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We study a binary Lennard-Jones system below the glass transition with molecular dynamics
simulations. To investigate the dynamics we focus on events ~jumps! where a particle escapes the
cage formed by its neighbors. Using single particle trajectories we define a jump by comparing for
each particle its fluctuations with its changes in average position. We find two kinds of jumps:
‘‘reversible jumps,’’ where a particle jumps back and forth between two or more average positions,
and ‘‘irreversible jumps,’’ where a particle does not return to any of its former average positions, i.e.,
successfully escapes its cage. For all investigated temperatures both kinds of particles jump and both
irreversible and reversible jumps occur. With increasing temperature, relaxation is enhanced by an
increasing number of jumps and growing jump lengths in position and potential energy. However,
the waiting time between two successive jumps is independent of temperature. This temperature
independence might be due to aging, which is present in our system. We therefore also present a
comparison of simulation data with three different histories. The ratio of irreversible to reversible
jumps is also increasing with increasing temperature, which we interpret as a consequence of the
increased likelihood of changes in the cages, i.e., a blocking of the ‘‘entrance’’ back into the
previous cage. In accordance with this interpretation, the fluctuations both in position and energy are
increasing with increasing temperature. A comparison of the fluctuations of jumping particles and
nonjumping particles indicates that jumping particles are more mobile even when not jumping. The
jumps in energy normalized by their fluctuations are decreasing with increasing temperature, which
is consistent with relaxation being increasingly driven by thermal fluctuations. In accordance with
subdiffusive behavior are the distributions of waiting times and jump lengths in position. © 2004
American Institute of Physics. @DOI: 10.1063/1.1778155#

I. INTRODUCTION

If a liquid is cooled and crystallization is avoided, one
obtains a supercooled liquid. Upon further cooling the sys-
tem falls out of equilibrium and results in a glass. During the
transition from liquid to supercooled liquid to glass the ther-
modynamic properties change and even more drastic changes
occur in the dynamics.1 The viscosity increases by many
orders of magnitude upon cooling and the mean square dis-
placement ~MSD! as a function of time develops a plateau at
intermediate times. The lower the temperature the longer the
waiting time within the plateau until a second rise in the
mean square displacement occurs.2 One common explanation
for the plateau is that while at high temperatures one has ~at
late enough times! normal diffusion, at lower temperatures
particles are caged in, i.e., trapped by their neighbors, and
spend longer time within this cage with decreasing tempera-
tures. The second increase in the MSD indicates that after
long enough waiting time the particles manage to escape
their cage. This escape out of the cage ~jump! is the focus of
this paper.

To set the work of this paper in context, we review
briefly previous and to our work related studies on the dy-
namics of supercooled liquids and glasses.

Central quantities in both experiments and computer

simulations are the viscosity, diffusion constant, and MSD.
The MSD, which is an average over single particle i
51,.. . ,N displacements,

r2~ t !5

1

N (
i

uri~ t !2ri~0 !u2, ~1!

and variations thereof3 show jumps when viewed with fine
enough time resolution, and when studied at low enough
temperatures and for single configurations.3–10 Detailed stud-
ies of these jumps indicate collective motion.3–6

One learns about the interplay between regular diffusion
and hopping motion via four-point correlation functions11–15

and the van Hove correlation function G(r ,t)5Gs(r ,t)
1Gd(r ,t) ~Refs. 15–24! where Gs(r ,t) is the self part and
Gd(r ,t) is the distinct part. The hopping shows up in an
additional peak in Gs(r ,t) and an increase in the amplitude
at r→0 of Gd(r ,t).

Recently attention has been drawn to the non-Gaussian
tail of G(r ,t) ~Refs. 25–29! and the non-Gaussian parameter
a2 ~Refs. 5, 13, 25 and 29–35! which is the second coeffi-
cient of the cumulant series of Fs(q ,t), the Fourier transform
of Gs(r ,t). They are signatures of nonexponential behavior,
which might be either due to homogeneous complex dynam-
ics and/or due to spatially heterogeneous dynamics.36

The dynamics of glasses out of equilibrium, i.e., systems
which have been quenched from high to low temperature,a!Electronic mail: kvollmay@bucknell.edu
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displays additional complexity, since the system might
‘‘age.’’ 37 This means that the dynamics depends on the wait-
ing time between the quench and the measurement38–40

which results in the violation of the fluctuation dissipation
theorem.40,41

Another fruitful approach to gain insight into the dynam-
ics of supercooled liquids and glasses has been to investigate
the energy landscape of the inherent structure that means of
the instantaneous configurations which have been quenched
to their local potential energy minimum.14,42–47 At the same
temperature when the system starts slowing down drastically,
the potential energy of the inherent structure undergoes a
qualitative change.42 The long time behavior of this potential
energy shows jumps between metabasins, where the latter
are groups of strongly correlated local minima.43–47 The
mean average waiting time ^Dtwait& between these jumps
turns out to be dominated by the long times. ^Dtwait& together
with the diffusion constant allow an estimate of the cage
size.46

Direct studies of the cage have been done via three-time
correlations,14 velocity-velocity correlations,31,48,49 the cage
correlation function,50–52 and a passage time before a particle
escapes.53 The results of these studies tell us about cage
properties such as the cage size and waiting time within a
cage ~or jump rate!.

