are at time tw
within a local sub-box Br.78 By contrast, in Eq. (3) the sum
is over all particles in the system. Our definition of f s,r is
identical to the definition of Cr in Refs. 9–11, 26, and 28. We
choose a different notation here to emphasize the fact that f s,r
is not an ensemble-averaged quantity. By definition f s,r = 1
for t = 0. Relaxation in a region corresponds to the decay
of the value of f s,r from 1 to 0. Spatial fluctuations of f s,r
quantify dynamical heterogeneities: the “slow” regions have
values of f s,r that remain non-negligible for a longer time,
and “fast” regions correspond to local values of f s,r that decay
more rapidly towards 0.

In the following, we determine the probability distri-
bution P( f αs,r(tw, tw + t,q)) of the local correlations f αs,r. As
described in Sec. I, a Landau-theory approximation for spin
glasses9–11,26–29,32 predicts for this distribution P( f αs,r) that all
(tw, t)-dependences are solely governed by Cα(tw, tw + t,q).
This is rather surprising, since the prediction is for the
full distribution P( f αs,r) of these local fluctuations, yet
Cα(tw, tw + t,q) is not only a scalar but also a global quantity
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which is equal to the average

Cα(tw, tw + t,q) = 

f αs (tw, tw + t,q)� . (12)

The theory therefore predicts that if (tw, t) pairs are chosen such
that Cα(tw, tw + t,q) is fixed, the corresponding P( f αs,r) should
be tw independent. This data collapse has been confirmed for
spin glasses9,11 and for fragile structural glass formers.12,13,21,30

In this section, we investigate the scaling of P( f αs,r(tw, tw + t,q))
for our SiO2 simulation data, i.e., for a strong glass former.

As will be shown below, we find that the goodness
of the scaling depends on the involved length scales via q
and via the chosen size of the local sub-box Br. Since the
specifics of the analysis influence the chosen length scales, we
include in the following all necessary details. Our procedure
for the choice of sub-box size and the corresponding set
of sub-boxes within the complete simulation box of length
L = 16.9205 Å is as follows: We first divide the simulation
box into very small sub-boxes of length L/M . The length
of a sub-box Br is then an integer b times this very small
sub-box, i.e., L × b/M . The average number of particles in
Br is therefore ⟨Nr⟩ = Nα(b/M)3. We present in this paper
results for ⟨Nr⟩ ≈ 5 and ⟨Nr⟩ ≈ 40 as listed in Table II.
The distribution P( f αs,r(tw, tw + t,q)) is then obtained for a
specific set of (tw, t,q,α) and for a specific simulation run
via measurements of f αs,r for all M3 possible Br and for all
q-vectors of magnitude q. To obtain the M3 possible sub-boxes
Br, the sub-box is shifted in the three directions and periodic
boundary conditions were used.

To test whether the (tw, t) dependence of P( f αs,r) is
governed by Cα(tw, tw + t,q), we use the same approach
as in previous work.12,13,21,30 We choose a fixed value
Cfix of the global Cα, and for each waiting time tw we
determine the time tfix such that Cα(tw, tw + tfix,q) = Cfix (see
endnote79). For these time pairs (tw, tfix) we then determine
for each independent simulation run c = 1,2, . . . ,200, a
distribution Pc( f αs,r(tw, tw + tfix,q)), using for Eq. (11) the
positions {ri(tw)}c and {ri(tw + tfix)}c. Please note that the
parameters tw, tw + tfix, and q are common to all simulation
runs. For each bin of the distribution, we obtain the mean
Pc( f αs,r(tw, tw + tfix,q)) over the 200 independent simulation
runs. The error bars represent the standard deviation of this
mean over runs. The result of this computation is shown in
Fig. 11 for the case of α = O and ⟨Nr⟩ = 5.1.

For small Cα we find perfect scaling collapse and the
distribution is a Gaussian (black dashed line). We attribute
the Gaussian distribution to small Cα occurring at late times
t (see Fig. 1) when diffusive dynamics is approached. For
intermediate and large Cα we find a non-Gaussian, i.e., non-
trivial P( fs,r), and nevertheless very good data collapse. To
check quantitatively whether the slight tw dependence in

TABLE II. Table of analyzed (M,b)-values which specify the local sub-box
Br.

