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Large-scale simulations of two-dimensional bidisperse granular fluids allow us to determine spatial

correlations of slow particles via the four-point structure factor S4ðq� tÞ. Both cases, elastic (ε ¼ 1) and

inelastic (ε < 1) collisions, are studied. As the fluid approaches structural arrest, i.e., for packing fractions

in the range �.6 ≤ ϕ ≤ �.8�5, scaling is shown to hold: S4ðq� tÞ=χ4ðtÞ ¼ sðqξðtÞÞ. Both the dynamic

susceptibility χ4ðτ�Þ and the dynamic correlation length ξðτ�Þ evaluated at the � relaxation time τ� can be

fitted to a power law divergence at a critical packing fraction. The measured ξðτ�Þ widely exceeds the

largest one previously observed for three-dimensional (3d) hard sphere fluids. The number of particles in a

slow cluster and the correlation length are related by a robust power law, χ4ðτ�Þ ≈ ξd�pðτ�Þ, with an

exponent d � p ≈ 1.6. This scaling is remarkably independent of ε, even though the strength of the

dynamical heterogeneity at constant volume fraction depends strongly on ε.

DOI: 10.1103/PhysRevLett.113.025701 PACS numbers: 64.70.Q-, 61.20.Lc, 61.43.Fs

Viscous liquids, colloidal suspensions, and granular

fluids are all capable of undergoing dynamical arrest,

either by reducing the temperature in the case of viscous

liquids or by increasing the density in the cases of colloidal

suspensions and of granular systems [1�4]. As the dynami-

cal arrest is approached, not only does the dynamics

become dramatically slower, but it becomes increasingly

heterogeneous [4�21]. One of the most common ways to

characterize the heterogeneity in the dynamics is to probe

its fluctuations [4]. Since probing the dynamics requires

observing the system at two times, probing the spatial

fluctuations in the dynamics naturally leads to defining

quantities that correlate the changes in the state of the

system between two times, at two spatial points, i.e., four-

point functions. Those quantities include the dynamic

susceptibility χ4ðtÞ, which gives a spatially integrated

measurement of the total fluctuations, and the four-point

structure factor S4ðq� tÞ, which is the Fourier transform of

the spatial correlation function describing the local fluctu-

ations in the dynamics [4,12,15]. From the small wave

vector behavior of S4ðq� tÞ, a correlation length ξðtÞ can be

extracted, and it has been found in simulations of viscous

liquids and dense colloidal suspensions that this correlation

length grows as dynamical arrest is approached

[4,12,15,16]. For granular matter, on the other hand, the

jamming transition has been analyzed extensively, but

studies on dynamic heterogeneity are few. Two experimen-

tal groups have investigated driven 2d granular beds in the

context of dynamic heterogeneity. These studies are

restricted to small systems of order a few thousand particles

[13,14,17�21]. χ4ðtÞ has been measured, but spatial corre-

lations have not been investigated systematically due to

small system size. Instead, compact regions of correlated

particles are usually assumed, χ4ðtÞ ∼ ξdðtÞ, thereby deter-

mining a correlation length ξðtÞ.
Here we determine ξ and χ4 independently from

S4ðq� tÞ—without further assumption. We show that there

is indeed a cooperative length scale that grows dramatically

as structural arrest is approached: Varying the density by

10� results in an increase in ξ by a factor ∼2�. The number

of correlated particles is given by χ4ðtÞ, which increases

by a factor > 1�2 in the same range of densities. Both ξðtÞ
and χ4ðtÞ are well fitted by power law divergencies.

Remarkably, size and length scale are related by a robust

power law, χ4ðτ�Þ ≈ ξd�pðτ�Þ with an exponent

d � p ≈ 1.6, implying that the clusters of slow particles

are neither compact nor stringlike. For fixed packing

fraction the strength of the dynamical heterogeneity

changes dramatically with the degree of inelasticity; how-

ever, the scaling χ4ðτ�Þ ≈ ξd�pðτ�Þ and the exponent d � p
are universal. To obtain these results, and in particular a

correlation length as large as 72 particle radii, we rely on

large-scale simulations with typically 4 × ð1�5–1�6Þ par-

ticles. We find that in 2d the spatial fluctuations are much

stronger but the relaxation time grows much more slowly

with length scale than in 3d.