Hand in hand with the experiments and simulations are
the theoretical models for supercooled liquids and glasses.
One of the very successful theories is the mode coupling
theory of the glass transition ~MCT!,54 which describes the
dynamics of supercooled liquids via nonlinear dynamics of
coupled density modes and makes predictions for quantities
such as D , F(q ,t), and the susceptibility x9(v). The ex-
tended version of MCT includes hopping processes via the
coupling to current fluctuations.55 The comparison of experi-
ment and this theory for x9(v) ~Ref. 56! and a2 ~Ref. 57!

shows very good agreement.
The MCT is a theory for the glass transition for tempera-

tures above the glass transition. Below the glass transition
there exists no equivalent of a microscopic theory such as
MCT. Some phenomenological theories which are more gen-
eral models for solids build in hopping either indirectly as in
the free volume model58 or directly in hopping models.59–61

The goal of this paper is to obtain via single particle
trajectories direct information about jump processes such as
jump sizes and waiting times between jumps. Specific ex-
amples of the dynamics of single particle jumps, in the form
of a plot of one component of ri(t) ~Refs. 16–18 and 62! or
in the form of a two- or three-dimensional picture of the
particle trajectory,6,28–32,44,49,63 are very helpful to get an idea
of some qualitative features of jumps, such as the detailed
geometry of jump processes.16,17,44,62 In this paper, however,
we go beyond single examples by defining a systematic
search algorithm for jump processes. For the case of single
particle trajectories a similar approach has been used in the
work,17,19,35,64 where the jump criterion is a minimum hop-
ping distance, which is the same for all particles. In contrast,
we use a relative criterion, where for each particle its size of
fluctuations is compared to its jump size. We choose this
relative criterion to be able to identify jumps of particles of

different sizes and neighborhood. That means the criterion is
adjusted to the cage size of each individual particle. As cri-
terion for the occurrence of a jump we use the positions of
particles instead of their energy. While both approaches are
fruitful, we believe that many theoretical models and inter-
pretations of simulations and experiments are based on an
intuitive picture of the particle motion in real space. Simi-
larly our goal is to mimic a careful observer of each par-
ticles’ motion in our system. We therefore use single particle
trajectories, instead of a quantity which is an average over all
particles ~as in the work Refs. 3–10!. For the case of single
particle trajectories the distinction between vibrational and
hopping motion turns out to be clearer by taking time aver-
ages than by using trajectories of the inherent structure.

In the following we define our model, and give details
about the simulation ~Sec. II!. Our precise definition of a
jump is given in Sec. III. We find two types of jumps ~irre-
versible and reversible!. The latter are distinguished for the
rest of the paper ~in distinction from Refs. 17, 19, 35 and
64!. In Sec. IV we count as a function of temperature the
number of jumping particles, and in Sec. V the number of
visited different cages. In Sec. VI we investigate the times
during a jump and between successive jumps. The jump size
both in position and in potential energy are presented in
Secs. VII and VIII. Section IX addresses the question of
history dependence of the jump results. In Sec. X we con-
clude with a summary of our results, a comparison with the
results of previous work and with our resulting picture of
jump processes. We finish with open questions suggesting
future work.

II. MODEL AND SIMULATION

We use a binary Lennard-Jones mixture of 800 A and
200 B particles with the same mass. The interaction potential
for particles i and j at positions ri and rj and of type a ,b
P$A ,B% is

Vab~r !54eabF S sab

r D 12

2S sab

r D 6G , ~2!

where r5uri2rju and eAA51.0,eAB51.5,eBB50.5,sAA

51.0,sAB50.8, and sBB50.88. We truncate and shift the
potential at r52.5 sab . From previous investigations65,66 it
is known that this system is not prone to crystallization and
demixing. In the following we will use reduced units where
the unit of length is sAA , the unit of energy is eAA , and the
unit of time is AmsAA

2 /(48eAA).
We carry out molecular dynamics ~MD! simulations us-

ing the velocity Verlet algorithm with a time step of 0.02.
The volume is kept constant at V59.43

5831 and we use
periodic boundary conditions. Previous simulations65,66

showed that for present day computer simulations the system
falls out of equilibrium in the vicinity of T50.435. We ana-
lyze here simulations at T50.15,0.2,0.25,0.30,0.35,
0.38,0.40,0.41,0.42, and 0.43 as they have been described in
Ref. 67. We start with ten independent well equilibrated con-
figurations at T50.446.68,69 Each of these configurations un-
dergoes the following sequence of simulation runs. After an
instantaneous quench to T50.15 we first run a ~NVT! simu-
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lation for 105 MD steps. The temperature is kept constant by
replacing the velocities of all particles by new velocities
drawn from the corresponding Boltzmann distribution every
50 time steps. We then run the simulation for 105 MD steps
without the temperature bath ~NVE! and subsequently raise
the temperature instantaneously to the next higher tempera-
ture T50.2. ~NVT! and ~NVE! runs of 105 MD steps each
follow and the temperature is again raised, and so forth. The
final configurations of these ~NVT! runs are the initial con-
figurations for the ~NVE! production runs ~for 53106 MD
steps! presented in this paper. During each production run
the positions of all particles ~configurations! are stored every
2000 MD steps which are then used for analysis.

For the here investigated temperatures the relaxation
times t are much larger than the waiting time before the
production runs ~at T50.446, t'83105). We therefore
study relaxation processes out of equilibrium and find aging
effects, which is consistent with previous detailed studies of
aging of the same binary Lennard-Jones system.40,41

III. DEFINITION OF JUMP AND JUMPTYPE

We focus in this paper on the process of a particle es-
caping its cage, using single particle trajectories ri(t) given
by the periodically stored configurations.

To distinguish vibrations around an average position
from a change in the average position, we average 20 con-
secutive positions ri(t) to obtain rī(m) as sketched in Fig. 1.
We identify jumps by comparing changes in these averaged
positions uDrī u with the fluctuations in position s i ,est for
each particle i where

uDrī u5urī~m !2rī~m24320!u ~3!