α M b ⟨Nr⟩ M b ⟨Nr⟩
Si 14 5 5.1 14 10 40.8
O 7 2 5.22 7 4 41.8
All 8 2 5.25 8 4 42.0

FIG. 11. Distribution of the local incoherent intermediate scattering function
for oxygen atoms, P( f O

s,r), for q = 2.7 Å−1 and ⟨Nr⟩= 5.1.

Fig. 11 is systematic, we focus on the location of most
discrepancy, the maximum. Fig. 12 shows the maximum
value Pα

max of the distribution, as a function of tw. Consistent
with the results above, we find that for small tw scaling is not
valid, but for tw & 0.1 ns Pα

max is approximately independent
of tw. We obtain similar results for q > 2.7 Å−1 and also for
α = Si.

To probe the dependence of P( f αs,r) on particle type α,
we show in the inset of Fig. 13 the comparison of P( f αs,r) for
α = Si, O, all. We conclude that P( f αs,r) does depend on α. In
Secs. III and IV we had found that despite different dynamics
of silicon and oxygen atoms, their scaling z(tw, t) gives rise
to a common aging clock. This common clock allows us to
analyze Si and O together (α = all). To test this common aging
clock for the case of P( f αs,r), we therefore show in Fig. 13
P( f all

s,r) and find indeed a data collapse for different tw.

FIG. 12. To quantify how well scaling is satisfied in Fig. 11, we show here
the maximum PO

max as a function of the waiting time tw. Here ⟨Nr⟩= 5.1 and
q = 2.7 Å−1. We find similar results for q > 2.7 Å−1.
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FIG. 13. Distribution of the local incoherent intermediate scattering function
for α = all, i.e., when both silicon and oxygen atoms are analyzed. The color
coding for the waiting times is the same as in Fig. 11. The dashed black
lines correspond to Gaussian fits. For comparison, the inset shows P( f αs,r) for
different α with fixed waiting time tw= 16.7 ns.

So far we have shown P( f αs,r) for various fixed Cα, for
q = 2.7 Å−1, ⟨Nr⟩ ≈ 5, with either α = O or α = all. When also
q and ⟨Nr⟩ are varied, we find that the predicted data collapse
occurs as long as tw & 0.1 ns, q ≥ 2.7 Å−1, and ⟨Nr⟩ ≈ 5. Next
we look at cases when scaling fails. Fig. 14 shows P( f αs,r)
for ⟨Nr⟩ ≈ 5 as before, but now q = 1.7 Å−1. For CO = 0.3
and CO = 0.5 we find that the data collapse for different tw
is much worse than before. This is quantified in the inset of
Fig. 14, which shows the systematic tw dependence of PO

max.
The inset also shows that in the Gaussian case of CO = 0.1, the
scaling does work even for q = 1.7 Å−1. Furthermore, when
the sub-box size is chosen to be much larger, scaling does not
occur even if q ≥ 2.7 Å−1, as shown in Fig. 15 for the case of

FIG. 14. P( f O
s,r) for q = 1.7 Å−1. Scaling is less good when q is too small.

The inset shows the maximum value, PO
max, as a function of tw. Even for

tw > 0.1, PO
max is tw-dependent, which indicates that there is a breakdown of

scaling.

FIG. 15. P( f O
s,r) for sufficiently large q = 2.7 Å−1 but with a large sub-box

size, ⟨Nr⟩= 41.8, leading to tw-dependent distributions. To quantify the
breakdown of scaling the inset shows the peak value PO

max as a function of
the waiting time tw.

⟨Nr⟩ ≈ 42. A similarly worse data collapse for larger ⟨Nr⟩ has
been found for a fragile glass former (Fig. 2 of Ref. 13).

Thus scaling breaks down for intermediate timescales,
corresponding to intermediate Cα, when the regions probed
by the local incoherent intermediate scattering function fs,r
become too large. Those probed regions can become larger
either directly because the coarse graining region is chosen
to be larger, or indirectly, because q is chosen to be smaller,
thus allowing longer displacements to contribute significantly
to fs,r.