We consider a bidisperse system of hard disks in 2d, with

radii r2 and r1 such that r2 ≈ 1.43r1. The hard disks interact
via two-body inelastic collisions: The normal component of

the relative velocity of two colliding particles is multiplied

by a factor ε ≤ 1, the coefficient of restitution. In the

inelastic case ε < 1, energy ∝ ð1 � ε2Þ is dissipated in each
collision, and has to be supplied in order to reach a steady

state. Here, we kick the particles randomly, comparably to
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the bulk driving in the experiments presented in

Refs. [13,14]. The total injected power is chosen

∝ ð1 � ε2Þ, in order to achieve approximately the same

granular temperature TG (a measure of the rms velocity

fluctuations), for all ε. The system presented here is the

same as the one in Ref. [22], where additional simulation

details can be found.

In this work, we analyze simulations for ε ¼ �.9� with

packing fractions �.6 ≤ ϕ ≤ �.8�5, and for ε ¼ �.7��
�.8�� 1.�� with packing fractions �.72 ≤ ϕ ≤ �.79. The

system contains Ntot ¼ 4 ��� ��� particles for �.6� ≤ ϕ ≤

�.78 and Ntot ¼ 36� ��� particles for �.79 ≤ ϕ ≤ �.8�5.

We measure lengths in units of the radius r1 of the small

disks and choose units of time such that TG ¼ 1. To analyze

the results, we divide the simulation box, which has total

area L2
tot, into sub-boxes of equal areas L2. The number of

particles Nr in each sub-box Br (centered at point r)

fluctuates over time and between different sub-boxes, but

its average N ¼ NtotðL=LtotÞ
2 has been kept fixed for each

measurement. For all analyses, we select the time window

so that the system is in a steady state.

To probe the dynamics, we define the single-particle

overlap function wiðt2� t1Þ� θða � jriðt2Þ � riðt1ÞjÞ,
where θ is the Heaviside function, t1 and t2 are times such

that t2 ≥ t1, riðtÞ is the position of particle i at time t, and a
is the cutoff length. Intuitively, this observable distin-

guishes between “slow” particles, with wi ¼ 1, and “fast”

particles, with wi ¼ �. For each sub-box Br and for a given

time interval between t� and t� þ t (t > �), we also define

the sub-box overlap Qrðt; t�Þ ¼ 1=Nr

�Nr

i¼1 wiðt� þ t� t�Þ,
where the sum runs over the particles present in the box Br

at time t�.Qrðt; t�Þ can be interpreted as the fraction of slow
particles in sub-box Br in the time interval [t�, t� þ t].
The average dynamics is characterized by the quantity

hQrðt; t�Þi, where h� � �i denotes an average over sub-boxes,
and � � � denotes an average over initial times t� at fixed time

difference t. This quantity exhibits critical slowing down as
the packing fraction increases [23]. In particular, the �

relaxation time τ�, defined by hQrðτ�; t�Þi ¼ 1=e, is a

rapidly increasing function of ϕ [23]. Unless otherwise

indicated, the results shown below are for ε ¼ �.9,

a ¼ �.6r1, and t ¼ τ�.

To quantify the heterogeneity of the dynamics, we use

the dynamic susceptibility

χ4ðtÞ ¼ N½hQ2
rðt; t�Þi � hQrðt; t�Þi

2�� ð1Þ

which gives a direct measure of the strength of the

fluctuations in the overlap. As a function of time, χ4ðtÞ
has a maximum χP4 at time τ�. Both the maximum value χP4
and its position τ� are increasing functions of the packing

fraction ϕ (see Fig. 1, inset). Moreover, as shown in Fig. 1,

as a function of N, χP4 initially increases and then reaches

a plateau. Both the value of N at which the plateau starts

and the plateau value of χP4 are increasing functions of the

packing fraction ϕ, consistent with the presence of a

correlation length ξ that controls the finite size scaling

behavior of χP4 and that grows with increasing ϕ [24]. To

minimize finite size effects, in what follows all results are

reported for N ¼ 1� ��� for ϕ ≤ �.76 and N ¼ 4� ��� for

ϕ > �.76, which are within the plateau region for all

packing fractions considered.