~see Fig. 1! and s i ,est is defined in Ref. 70. We use in specific
for uDrī u not consecutive but instead average positions
which are four averages ~each of 20 configurations! apart.
This choice of time interval in uDrī u is to allow identification
of not only sudden but also more gradual jumps. We define
that a jump of particle i occurs whenever

uDrī u2
.20s i ,est

2 . ~4!

Notice that we use a relative criterion, namely, for each par-
ticle i a comparison of uDrī u with its s i ,est . Our motivation
for this relative criterion is that we would like to identify
jumps of both A and the smaller B particles. Also even for
particles of the same type their jump size might differ due to
different cage sizes. s i ,est

2 is an estimate for the cage size of
each individual particle and is therefore used as criterion for
the occurrence of a jump.

When we apply the above jump definition, we find two
types of jumps which we call ‘‘irreversible’’ and ‘‘reversible’’
jumps ~see Fig. 2!. A particle which undergoes an irrevers-
ible jump succeeds in escaping its cage ~for the time window
of the simulation! whereas a particle undergoing a reversible
jump returns back to one of its previous average positions.
Similar results have been found in previous simulations of
other systems.3,4,6,8,17,21,62 However, the present work differs
from these that we analyze all following quantities for the
reversible and irreversible jumps separately. As sketched in
Fig. 2, we call a jump reversible whenever case 1 or case 2
occurs. Case 1 corresponds to the situation of a particle un-
dergoing multiple jumps and returning to one or more of any
previous average positions ~for details see Sec. V!. If two
average positions are equal then all jumps which happen
between the previous position and the recurring position are
called reversible jumps. In the example of Fig. 2 this means
in case 1 that all shown jumps are reversible jumps. To in-
crease our resolution in time we use not only the information
of the averaged positions rī(m) but also the complete infor-
mation of ri(t). In case 2 ~see Fig. 2! the spikes in ri(t)
indicate returns to the average position before the jump.71 If
a jump satisfies neither case 1 nor case 2, then it is called
irreversible jump.

In the following we distinguish between the jump
events, as they have been defined so far, and the correspond-
ing jumping particles which may undergo multiple jumps of
different types. Any reversible jump designates the corre-

FIG. 1. Sketch of a particle trajectory to illustrate the definition of a jump by
comparison of the fluctuations of the particle s i ,est and the difference in

average positions Drī.

FIG. 2. Sketch of typical particle trajectories to illustrate the distinction
between irreversible and reversible jumps.
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sponding particle as a reversible jumper for the entire time
window.

IV. NUMBER OF JUMPING PARTICLES

We apply now the above definitions to identify all jumps
occurring in our simulations. The number of identified jumps
depends on the time interval of the production runs and,
since the system is out of equilibrium, also on the waiting
time before the production runs. The straightforward count-
ing of jump events would give reversible jumpers ~which
sometimes jump many times! a larger weight. We therefore
present the number of jumping particles. Figure 3 shows the
number of jumping particles normalized by the number Na

of particles in the system of type aP$A ,B%. With increasing
temperature T the number of jumping particles increases
consistent with an increasing number of relaxation processes.
A similar temperature dependence has been found indirectly
via the participation ratio in the work.3,72,73 More surpris-
ingly, we find that not only the small B particles are jumping
but also a considerable fraction of A particles. However, the
fraction of jumping B particles is larger than the fraction of
jumping A particles due to the smaller size and therefore
higher mobility of the B particles. Furthermore, both irre-
versible and reversible jumps are not only occurring in a
certain temperature range but at all temperatures.

Figure 4 illustrates the fraction of these jumping par-
ticles that are irreversible jumpers. At low to intermediate
temperatures this ratio is, within the large error bars, roughly
constant. At intermediate to larger temperatures irreversible
jumpers become more likely than reversible jumpers with
increasing temperature. This increase is even more pro-
nounced for all temperatures if one considers the number of
irreversible jump events ~instead of jumping particles! di-
vided by the number of all jump events ~see inset of Fig. 4!.
Gaukel et al.6,8,21 come to a similar conclusion via a model
for their simulation data. Their irreversible jumps become
more likely with increasing temperature. We interpret this

increase in the fraction of irreversible jumps as sketched in
Fig. 5. Both irreversible and reversible jumps start out the
same, with the jumping particle leaving the cage ~formed by
the neighboring particles! possibly through an opening in the
cage. In the case of the irreversible jump, the entrance of the
cage gets meanwhile blocked by a particle, loosely speaking
the door gets closed, and the jumping particle can no longer
return and has successfully escaped its cage. With increasing
temperature all particles become more mobile, which in-
creases the likelihood of the blockage of the entrance back
into the cage which in turn leads to an increase in the fraction
of irreversible jumps as shown in Fig. 4. We do not intend to
make here a statement about the exact geometric process, for
example, that a door made up of a single particle gets open
and closed, but more generally the process of rearrangement
of the cage. Interestingly enough, this blockage happens
more often in the case of the larger A than the smaller B
particles which leads to larger ratios for A than B particles in
Fig. 4.

V. NUMBER OF AVERAGE POSITIONS

With each jump a particle either returns to one of its
former average positions within a cage or to a new overall
average position. We call the average positions before and
after a jump ^ri& i and ^ri& f ~for details about the time aver-
ages ^•& i,f see Fig. 11 and Sec. VII!. We use as criterion for
two average positions to be the same that the distance be-
tween them D^r i&5u^ri& f2^ri& iu and the average fluctuations
before the jump ^s i

2& i ~for the definition of s i
2 see Ref. 70!

satisfy (D^r i&)2<5^s i
2& i . Figure 6~a! shows an average of

FIG. 3. Number of jumping particles normalized by the number of corre-
sponding particle type as a function of temperature T . Irreversible and re-
versible jumpers are distinguished.