One effect that could contribute to the imperfect collapse
is that the measured probability distribution could be
influenced to some degree by spatial correlation effects, and
these effects could vary as the system ages and the typical
size of the correlated regions grows. In the case of fragile
glasses,12 it was found that the width of P( fs,r) grew with
tw at constant Cα. In that case it was argued that P( fs,r) was
narrowed by averaging of fs,r over more than one correlated
region, but this narrowing became weaker as the size of the
correlated regions grew with tw. In our case, however, we
notice in the insets of Figs. 14 and 15 that the direction of
the effect is not always the same: the distributions widen with
increasing tw for CO = 0.3, but they narrow with increasing
tw for CO = 0.5. Therefore, for SiO2, although this narrowing
effect could in principle play some role, there must also be
other effects at play.

In what follows we address the question of why scaling
fails and how to adjust the analysis to recover the data collapse
even for larger length scales (q = 1.7 Å−1 and ⟨Nr⟩ ≈ 40). To
gain this insight, first a closer look at the details of the analysis
is necessary. A crucial point is how we choose the time pairs,
i.e., tw and tw + t. We illustrate in Fig. 16 how this is done. First
we choose a unique t = tfix — the same for all 200 independent
simulation runs — by demanding that the global incoherent
scattering function Cα(tw, tw + t) (thick line in Fig. 16) take a
certain value at t = tfix, such as Cα(tw, tw + tfix) = 0.5.
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FIG. 16. Cα
c for single simulation runs c = 127,57,7, and 121 (thin lines)

and the averaged incoherent intermediate scattering function Cα (thick line).
In this example α =O.

If we now look at individual runs, the intermediate
scattering function computed for each run c is Cα

c = ⟨ fs⟩c
where ⟨. . . ⟩c corresponds to an average over q vectors of
fixed magnitude but not over simulation runs. Since the
system simulated in each independent run contains only 336
particles, it is not large enough for Cα

c to be self-averaging: in
Fig. 16, the values of Cα

c (tw, tw + tfix) for four individual runs
are shown with circles, and they differ dramatically from each
other and from the value of the fully averaged Cα(tw, tw + tfix).
In other words, choosing a unique value t = tfix is equivalent to
choosing very different values for Cα

c for each simulation run
c. Consequently, the distributions P( fs,r(tw, tw + t,q)) at the
same times are necessarily very different for different runs c.

In Fig. 17, single simulation run distributions Pc( f O
s,r) for

four independent runs are shown as thin black lines, and it
is clear that the variation of Pc( f O

s,r) between runs is very

FIG. 17. Distributions of local incoherent intermediate scattering functions.
Thick lines correspond to the average distribution P( fs,r) and thin lines are
examples for individual simulation run distributions Pc( fs,r). Colors (black
and magenta) indicate the waiting times.

large: there is a nontrivial distribution of distributions. For
comparison, the average over runs P( f O

s,r) is shown in the
same figure with a thick black line. All of the black lines
in the figure correspond to tw = 0.49 ns. In the same figure,
results are shown for another waiting time, tw = 33.0 ns, as
magenta/grey lines: the thin lines corresponding to Pc( f O

s,r)
for individual runs c, and the thick line corresponding to
P( f O

s,r). Also, for tw = 33.0 ns the distributions Pc( f O
s,r) vary

greatly from simulation run to simulation run. Yet, the set of
possible Pc( f O

s,r) seems to be the same for the two waiting
times. We find that for obtaining a particular shape of Pc( f αs,r),
the key variable is Cα

c (tO
fix) (marked by circles in Fig. 16).

For example, in Fig. 17 the two thin dashed lines correspond
to two different simulation runs, c = 26 for tw = 33.0 ns
and c = 57 for tw = 0.49 ns, chosen so that in both cases
CO
c (tO

fix) ≈ 0.3. This makes the two distributions close enough
that their differences are of the order of their statistical error.
The figure also shows that the same procedure is successful
for obtaining other pairs of nearly identical distributions for
CO
c (tO

fix) ≈ 0.1,0.5,0.7 (for more details see endnote80).
This leads us directly to finding a way to improve the

scaling even for longer length scales. We no longer use a
unique time tfix which is the same for all simulation runs c.
Instead, we specify a fixed value Cα

meso of the correlation, and
we define, for each simulation run c, a time tαmeso(c) such that

Cα
meso =



f αs (tw, tw + tαmeso(c),q)

�
c
, (13)

as shown in Fig. 16. Thus, for a specified Cα
meso, and for each

run c = 1,2, . . . ,200, we determine tαmeso(c), the corresponding
Pc( f αs,r(tw, tw + tαmeso(c),q)), and then we average all of
the individual distributions Pc( f αs,r) to obtain P( f αs,r) (see
endnote81).