Spatial correlations of the dynamical fluctuations are

encoded in the four-point structure factor

S4ðq� tÞ=N ¼ �½hWrð�� t; t�ÞWrð��� t; t�Þi � hWrð�� t; t�ÞihWrð��� t; t�Þi�g� ð2Þ

where Wrð��t;t�Þ¼1=Nr

�Nr

i¼1exp½i� ·riðt�Þ�wiðt�þ t�t�Þ,
and �� � �g denotes an average over wave vectors � of fixed

magnitude j�j ¼ q. The four-point structure factor and

the dynamic susceptibility are related by limq��S4ðq� tÞ ¼
χ4ðtÞ [25].

As the packing fraction is increased to the point of

structural arrest, we expect long-range correlations of the

dynamic heterogeneities as well as scaling of S4ðq� tÞ.

In Fig. 2 we plot S4ðq� τ�Þ=χ4ðτ�Þ as a function of

qξðτ�Þ, and find good collapse between data for different

ϕ. This shows that all dependence on ϕ can be absorbed

into a single length scale, the dynamic correlation length

ξðtÞ evaluated at τ�. ξðtÞ can be extracted either by

collapsing the data in the scaling plot or by fitting

S4ðq� tÞ to the Ornstein-Zernicke (OZ) form, S4ðq� tÞ ¼
χ4ðtÞ=�1þ ½qξðtÞ�2g.
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FIG. 1 (color online). Peak value of the dynamic susceptibility

χP4 versus N for packing fractions �.6� ≤ ϕ ≤ �.8�5. Inset:

Dynamic susceptibility χ4ðtÞ for the same packing fractions as

in the main panel, for N ¼ 1� ���.
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As can be seen in Fig. 2, the scaling function is close to

the OZ form for qξðτ�Þ≲ 1, but starts to differ significantly

from it for larger values of qξðτ�Þ. The values of ξðτ�Þ,
reported in Fig. 2, are obtained by fitting S4ðq� tÞ to the OZ
form in the range � < q < �.2. Changing the fitting range

or adding a quartic term to the denominator in the fitting

function [16,28] does not significantly alter the results for

ξðτ�Þ [23].

In Fig. 3, we show that both χ4ðτ�Þ and ξðτ�Þ grow

rapidly with ϕ. In fact, both quantities and also the

relaxation time τ� (not shown) are well fitted by divergent

power law forms χ4ðτ�Þ ∝ ðϕJ � ϕÞ�γχ , ξðτ�Þ ∝
ðϕJ � ϕÞ�γξ , and τ� ∝ ðϕJ � ϕÞ�γτ , with a common loca-

tion ϕJ ≈ �.82 for all three divergences but different

exponents γχ ≈ 2.5, γξ ≈ 1.6, and γτ ≈ 2.4 [23].

The above results imply a power law relation between

time scales and length scales: τ� ∝ ½ξðτ�Þ�
z, with a dynami-

cal exponent z ¼ γτ=γξ. In the inset of Fig. 3 we show τ� as

a function of ξðτ�Þ. A power law fit with an exponent z ¼
γτ=γξ ≈ 1.5 is shown (full line), together with an alternative

description [16], i.e., τ� ∝ exp½kξðτ�Þ� (dot-dashed line).

We do not observe the dramatic slowdown of growth of

the correlation volume for very long time scales seen in

structural glasses [29,30], although we cannot exclude it

happening at length scales that exceed the observed

correlation length of 35 particle diameters. This slowdown

in glasses is necessary to avoid unphysically large corre-

lation lengths, when extrapolated to experimental time

scales, but, in a granular fluid, the time scales are macro-

scopic and hence time and length scale in the simulation are

comparable to experiment.