FIG. 4. Number of irreversible jumping particles divided by the number of
both reversible and irreversible jumping particles. The inset shows the num-
ber of irreversible jump events divided by the number of jump events.

FIG. 5. This picture illustrates our interpretation of irreversible and revers-
ible jumps and Fig. 4.
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the number of distinct average positions which are visited by
a particle. According to the higher mobility of the smaller B
particles, they visit more average positions than the A par-
ticles. For low temperatures most jumping particles visit only
two average positions during our simulation. For intermedi-
ate to larger temperatures, however, not only increasingly
more particles jump ~see Sec. IV! but these particles also
jump more often. The distribution of the number of different
visited average positions at the highest temperatures @as
shown in Fig. 6~b!#, broadens with increasing T such that
some particles visit up to seven different average positions
during the simulation run.

VI. TIMES

In this section we investigate the time scale of jumps. As
sketched in Fig. 7 we determine the time duration of a jump
Dtd5t f2t i , the time before the first jump of a particle
Dthead , the time after the last jump of a particle Dt tail , and
the time between two successive jumps I and II to be Dtb

5t i
II
2t i

I where t i and t f indicate the starting and ending time
of a jump.74 Notice that Dtb is only defined if a jump particle
jumps twice or more and that we analyze Dthead and Dt tail

separately as presented shortly. For the distinction of irre-
versible and reversible jumps, we assign the jump type of
Dtb according to the jump ending Dtb , for example, in Fig.
7 the jump type of Dtb is determined by jump II. This means
that Dtb is a measure of the waiting time before a jump
occurs. Figure 8 illustrates that Dtd!Dtb which tells us in
hindsight why we could identify jumps as rare events with
the above described procedure. Since the time resolution is
of the order of 1000 ('203200030.02), i.e., of the same
order as Dtd , we do not draw further conclusions about the
temperature dependence of Dtd . However, Dtb is well above
our time resolution and small enough to be detected during
our simulation run of length 13105. In accordance with the

FIG. 6. The number of average positions ~as defined in Sec. V! visited by
jumping particles in ~a! as a function of temperature and in ~b! its distribu-
tion for irreversible jumping B particles.

FIG. 7. Sketch to illustrate the definitions of the starting time t i and ending
time t f of a jump ~here for jumps I and II! and the times before the first jump
of a particle Dthead , during a jump Dtd , between successive jumps Dtb , and
after the last jump Dt tail .

FIG. 8. Times between jumps Dtb for A ~circles! and B ~diamonds! particles
and times during jumps Dtd for both A and B particles.
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picture of reversible jumpers which try but do not succeed to
escape their cage, these trials happen on a shorter time scale
than irreversible jumps. However, to our surprise, Dtb seems
to be independent not only of the particle type but also of
temperature. The question arises if this temperature indepen-
dence of Dtb is a consequence of the finite time window of
our simulation. To take this finite time interval t tot into ac-
count, we make a crude approximation to correct the time
intervals Dtb , Dthead , and Dt tail by assuming that jumps hap-
pen equally likely at any time in the window @0,t tot# ~which
is not accurate due to aging!. The probability Pcorr(Dt) of
finding the complete interval Dt reduces to the probability of
finding Dt during @0,t tot# in the simulation

Psim~Dt !5Pcorr~Dt !S ~ t tot2Dt !

t tot
D c , ~5!

where c is a normalization constant. We may approximate c
with ^t tot /(ttot2Dt) &sim

21 where ^•&sim indicates an average
over jump events of the simulation. We thus obtain

Pcorr~Dt !'
Psim~Dt !

~ t tot2Dt ! K 1

~ t tot2Dt !L
sim

21

. ~6!

Similarly the average times ^Dt&sim may be approximately
corrected by

^Dt&corr' K Dt

~ t tot2Dt !L
sim

K 1

~ t tot2Dt !L
sim

21

. ~7!

Figures 9~a! and 9~b! show the resulting corrected times
^Dt&corr for irreversible and reversible jumps, respectively.
For simplification of notation we drop ^•&corr in the follow-
ing. The tail and head times, Dt tail and Dthead , reveal that we
find aging, since Dt tail.Dthead , i.e., jumps are more likely to
occur at the beginning of the simulation than later. This par-
ticular aging effect decreases with increasing temperature.
Dt tail and Dthead are both larger than Dtb because Dtb in-
cludes only times of particles which jump multiple times
whereas Dthead and Dt tail include also times of particles
which jump only once. Interestingly, Dtb is ~although ap-
proximately corrected! still independent of temperature. To-
gether with our results of Secs. III–V we therefore find that
with increasing temperature, relaxation processes are accel-
erated via more jumping particles and more multiple jumps,
but the times between multiple jumps do not become shorter.
This is contrary to previous results19,35,45,46,75 in which wait-
ing times decrease with increasing temperature. In our sys-
tem, however, the temperature independence seems to be
true not only for the averages but even for the distribution
Pcorr(Dtb) ~see Fig. 10!. We interpret this temperature inde-
pendence as being due to aging which is consistent with our
data for Dt tail and Dthead and with the results of Doliwa and
Heuer45,46 who find that the distribution of waiting times
initially is temperature independent and becomes tempera-
ture dependent at later times. As shown in Fig. 10 for irre-
versible jumps of A and B particles, P(Dtb) approximately
follows a power law P(Dtb)}Dtb

2n with n50.84. Even
though we expect the system to show normal diffusion on a
time scale much larger than our simulation run, the interme-
diate dynamics is subdiffusive.76 Please notice however, that

FIG. 9. Times Dtb , Dthead , and Dt tail ~a! for irreversible jumps and ~b! for
reversible jumps of A and B particles using Eq. ~7!.