The resulting average distribution P( f αs,r) is shown in
Fig. 18 for q = 1.7 Å−1 and ⟨Nr⟩ = 5.2. The evolution of the
maximum PO

max with waiting time is shown in the inset. The

FIG. 18. Distribution of the local incoherent intermediate scattering
function. P( f αs,r) is an average over single simulation run distributions
Pc( f αs,r(tw, t

α
meso(c),q)) where tαmeso(c) is chosen such that Cα

meso is fixed.
The inset shows the maximum value as a function of waiting time tw. For
comparison with Fig. 14 we show the case of q = 1.7 Å−1 and ⟨Nr⟩= 5.2 for
oxygen atoms, but here we fixed Cα

meso instead of Cα.
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FIG. 19. Probability distributions of local incoherent intermediate scattering
functions, with α = all (i.e., both O and Si atoms are included), for small
q = 1.7 Å−1 and large ⟨Nr⟩= 42, for different waiting times. The color coding
for the waiting times is the same as in Fig. 11. Despite this being the most
unfavorable case for a successful collapse, we find that choosing Cα

meso to be
constant results in an almost perfect data collapse among results for different
waiting times.

comparison with Fig. 14 confirms that the scaling is drastically
improved by fixing Cα

meso instead of Cα. To test the limits of
this improved scaling, we show in Fig. 19 the distributions
P( fs,r) for q = 1.7 Å−1, ⟨Nr⟩ = 42, and α = all. This is the
most unfavorable case, with the lowest wavevector we have
considered, the largest coarse graining region, and including
both O and Si atoms (which additionally tests whether the
aging clock is the same for both particle types). Even for this
most unfavorable case, we find almost perfect scaling. We
thus conclude that Cα

meso is the appropriate scaling quantity.

VI. CONCLUSIONS

In summary, we have performed molecular dynamics
simulations of the strong glass former SiO2 to investigate
the scaling of dynamical heterogeneities in this system. We
have quenched the system from an initial high temperature
Ti to a final temperature Tf below the mode-coupling
critical temperature Tc and observed the out of equilibrium
dynamics as a function of the waiting time tw, the
time elapsed since the temperature quench. In particular,
we have investigated the global incoherent intermediate
scattering function Cα(tw, tw + t,q), the dynamic susceptibility
χα

4 (tw, tw + t,q), and the distribution P( f αs,r(tw, tw + t,q)) of
the local incoherent intermediate scattering function, where q
corresponds to the wave vector magnitude and α specifies the
particle type.

We have found that for sufficiently long waiting
times tw, and when probing small enough regions in the
system, the dependence on (tw, t) of χα

4 (tw, tw + t,q) and
of P( f αs,r(tw, tw + t,q)) is governed by Cα(tw, tw + t,q), up to
a tw-dependent scale factor in χ4. This is consistent with
predictions for spin glasses and similar to previous results for
fragile glass formers. We thus conclude that the behavior of

dynamical heterogeneity in the aging regime of glassy systems
shows a remarkable degree of universality. A similarity of the
behavior for strong and fragile glass formers had previously
been shown for the microscopic dynamics of single particle
jumps,67 but here we have shown that it extends to the scaling
of dynamical heterogeneities. We would like to note that this
similarity of the dynamics of SiO2 and the comparison fragile
glass formers is rather surprising, since SiO2 is a network
of directional bonds, whereas the comparison fragile glass
formers are sphere-type models. As such, the common scaling
of dynamic heterogeneities seems to give us essential insight
into relaxation processes. We leave it for future work to reveal
what exactly leads to this similar dynamics.