We now examine how the dynamic susceptibility χ4ðτ�Þ
and the correlation length ξðτ�Þ depend on a. For a within

the range �.2r1 ≤ a ≤ 4.�r1, both quantities display the

same behavior [31]. They grow monotonically with a, and
three regimes can be identified: extremely fast growth for

r=a1 ≲ 1, much slower growth for r=a1 ≳ 1, and a cross-

over in between. Figure 4 shows this for the case of ξðτ�Þ.
We also find that for fixed a, the relation between the two

quantities is well fitted by a power law, χ4ðτ�Þ ∝ ξd�pðτ�Þ,
with an exponent d � p ≈ 1.6, which is approximately

constant as a function of a. In the inset of Fig. 4 we show

this relation for a=r1 ¼ �.6� 1.4� 3.�, i.e., for one value of a
in each of the regimes described above.

The exponent d � p gives information about the corre-

lated slow regions. In the most common interpretation,

d � p is the fractal dimension df of those regions. The

value df ≈ 1.6 differs from the expected values for compact

domains (df ¼ 2) and for stringlike domains (df ¼ 1). It

has been suggested that alternatively the correlated regions

could be compact, but their sizes could have a wide
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FIG. 2 (color online). Scaling plot of the four-point structure

factor S4ðq� τ�Þ for different packing fractions, with

Ornstein-Zernicke fit (solid line). The correlation lengths ξ are

shown in the key.
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distribution [4,32]. However, this is not compatible with the

OZ form of S4ðq� tÞ, which implies a fast decay of G4ðr� tÞ
for large distances r. We have studied a wide range of

values of the cutoff a, which goes from being barely larger

than the typical displacement associated with vibrations of

caged particles to being larger than the displacement

required to reach the position of second neighbors to the

original location of the particle. Therefore, it is remarkable

that the exponent d � p is essentially constant over this

whole range of values of a.
We now turn to the analysis of the effects of dissipation

by comparing results for different values of the coefficient

of restitution ε. In Fig. 5 we show the dynamic suscep-

tibility χ4ðtÞ for ϕ ¼ �.76 and ε ¼ �.7�, 0.80, 0.90, and

1.00 (elastic). As ε grows, the height of the peak of χ4ðtÞ
increases and the peak shifts to longer times. In the inset we

show that ξðτ�Þ also grows as a function of ε and that this

growth is stronger for higher packing fractions. Both results

are compatible with an ε-dependent critical density ϕJðεÞ as
predicted in Ref. [33]. Such a shift in the critical density

drops out if we plot the relation between χ4ðτ�Þ and ξðτ�Þ,
as is done in Fig. 6 for ε ¼ �.7�, 0.80, 0.90, and 1.00.

We find that a single power law χ4ðτ�Þ ∝ ξd�pðτ�Þ, with
d � p ≈ 1.6, provides a good fit for the data corresponding

to all values of ε. In fact, attempting separate fits for each ε

leads to obtaining exponents that are equal to each other

within error bars.

In summary, we studied dynamical heterogeneity in a 2d

driven granular fluid in the range of packing fractions

�.6 ≤ ϕ ≤ �.8�5. The four-point dynamic structure factor

was shown to obey scaling, S4ðq� τ�Þ=χ4ðτ�Þ ¼ sðqξðτ�ÞÞ,
where the scaling function is well fitted by the Ornstein-

Zernicke form for small argument. This allowed us to

determine the dynamic susceptibility χ4ðτ�Þ and the corre-

lation length ξðτ�Þ independently. Both were shown to

grow dramatically with the packing fraction ϕ and can be

well fitted by divergent power laws within the range of

packing fractions accessible to our simulations. For resti-

tution coefficients �.7 ≤ ε ≤ 1.�, and a wide range of

cutoffs �.6 ≤ a=r1 ≤ 3.�, we found a robust scaling

χ4ðτ�Þ ∝ ξd�pðτ�Þ, with d � p ≈ 1.6, implying that the

correlated regions are neither stringlike nor compact. We

conclude that the observed scaling of dynamical hetero-

geneities is remarkably universal with respect to dissipation

and much stronger in 2d than in 3d.
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