FIG. 10. Log-log plot of P(Dtb) using Eq. ~6! for irreversible jumps of A
and B particles. The line is a linear fit to the data with slope 20.84.
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a direct comparison of our result with the scheme presented
in Fig. 1 of Ref. 76 is not possible because in our case the
multiple jumps of one particle at different times as well as
the jumps of different particles are not independent, which
changes the dynamics.77

VII. JUMP LENGTHS

In the preceding sections we have investigated how
many particles jump and how often jumps occur. Next we
study how far these particles jump. To be able to test if our
qualitative results are dependent on the definition of jump
length, we use three quantities: DR if , DRmax , and DRavg as
sketched in Fig. 11. For a jump of particle i the jump dis-
tance of the jump starting at t i and ending at t f ~for the
definition of t i and t f see Ref. 74! is

DR if5uri~ t i!2ri~ t f!u ~8!

and the maximal distance being detected during the jump is

DRmax5max
t

uri~ t !2ri~ t23200!u ~9!

(3200543203200030.02 as in Ref. 70 and Sec. III!,
where t is varied over times t which satisfy t i,detect<t
,t f,detect .

74 The third length DRavg is less dependent on fluc-
tuations than DR if and DRmax . It is the distance of the overall
average positions before and after the jump

DRavg5u^ri& f2^ri& iu. ~10!

For the averages ^•& f and ^•& i the positions rī(t) are aver-
aged over times before and after the jump excluding a broad-
ened time window around the jump @ t i2800,t f1800# . Fig-
ure 12~a! shows that the different jump lengths have the
same qualitative behavior, namely, as one might expect, an
increase with increasing temperature T . We therefore show
in the following mainly results for only DRavg but find very
similar behavior in the case of DR if and DRmax . An increase
in jump size with increasing temperature has been seen in
previous simulations.3,19,35,72,73 However, in the case of Refs.
3, 72, and 73 the jump size is for a jump in the MSD, i.e., an
average over all particles, which includes two effects: an
increasing number of jumping particles and an increase in

the jump size of single particle jumps. Our approach has the
advantage of keeping these two effects separate. Further-
more, in our case the single particle jumps are larger than in
Refs. 3, 35, 72, and 73.

Figure 12~b! is the same as Fig. 12~a! for DRavg but
broken down by both jump and particle type. The smaller B
particles are jumping further than the A particles. Further-
more reversible jumps are shorter than the irreversible
jumps, which is due to two features in the distribution
P(DRavg). As illustrated in Fig. 13 both irreversible and re-
versible jumps have a peak at about 0.8 and 1.0 for A and B
particles, respectively. These peaks are relatively similar for
reversible and irreversible jumps, taking aside that for irre-
versible jumps this peak position is slightly shifted to the
right and slightly broadened ~partly due to multiple jumps
which are not resolved in time!. This similarity and the peak
positions around unity are consistent with our picture that

FIG. 11. Sketch for the definitions of DR if , DRmax , and DRavg .

FIG. 12. ~a! The jump sizes DR if , DRmax , and DRavg ~sketched in Fig. 11
and defined in the text! as function of temperature T . The averages are over
both irreversible and reversible jumps of both A and B particles. ~b! The
jump size DRavg as function of temperature T separately for irreversible and
reversible jumps of A and B particles.
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irreversible and reversible jumps start out the same, namely,
with a particle jumping out of its cage.

The increase of DRavg with increasing temperature is a
consequence of both a shift of the peak position and a broad-
ening of the distribution of jump sizes. This is illustrated in
the inset of Fig. 13 for irreversible jumps of A particles and
we find similar distributions for irreversible jumps of B par-
ticles. At the largest investigated temperature T50.43 some
of the particles move as far as four-particle spacings. Some
of these large jumps might correspond to multiple jumps of a
smaller time window than our time resolution.

For irreversible jumps of size unity and larger we find
that the distribution for all temperatures follow roughly a
power law P(DR)'DR2m ~see Fig. 14! with m56.3 for A
and m54.8 for B particles. This is in accordance with sub-

diffusive behavior for intermediate times as presented in Sec.
VI for the distribution of waiting times.76

As commented on earlier ~see Secs. I and III!, our defi-
nition for a jump is not based on a specified size but instead
a multiple of the fluctuations of the particle. Let us therefore
next look at the fluctuations. Figure 15 shows a comparison
of the fluctuations of jumping particles s jump and of non-
jumping particles snojump . Also included in Fig. 15 is an
average over all particles sest of the estimates for fluctuations
s i,est as they have been used for the jump identification ~see
Sec. III and Ref. 70!. sest is very similar to snojump and
represents the fluctuations of an average particle. For the
average of s jump we exclude fluctuations during the jump: for
jumping particle i we take

s i,jump5S ~^s i
2& f1^s i

2& i!

2 D 1/2

, ~11!

where s i and ^•& i,f are defined as in Ref. 70 and earlier in
this section, respectively. Although jump times are excluded,
the fluctuations of jumping particles are clearly larger than
the fluctuations of nonjumping particles. This means that
jumping particles are not only moving farther than an aver-
age particle during single events but are also oscillating
within their cages with a larger than average amplitude.

Figure 16~a! shows an average of jump size relative to
the particle’s fluctuation DR i,avg /s i,jump for jumping particles
i . DRavg /s jump seems independent of temperature for revers-
ible jumps and for irreversible jumps slightly increasing with
increasing temperature.

The distribution of DR/s gives us the opportunity to
estimate the influence of the cutoff in our definition of a
jump. Similar to our approach for the search of a jump, we
use sest , and obtain P(DRavg /sest) as shown in Fig. 16~b!
for irreversible jumps of A particles. We find a peak at
(DRavg /sest)'5.5 ~for B particles'6.5), i.e., larger than our
cutoff at (DR/s)5A20'4.5. This gives us the hope that we
have included the major contribution of jumps consistent

FIG. 13. The distribution of jump sizes DRavg for irreversible and reversible
jumps of A and B particles at T50.43. The inset shows DRavg of irrevers-
ible jumping A particles for different temperatures.