Furthermore we have studied directly the influence
of the particle type α on the dynamics. We have
found that Cα(tw, tw + t,q) = C(z(tw, t),q,α), where z(tw, t)
is independent of q and α. Thus z(tw, t) plays the role of
a “common aging clock” that determines the slow aging
behavior of the relaxation for both Si and O atoms. By
combining this statement with the fact, discussed above,
that the aging of χα

4 and of P( f αs,r) is controlled by Cα, it
follows that the aging of χα

4 and of P( f αs,r) for both Si and
O atoms should be controlled by that same unique aging
clock. Our results show that this prediction is indeed satisfied.
In summary, we have found that both the average and the
fluctuations of the slow aging dynamics are controlled by a
unique aging clock, which is independent of the wavevector q
and is the same for O and Si atoms.

When fluctuations are probed over larger regions, either
by taking q ≤ 1.7 Å−1, or by considering larger coarse graining
regions containing around 40 particles, new phenomena
emerge, presumably due at least in part to the fact that
the probed regions contain more than one correlation volume.
In particular, the scaling of P( fs,r) discussed above no longer
holds in its initial form. It is clear that the probability
distributions Pc( fs,r) obtained from the independent runs
c = 1, . . . ,200 vary dramatically from run to run if the time
interval is kept the same across runs. In other words, there
is a nontrivial distribution of distributions. This spread of
distributions becomes more pronounced the larger the spread
of Cα

c . Since the fluctuations in Cα
c are given by χα

4 and
since χα

max is increasing with decreasing wave vector, we
find a particularly large spread of distributions Pc( fs,r) for
the smallest wave vector. The average over Pc( fs,r) is not
independent of tw. This is equivalent to the statement that, in a
very large system, a measurement of P( fs,r) over a mesoscopic
region containing a few hundred particles is not self-averaging,
and that a new significant intermediate lengthscale emerges.
It is, however, possible to recover an excellent collapse
of probability distributions for different waiting times tw
if instead of averaging probability distributions Pc( fs,r)
from different runs (or mesoscopic regions) at constant
time interval t = tfix, one averages probability distributions
taken at constant mesoscopic intermediate scattering function
Cα

meso. We speculate that this importance of Cα
meso is system

independent because the limitations of scaling with Cα

have been found also for fragile glass formers.12,13 The
testing of the analysis with Cα

meso for other systems remains
to be done. Furthermore it might be interesting to test
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whether a significantly larger system and several orders
more independent simulation runs would even recover self-
averaging. We leave it for future work to gain further insight
into the importance and origin of this intermediate length
scale.
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APPENDIX: DYNAMIC SUSCEPTIBILITY
DEPENDENCE ON WAVE NUMBER AND ON PARTICLE
TYPE

From Eq. (10) it follows that all the (t, tw)-dependence of
χ̂ enters only via z. Since z is independent of q, it follows
that a parametric plot of χα

4 /χ
α
max for q = q2 as a function of

χα
4 /χ

α
max for q = q1, with q2 , q1, should show data collapse.

In Fig. 20, we show a parametric plot of this kind, for
q2 = 2.7 Å−1,q1 = 1.7 Å−1, and α = O, and find that indeed
there is data collapse within the error bars. We also find similar
results for other values of q2, q1, and α (not shown).

For the dependence on particle type, α, Eq. (10) predicts
that there should also be data collapse in a parametric plot of
(χO

4 /χ
O
max) versus (χSi

4 /χ
Si
max). This data collapse is confirmed

with Fig. 21 for q = 2.7 Å−1. We find equally good collapse
for all other investigated q values. We emphasize that the

FIG. 20. Parametric plot of χO
4 /χ

O
max(tw, tw+ t,q = 2.7 Å−1) versus

χO
4 /χ

O
max(tw, tw+ t,q = 1.7 Å−1). We find data collapse among the results for

different waiting times.

FIG. 21. To test the dependence on particle type α, this figure shows the
parametric plot of χO

4 /χ
O
max as a function of χSi

4 /χ
Si
max, for q = 2.7 Å−1. The

results for different waiting times collapse with each other.

data collapse shown in Figs. 20 and 21 is non-trivial, in the
sense that the data are not along the diagonal, implying that
the shape of χα

4 /χ
α
max (1 − Cα) does depend both on α and q.

However, z(tw, t) is independent of q and α and therefore the
(tw, t)-dependence of χ4 is uniquely specified via Cα, which
is a function of z(tw, t).
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