FIG. 14. Log-log plot of the distribution of jump sizes DRavg for irreversible
jumps of A and B particles including all temperatures. The lines are linear
fits with slopes 26.3 for A and 24.8 for B particles.

FIG. 15. Fluctuations in position s for jumping particles s jump , of the
original estimate for jumping particles sest , and for nonjumping particles
snojump . For the average of s jump fluctuations during the jump have been
excluded from the average.
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with our approach. We have to bear in mind, however, that
DRav /sest is not the identical measure to the one used in our
search procedure.

VIII. ENERGY

In the preceding sections we have investigated relaxation
processes by solely using the positions ~trajectories! of single
particles. As the work42–47 shows, an approach via potential
energies can also be fruitful. We therefore study in this sec-
tion what happens to the potential energy during jumps. As
sketched in Fig. 17, we still use single particle trajectories to
identify the jumping particle and do similar averaging for the
according time windows ^•& i and ^•& f ~see Sec. VII!. We
investigate both the total potential energy per particle,

E~ t !5

1

N (
i51

N

(
j.i

Vab@r i j~ t !# , ~12!

and the single particle potential energy of particle i ,

E i~ t !5(
jÞi

Vab@r i j~ t !# , ~13!

where Vab@r i j(t)# is defined in Eq. ~2!. To obtain in addition
the energies of the inherent structures78 we minimized the
configurations ($ri(t)%) via a steepest decent procedure.
With the thus obtained configuration ($ri

0(t)%) we determine

E0~ t !5

1

N (
i51

N

(
j.i

Vab@r i j
0 ~ t !# ~14!

and

E i
0~ t !5(

jÞi
Vab@r i j

0 ~ t !# . ~15!

Similar to the jump size in position ~see Fig. 17 and Sec. VII!
we then determine

DEav5^E~ t !& f2^E~ t !& i ~16!

and

DE if5E~ t f!2E~ t i!, ~17!

and similarly for the energies of Eqs. ~13!–~15!.
We find in most of our analysis that DEavg and DE if ~and

all other equivalents for E0,E i , and E i
0) are showing the

same qualitative behavior, and therefore present in the fol-
lowing results for DEavg using Eq. ~16! and Eqs ~12!–~15!.

Figure 18~a! shows DEavg as a function of temperature
averaged separately over irreversible and reversible jumps of
A and B particles. Notice that the energy jumps are small
compared to energy values ^E& i,f'27. The irreversible
jumps lower the energies more than reversible jumps and
more so for A than B particles, because a jump of a larger A
particle results in a bigger change in environment than for a
smaller B particle. The lowering of the total potential energy
happens mostly at intermediate temperatures and less at the
lowest and highest investigated temperatures. This might be
an aging effect: at low temperatures the system is basically
frozen in, at intermediate temperatures the system has time
to partially age, and at higher temperatures the system has
already aged before the production run starts. This effect is
lost when we look at the jumps in single particle energies
DE i ,avg(T) which is basically zero for all jumps. We there-
fore find that the total potential energies DEavg , DE if ,
DEavg

0 , and DE if
0 show a more systematic dependence on

temperature than their single particle equivalents, DE i ,avg ,
etc. For the absolute values uDEavgu, etc., and all following

FIG. 16. ~a! Normalized jump size DRavg /s jump as function of temperature
separately for irreversible and reversible jumps of A and B particles. ~b!

Distribution of normalized jump size P(DRavg /sest) of irreversible jumping
A particles and reversible jumping B particles in the inset.

FIG. 17. Sketch for the definitions of ^E& i and ^E& f .
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quantities, however, we find the opposite, i.e., the single par-
ticle equivalents uDE i ,avgu, etc., show a more pronounced
behavior. We therefore show from now on the results which
use Eqs. ~13! and ~15! only.

We next look at the absolute value uDE i ,avg
0 u as a function

of temperature @see Fig. 18~b!#. As one might expect, the
irreversible jumps show larger changes in energy than re-
versible jumps due to larger jumps in position @Fig. 12~b!#
and therefore more change in the environment of the jump-
ing particle. And similarly the larger A particles in compari-
son with the smaller B particles experience a larger change
in energy because A particles are surrounded by more neigh-
bors, i.e., a larger environment. With increasing temperature
the absolute value of the jump in energy @Fig. 18~b!# is in-
creasing ~with the one exception of irreversible B particles!
which is consistent with the increase in jump position @Fig.
12~b!#.

We define the fluctuations in energy sE i
at time t5m

3200030.02,

sE i
5S 1

2 H K 1

20 (
m85m29

m110

@E i~m8!2Ē i~m8!#2L
i

1K 1

20 (
m85m29

m110

@E i~m8!2Ē i~m8!#2L
f
J D 1/2

, ~18!

similar to the fluctuations in position,70 where Ē i(m) is the
time average 1

20(m85m29
m110 E i(m8). The energy fluctuations are

also increasing with increasing temperature and are larger for
A than B particles @see Fig. 19~a!#. The fluctuations of irre-
versible and reversible jumps are, however, very similar,
which is consistent with the picture that reversible jumps are
‘‘failed’’ irreversible jumps and in that sense start out the
same way as irreversible jumps.

Figure 19~b! is a comparison of energy fluctuations of
jumping ~both irreversible and reversible and of both A and
B) particles sE i , jump

and of nonjumping particles sE i ,nojump
.79

FIG. 18. As a function of temperature T ~a! jump size in total potential
energy DEavg and ~b! absolute value of the jump size in minimized single
particle potential energy uDE i ,avg

0 u.
FIG. 19. Fluctuations in single particle potential energy as a function of
temperature. The average is in ~a! over irreversible and reversible jump
events of A and B particles separately and in ~b! over jumping particles
(sE i , jump

) and over nonjumping particles (sE i , jump
).
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In sE i , jump
we exclude the times during the jump by using the

time windows ^•& i,f . We find that the energy fluctuations of
jumping particles are larger than for nonjumping particles
which is consistent with the corresponding fluctuations in
position ~see Fig. 15!.

By normalizing uDE i ,avgu with the fluctuations sE i
we

obtain Fig. 20~a!. Similar to the case of normalized jumps in
position @Fig. 16~a!# we find that uDE i ,avgu/sE i

is for revers-
ible jumps basically independent of temperature. For irre-
versible jumps, however, uDE i ,avgu/sE i

decreases signifi-
cantly with increasing temperature. This indicates that with
increasing temperature the jumps are increasingly more
driven by fluctuations. Contrary to the equivalent in position
@Fig. 16~a!#, the normalized energies are significantly
smaller, in the range 0.5–1.4 rather than 3–7, and the distri-
bution of uDE i ,avgu/sE i

@see Fig. 20~b!# is monotonous de-
creasing with a less far reaching tail than the equivalent in
position @Fig. 16~b!#.

IX. DEPENDENCE ON HISTORY

We are presenting in this paper out of equilibrium results
and have been finding aging effects. The question arises how
the history of the simulation influences the particle jump
statistics. In this section we address this question by compar-
ing results of simulation runs with three different histories.

The data presented so far were initially equilibrated at
T50.446 and were then quenched to the investigated tem-
peratures (T50.15, 0.20, 0.25, 0.30, 0.35, 0.38, 0.40, 0.41,
0.42, 0.43! according to the procedure described in Sec. II.
To investigate the effect of aging we performed a second set
of simulations for the quenches from T50.446 to T50.15,
0.25, 0.35, 0.40, and 0.43. The history of ten independent
configurations is the same as before but the ~NVE! produc-
tion runs are instead of for 53106 MD steps for 33107 MD
steps. We analyze the last 53106 MD steps, and refer to
these results as ‘‘T init50.446 ~aged!’’ and to the previously
presented data as ‘‘T init50.446 ~not aged!.’’ A third set of
simulations is performed to study the influence of the starting
temperature from which the system is quenched. To obtain
ten independent configurations with starting temperature T
50.5 we equilibrate at T53.0 and choose configurations at
least 53104 time units apart. We then cool linearly in time t
(T5T02gt) from T053.0 to T50.5 with g51.2531025

~with Dt50.02 and therefore for 107 MD steps!. At T50.5
we equilibrate for 107 MD steps with Dt50.02. We then
quench the system to the investigated temperatures T
50.15, 0.20, 0.25, 0.30, 0.35, 0.38, 0.40, 0.41, 0.42, 0.43 by
running ~NVT! simulations for 105 MD steps with Dt
50.02 @T init50.5 ~not aged!# and consecutive ~NVE! pro-
duction runs for 53105 MD steps with Dt50.02. The his-
tory of this simulation set therefore differs from the nonaged
T init50.446 set both in the initial temperature and also in the
direct quench to the investigated temperatures instead of the
stepping procedure described in Sec. II.

As illustrated in Fig. 21 the number of jumping particles
normalized by the number of particles for T init50.446 ~aged!
and for T init50.5 ~not aged! have qualitatively the same tem-

FIG. 20. Absolute value of single particle potential energy divided by its
fluctuation uDE i ,avgu/sE i

in ~a! as a function of temperature and in ~b! its
distribution.

FIG. 21. Same as Fig. 3 but instead of for the not aged T init50.446 for the
aged T init50.446 and in the inset for T init50.5 ~not aged!.
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perature dependence as before ~see Fig. 3!. As one might
expect we find, however, quantitatively a dependence on the
history ~see Fig. 22!. Directly after the quench we find more
jumps than after a waiting time of 53105 time units. The
difference becomes less for temperatures T*0.41. Quenches
from the higher initial temperature T50.5 result for all in-
vestigated temperatures in more jumps.

Independent of the history, an increasing fraction of
these particles are irreversible jumpers with increasing tem-
perature ~see Fig. 23!. This increase is less pronounced for
the T init50.5 simulations and steeper for the aged T init

50.446 data. This dependence on the history is again van-
ishing at high temperatures.

Let us next investigate the quantity which mostly raised
the question of history dependence: Dtb the time between
jumps. According to Fig. 24 we find that Dtb is for T*0.3

not only temperature independent but also independent of the
initial temperature and the aging time. However, this depen-
dence on the waiting time needs further investigation.80

As shown in Fig. 25 we also find an independence of
history for the jump length DRavg which might indicate that
the jumps are not only characteristic for the relaxation pro-
cess with one specific history but might be a more general
feature.

X. CONCLUSIONS

We study the dynamics of a binary Lennard-Jones sys-
tem below the glass transition. Our focus is on jump pro-
cesses, which we identify via single particle trajectories. Two
kinds of jumps are found: ‘‘reversible jumps’’, where a par-
ticle jumps back and forth between one or more average
positions, and ‘‘irreversible jumps,’’ where a particle does
not return to any of its former average positions, i.e. success-

FIG. 22. A comparison of the number of jumping particles normalized by
the number of particles for three simulation sets with different histories. We
include here both irreversible and reversible jumps of both A and B par-
ticles.

FIG. 23. Same as Fig. 4 but for both A and B particles and for simulation
sets with three different histories.

FIG. 24. Same as Fig. 9~a! and ~b! ~in the inset! but for only Dtb and for
simulations with three different histories.

FIG. 25. The jump size DRav of both A and B particles as a function of
temperature for simulations with three different histories.
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fully escapes its cage of neighbors. Both irreversible and
reversible jumps of A and B particles occur at all tempera-
tures. With increasing temperature more particles jump, more
average positions are visited, the jump size both in position
and in the absolute value of the potential energies
uDEu,uDE0u,uDE iu, and uDE i

0u ~total and single particle, not
minimized and minimized! increases, and the fluctuations in
position sR and potential energy sE increase. The fluctua-
tions are larger for jumping particles than for nonjumping
particles even if fluctuations during the jump are not part of
the average, which indicates that jumping particles are not
only during jump times more mobile than nonjumping par-
ticles. The ratio uDE iu/sE i

of irreversible jumps decreases

with increasing temperature. This confirms a commonly used
assumption that with increasing temperature the irreversible
jumps become more driven by fluctuations.

With increasing temperature also irreversible jumps be-
come proportionally more frequent than reversible jumps.
We interpret this such that irreversible and reversible jumps
are similar in that sense that a particle tries to escape its cage.
In the case of reversible jumps the particle finds its way back
into the cage whereas in the case of an irreversible jump the
path back into the cage becomes blocked due to rearrange-
ments of the cage. At larger temperature these rearrange-
ments of the cage become more likely ~since, for example,
the fluctuations increase! and therefore irreversible jumps oc-
cur more often. Irreversible and reversible jumps show in
most quantities qualitatively the same behavior, such as their
temperature dependence of jump size in position and energy,
and differ only in size.

The most surprising result of our work is that the times
between successive jumps are independent of temperature.
This is most likely due to aging, which could mean on the
time scale of our simulation that Dtb reflects the time scale of
T50.446 from which we quenched the system, and that Dtb

might show temperature dependence at later times. The latter
would be consistent with the work of Doliwa and Heuer45,46

who find in their simulations of very long times that the
distribution of waiting times ~however, identified via the col-
lective quantity of the minimized potential energy! initially is
temperature independent and of different power law than at
later times when temperature dependence occurs. We do find
aging in that sense that the times before the first jump are
shorter than the times after the last jump of a particle ~an
effect which becomes less for temperatures near Tc). Future
work ~which is in progress80! will tell us if in our system Dtb

becomes temperature dependent after longer times. However,
the dynamics does depend on temperature for all other here
investigated quantities such as the number of jumps and the
fraction of reversible jumps.

To investigate the history dependence of our results we
present a comparison of our data with simulation runs after
longer waiting time and also with simulation data which
were quenched from a higher temperature. We find quantita-
tively the same Dtb(T) and DRavg(T) and qualitatively the
same but quantitatively different temperature dependence of
the number of jumps.

Another question which we would like to raise for future
work is how much single particle jumps can tell us about

relaxations of a glass which might include collective motion.
It seems plausible that single particle jumps are strongly cor-
related with collective jumps and in that sense give us very
similar information to studies of collective quantities. We
find that many of the single particle jumps in our system are
spatially and temporally correlated, i.e., are showing collec-
tive motion. Systematic studies for confirmation remain to be
done in the future. We also find the signature of many par-
ticle effects confirmed in the result of the increasing ratio of
irreversible jumps with increasing temperature, since this in-
dicates that not only the jumping particle itself but also its
cage are dependent on temperature. There might, however,
be also collective jumps, where each particle jumps a too
small amount to be detected by our search algorithm. It re-
mains to be studied of how much importance such processes
are in our system.
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226, 243 ~1996!; Spin Glasses and Random Fields, edited by A. P. Young
~World Scientific, Singapore, 1998!.

39 L. C. E. Struik, Physical Aging in Amorphous Polymers and Other Mate-
rials ~Elsevier, Amsterdam, 1978!.

40 W. Kob and J.-L. Barrat, Phys. Rev. Lett. 78, 4581 ~1997!.
41 J.-L. Barrat and W. Kob, Europhys. Lett. 46, 637 ~1999!.
42 S. Sastry, P. G. Debenedetti, F. H. Stillinger, T. B. Schrøder, J. C. Dyre,

and S. C. Glotzer, Physica A 270, 301 ~1999!.
43 B. Doliwa and A. Heuer, J. Phys.: Condens. Matter 15, S849 ~2003!.
44 T. B. Schrøder, S. Sastry, J. C. Dyre, and S. C. Glotzer, J. Chem. Phys.

112, 9834 ~2000!.
45 B. Doliwa and A. Heuer, Phys. Rev. E 67, 031506 ~2003!; Phys. Rev. Lett.

91, 235501 ~2003!.
46 B. Doliwa and A. Heuer, Phys. Rev. E 67, 030501~R! ~2003!.
47 A. Saksaengwijit, B. Doliwa, and A. Heuer, J. Phys.: Condens. Matter 15,

S1237 ~2003!.
48 M. M. Hurley and P. Harrowell, Phys. Rev. E 52, 1694 ~1995!.
49 E. R. Weeks and D. A. Weitz, Chem. Phys. 284, 361 ~2002!.
50 E. Rabani, J. D. Gezelter, and B. J. Berne, Phys. Rev. Lett. 82, 3649

~1999!.
51 E. Rabani, J. D. Gezelter, and B. J. Berne, J. Chem. Phys. 107, 6867

~1997!.
52 J. D. Gezelter, E. Rabani, and B. J. Berne, J. Chem. Phys. 110, 3444

~1999!.
53 P. Allegrini, J. F. Douglas, and S. C. Glotzer, Phys. Rev. E 60, 5714

~1999!.
54 E. Leutheusser, Phys. Rev. A 29, 2765 ~1984!; U. Bengtzelius, W. Götze,
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